Бета-нуклеированный пропиленовый сополимер
Изобретение относится к гетерофазному пропиленовому сополимеру, являющемуся β-нуклеированным, его изготовлению и использованию, а также к трубам, слоям в многослойных трубах и покрытиям на стальных трубах, выполненных из упомянутого β-нуклеированного пропиленового сополимера. Гетерофазный пропиленовый сополимер содержит пропиленовую матрицу (А), состоящую из пропиленового гомополимера или пропиленового сополимера, и эластомерный сополимер (В), содержащий пропилен и, по меньшей мере, один другой С2 и/или С4-С10 α-олефин. Эластомерная фаза имеет характеристическую вязкость, согласно измерению в тетралине при 135°С равную или меньшую 4,0 дл/г. Гетерофазный пропиленовый сополимер характеризуется скоростью течения расплава MFR2 (230°С), меньшей чем 0,7 г/10 мин, повышенной стойкостью к ударным нагрузкам при низких температурах, при сохранении других технологических свойств на высоком уровне. Кроме того, материал демонстрирует признаки довольно низкой температуры плавления в сопоставлении со случаем стандартных гетерофазных пропиленовых сополимеров (ГЕСО), что улучшает также и свойства материала изобретения. 4 н. и 19 з.п. ф-лы, 4 табл.
Реферат
Настоящее изобретение относится к новому β-нуклеированному пропиленовому сополимеру, его изготовлению и использованию, а также к трубам, слоям в многослойных трубах и покрытиям на стальных трубах, содержащим упомянутый новый β-нуклеированный пропиленовый сополимер.
Полимеры на полипропиленовой основе демонстрируют множество характеристик, которые делают их подходящими для использования во множестве областей применения, подобных кабелям, трубам, фитингам, формованным изделиям, пеноматериалам и тому подобному. Полипропилен в качестве материала трубы в основном используют в безнапорных областях применения, подобных защите кабелей, а также для кульвертов (например, для автомобильных и железных дорог), фитингов и профилей. Используют все три основных типа пропиленовых полимеров, то есть гомополимеры, статистические сополимеры и блок-сополимеры (то есть гетерофазные сополимеры).
В общем случае материалы на полипропиленовой основе, выбираемые для областей применения труб и кабелей, в результате должны приводить к получению продуктов, демонстрирующих высокую ударопрочность, а также хорошую жесткость при одновременном - по возможности - все еще сохранении надлежащих эксплуатационных характеристик в испытании на действие давления. Однако данные свойства взаимосвязаны друг с другом и очень часто ведут себя конфликтующим образом, то есть улучшение конкретного свойства может быть осуществлено только за счет другого свойства.
Жесткость, например, может быть улучшена в результате увеличения в композиции количества гомополимера. Как следствие, материал становится более хрупким, тем самым в результате приводя к получению неудовлетворительных ударных свойств. Кроме того, высокая хрупкость обычно сопровождается пониженным сопротивлением медленному росту трещины, тем самым оказывая негативное влияние на долговечность.
С другой стороны, в случае если основной интерес представляет стойкость к ударным нагрузкам, то хорошим вариантом выбора могут оказаться гетерофазные пропиленовые сополимеры. Гетерофазные пропиленовые сополимеры, также называемые пропиленовыми блок-сополимерами, включают полимерную матрицу совместно с диспергированной в ней фазой эластомерного сополимера. Матрица в общем случае представляет собой пропиленовый гомополимер или сополимер. Фаза эластомерного сополимера зачастую представляет собой пропиленовый сополимер, содержащий этилен и/или другой высший α-олефин (олефины). Как известно, при увеличении уровня содержания сомономера может быть улучшено поведение при ударном нагружении. Однако данное улучшение оплачивается нежелательной потерей жесткости. Вне зависимости от общего понимания того, как индивидуальные свойства могут быть улучшены теоретически, до настоящего времени было невозможно получить хорошо сбалансированную полимерную композицию в том, что касается жесткости и ударной вязкости.
Основной недостаток широко распространенных полипропиленовых покрытий или слоев для труб заключается в недостаточной динамической вязкости разрушения. Однако от труб требуется демонстрация высокой динамической вязкости разрушения во избежание растрескивания покрытия или слоя во время манипуляций при установке и в ходе обслуживания.
Термин «манипуляции при установке» в соответствии с использованием в настоящем документе обозначает любую методику установки, такую как скручивание и раскручивание витков готовых трубопроводов, сварка и другие методики соединения и установка на морском дне для морских платформ со специально спроектированными судами, наиболее часто на глубину в несколько сотен метров, также и в неопределенных условиях на морском дне с риском возникновения ударов горных пород и тому подобного. Манипуляции при установке для стальных труб с нанесенным покрытием или многослойных труб включают жесткие условия для покрытия и слоя соответственно, в том числе высокое напряжение, существенное относительное удлинение, повреждения поверхности, надрезы, случаи соударений и тому подобное, как в низко-, так и в высокотемпературных условиях, а также при высоком гидростатическом давлении.
В соответствии с этим существует потребность в полипропиленовых материалах, подходящих для использования в трубах, обладающих улучшенными свойствами, критичными для данной конкретной области техники.
Таким образом, все еще сохраняется желание, например, иметь стальные трубы с покрытиями или слои для многослойных труб, характеризующиеся чрезвычайной ударопрочностью при низких температурах. Само собой разумеется то, что другие свойства, необходимые для таких покрытий или слоев, не должны страдать от улучшения ударопрочности.
Таким образом, цель настоящего изобретения заключается в предложении пропиленового сополимера, характеризующегося превосходной стойкостью к ударным нагрузкам при низких температурах при одновременном сохранении других свойств, необходимых для материалов покрытий труб, подобных стальным трубам, или слоев в многослойных трубах по стандарту. Таким образом, в частности, искомым является пропиленовый сополимер, демонстрирующий высокие значения стойкости к ударным нагрузкам при низких температурах (-20°С) и хорошую жесткость, выражаемую через модуль упругости при изгибе. В дополнение к этому такой пропиленовый сополимер предпочтительно должен демонстрировать признаки хороших эксплуатационных характеристик в испытании на действие давления. Кроме того, цель настоящего изобретения заключается в предложении труб в виде стальных труб или многослойных труб, характеризующихся хорошей ударопрочностью при низких температурах, в частности, достигаемой благодаря подходящим покрытиям и слоям соответственно.
Настоящее изобретение заключается в создании гетерофазного пропиленового сополимера (ГЕСО), являющегося β-нуклеированным и содержащим фракцию эластомерного сополимера, имеющего довольно низкую молекулярную массу.
Таким образом, настоящее изобретение относится к гетерофазному пропиленовому сополимеру (ГЕСО), включающему
(а) пропиленовую матрицу (А) и
(b) эластомерный сополимер (В), содержащий пропилен и, по меньшей мере, один другой С2-С10 α-олефин,
где
(с) гетерофазный пропиленовый сополимер (ГЕСО) является β-нуклеированным,
(d) необязательно гетерофазный пропиленовый сополимер (ГЕСО) характеризуется скоростью течения расплава MFR2 (230°C), согласно измерению в соответствии с документом ISO 1133 меньшей чем 1,0 г/10 мин, и
(е) эластомерный сополимер (В) имеет характеристическую вязкость, согласно измерению в тетралине при 135°С равную или меньшую 4,0 дл/г.
Предпочтительно пропиленовая матрица (А) и эластомерный сополимер (В) представляют собой единственные полимерные компоненты в гетерофазном пропиленовом сополимере (ГЕСО).
В альтернативном варианте изобретение может быть определено гетерофазным пропиленовым сополимером (ГЕСО), включающим
(а) пропиленовую матрицу (А) и
(b) эластомерный сополимер (В), содержащий пропилен и, по меньшей мере, один другой С2-С10 α-олефин,
где
(с) гетерофазный пропиленовый сополимер (ГЕСО) является, по меньшей мере, частично, предпочтительно, по меньшей мере, до 50%, кристаллизованным в β-модификации,
(d) необязательно гетерофазный пропиленовый сополимер (ГЕСО) характеризуется скоростью течения расплава MFR2 (230°C), согласно измерению в соответствии с документом ISO 1133 меньшей чем 1,0 г/10 мин, и
(е) эластомерный сополимер (В) имеет характеристическую вязкость, согласно измерению в тетралине при 135°С равную или меньшую 4,0 дл/г.
Предпочтительно пропиленовая матрица (А) и эластомерный сополимер (В) представляют собой единственные полимерные компоненты в гетерофазном пропиленовом сополимере (ГЕСО).
Как неожиданно было обнаружено, в случае упомянутого гетерофазного пропиленового сополимера (ГЕСО) стойкость к ударным нагрузкам при низких температурах, то есть при -20°С, может быть значительно улучшена в сопоставлении со случаем материалов современного уровня техники (см. таблицы от 1 до 4). Но превосходным является не только поведение при ударных нагрузках при низких температурах, на высоких уровнях могут сохраняться также и другие свойства. Например, жесткость, выражаемая через модуль упругости при изгибе, сопоставима с характеристиками известных продуктов. Кроме того, материал демонстрирует признаки довольно низкой температуры плавления в сопоставлении со случаем стандартных гетерофазных пропиленовых сополимеров (ГЕСО), что улучшает также и технологические свойства материала изобретения.
Изобретение предъявляет к новому пропиленовому сополимеру три требования:
• он должен представлять собой гетерофазный пропиленовый сополимер (ГЕСО),
• гетерофазный материал должен включать фазу эластомерного сополимера, имеющего довольно низкую молекулярную массу,
• гетерофазный материал должен быть β-нуклеированным.
Кроме того, скорость течения расплава должна быть довольно низкой.
В последующем изложении обязательные требования описываются более подробно.
Как указывалось ранее, пропиленовый сополимер должен быть гетерофазным. Гетерофазный пропиленовый сополимер (ГЕСО), соответствующий данному изобретению, помимо пропилена содержит и другой α-олефин (олефины), например этилен. Кроме того, такой гетерофазный пропиленовый сополимер (ГЕСО) предпочтительно обладает многофазной структурой с полимерной матрицей и включениями, содержащими, по меньшей мере, эластомерную фазу, то есть аморфный пропиленовый сополимер («каучук»), и необязательно кристаллический полиэтилен. Обычно такой гетерофазный пропиленовый сополимер (ГЕСО) получают в результате проведения многостадийного способа, подобного, по меньшей мере, двухстадийному способу, который в результате приводит к получению такой гетерофазной системы.
Полимерная матрица (А) гетерофазного пропиленового сополимера (ГЕСО) в соответствии с изобретением должна являться полипропиленовой матрицей (А), которая в последующем изложении называется пропиленовой матрицей (А).
Пропиленовая матрица (А) может представлять собой пропиленовый гомополимер, пропиленовый сополимер, то есть статистический пропиленовый сополимер, или их смеси, подобные системе гомополимер/статистический сополимер. Однако предпочитается, чтобы пропиленовая матрица (А) представляла бы собой пропиленовый гомополимер.
Выражение «гомополимер», использующееся в настоящем изобретении, относится к полипропилену, который состоит по существу, то есть, по меньшей мере, на 97% мас., предпочтительно, по меньшей мере, на 98% мас., более предпочтительно, по меньшей мере, на 99% мас., еще более предпочтительно, по меньшей мере, на 99,8% мас., из пропиленовых звеньев. В одном предпочтительном варианте реализации в пропиленовом гомополимере могут быть обнаружены только пропиленовые звенья. Уровень содержания сомономера может быть определен по методу инфракрасной спектроскопии с Фурье-преобразованием, как это описывается далее в примерах.
Еще более предпочтительно пропиленовым гомополимером является изотактический пропиленовый гомополимер. Таким образом, предпочитается, чтобы пропиленовый гомополимер характеризовался бы довольно высокой концентрацией пентад, то есть большей чем 90%, более предпочтительно большей чем 92%, еще более предпочтительно большей чем 93%, а даже более предпочтительно большей чем 95%.
В случае содержания в пропиленовой матрице (А) пропиленового сополимера, то есть статистического пропиленового сополимера, или системы гомополимер/статистический пропиленовый сополимер пропиленовый сополимер будет содержать мономеры, сополимеризуемые с пропиленом, например сомономеры, такие как этилен и С4-С20 α-олефины, в частности этилен и С4-С10 α-олефины, например 1-бутен или 1-гексен. Уровень содержания сомономера в пропиленовой матрице, то есть в статистическом пропиленовом сополимере, в таком случае предпочтительно является относительно низким, то есть доходящим вплоть до 8,0% мас., более предпочтительно находящимся в диапазоне от 2,5 до 8,0% мас., еще более предпочтительно от 2,5 до 7,5% мас., даже более предпочтительно от 2,5 до 5,0% мас.
Пропиленовая матрица (А) может быть унимодальной или мультимодальной, подобной бимодальной. Однако предпочитается, чтобы пропиленовая матрица (А) была бы унимодальной. Что касается определения термина «унимодальная и мультимодальная, подобная бимодальной», то следует обратиться к определению, приведенному далее.
В случае содержания в пропиленовой матрице (А) двух и более различных пропиленовых полимеров они могут представлять собой полимеры, характеризующиеся различным составом мономеров и/или различными молекулярно-массовыми распределениями. Данные компоненты могут демонстрировать идентичные или различные композиции и тактичности мономеров.
Кроме того, предпочитается, чтобы количество растворимой в ксилоле фракции пропиленовой матрицы (А) не было бы чрезмерно высоким. Растворимая в ксилоле фракция представляет собой часть полимера, растворимую в холодном ксилоле, согласно определению в результате растворения в кипящем ксилоле и обеспечения кристаллизации нерастворимой части из охлаждающегося раствора (по поводу метода обратитесь к представленной далее экспериментальной части). Растворимая в ксилоле фракция содержит полимерные цепи низкой стереорегулярности и представляет собой индикатор количества некристаллических областей. В соответствии с этим предпочитается, чтобы растворимая в ксилоле фракция пропиленовой матрицы (А) составляла бы менее чем 2,5% мас., более предпочтительно менее чем 2,0% мас. В предпочтительных вариантах реализации количество растворимой в ксилоле фракции находится в диапазоне от 0,2 до 2,5% мас., а более предпочтительно в диапазоне от 0,3 до 2,0% мас.
Кроме того, необходимо понимать то, что пропиленовая матрица (А) характеризуется довольно низкой скоростью течения расплава (MFR), то есть довольно высокой молекулярной массой. Скорость течения расплава в основном зависит от средней молекулярной массы. Это обуславливается тем, что в сопоставлении с короткими молекулами длинные молекулы придают материалу меньшую тенденцию к текучести. Увеличение молекулярной массы соответствует уменьшению значения MFR. Скорость течения расплава (MFR) измеряют в г/10 мин для полимера, выпускаемого через определенный мундштук в указанных условиях по температуре и давлению, и она представляет собой меру вязкости полимера, на которую, в свою очередь, для каждого типа полимера в основном влияют его молекулярная масса, но также и его степень разветвления. Скорость течения расплава, измеренную под нагрузкой 2,16 кг при 230ºС (ISO 1133), обозначают как MFR2 (230ºC). В соответствии с этим предпочитается, чтобы в настоящем изобретении пропиленовая матрица (А) характеризовалась бы значением MFR2 (230°С), меньшим чем 8,00 г/10 мин, более предпочтительно меньшим чем 2,0 г/10 мин, еще более предпочтительно меньшим чем 1,0 г/10 мин, даже еще более предпочтительно меньшим чем 0,8 г/10 мин, подобно тому, как меньшим чем 0,5 г/10 мин.
В данном контексте необходимо упомянуть о том, что свойства пропиленовой матрицы (А) могут быть, например, определены во время изготовления гетерофазного пропиленового сополимера (ГЕСО) изобретения. Как утверждалось ранее (и более подробно будет сказано далее), гетерофазный пропиленовый сополимер может быть получен по многостадийному способу, где сначала получают пропиленовую матрицу (А), а на последующей стадии в присутствии матрицы (А) получают эластомерный сополимер (В). Таким образом, поскольку свойства пропиленовой матрицы (А) во время изготовления эластомерного сополимера (В) значительно не изменяются, первая фракция может быть определена до завершения какой-либо последующей стадии.
В качестве одного дополнительного требования к гетерофазному пропиленовому сополимеру (ГЕСО) эластомерный сополимер (В) должен обладать определенными свойствами, для того чтобы можно было бы добиться желательных результатов.
В соответствии с этим эластомерный сополимер (В) должен содержать пропилен и, по меньшей мере, один другой С2-С10 α-олефин. Предпочтительно эластомерный сополимер (В) содержит пропилен и, по меньшей мере, один α-олефиновый сомономер, выбираемый из группы, состоящей из этилена, 1-бутена, 1-пентена, 1-гексена, 1-гептена и 1-октена, а предпочтительно состоит из них. Предпочтительно эластомерный сополимер (В) содержит, по меньшей мере, пропилен и этилен и может содержать дополнительный α-олефин, определенный в данном абзаце. Однако в особенности предпочитается, чтобы эластомерный сополимер (В) в качестве единственных полимеризуемых звеньев содержал бы пропилен и этилен, а более предпочтительно состоял бы из них. Таким образом, наиболее предпочтительным в качестве эластомерного сополимера (В) является этилен-пропиленовый каучук (ЭПК).
Подобно пропиленовой матрице (А) эластомерный сополимер (В) может быть унимодальным или мультимодальным, подобным бимодальному. Однако предпочитается, чтобы эластомерный сополимер (В) был бы унимодальным. Что касается определения термина «унимодальный и мультимодальный, подобный бимодальному», то следует обратиться к определению, приведенному далее.
Эластомерный сополимер (В), в частности, демонстрирует признаки относительно большого количества С2-С10 α-олефина, отличного от пропилена. Таким образом, необходимо понимать то, что уровень содержания пропилена в эластомерном сополимере (В) является меньшим чем 70% мас., более предпочтительно меньшим, чем 65% мас., еще более предпочтительно меньшим чем 60% мас., то есть, меньшим чем 58% мас. В соответствии с этим количество других С2-С10 α-олефинов (олефина), то есть при исключении пропилена, в эластомерном сополимере (В) составляет, по меньшей мере, 30% мас., более предпочтительно, по меньшей мере, 35% мас., еще более предпочтительно, по меньшей мере, 40% мас., то есть, по меньшей мере, 42% мас. Предпочтительные диапазоны других С2-С10 α-олефинов (олефина), то есть при исключении пропилена, в эластомерном сополимере (В) заключены в пределах от 30 до 60% мас., более предпочтительно от 35 до 55% мас. Предпочтительно эластомерный сополимер (В) представляет собой этилен-пропиленовый каучук (ЭПК), в частности, при уровне содержания пропилена и/или этилена, определенном в данном абзаце.
Одна дополнительная важная характеристика эластомерного сополимера (В) заключается в довольно низкой характеристической вязкости, определенной по характеристической вязкости фракции, осажденной в ацетоне, для фракции, растворимой в ксилоле, IV AM, то есть равной или меньшей 4,0 дл/г, еще более предпочтительно меньшей 3,5 дл/г, даже более предпочтительно меньшей 3,2 дл/г, даже еще более предпочтительно меньшей 3,0 дл/г. В одном предпочтительном варианте реализации характеристическая вязкость находится в диапазоне от 1,0 до 4,0 дл/г, еще более предпочтительно в диапазоне от 1,5 до 3,0 дл/г. Характеристическую вязкость измеряют в соответствии с документом ISO 1628 в тетралине при 135°С.
В заключение, требуется, чтобы гетерофазный пропиленовый сополимер (ГЕСО) был бы β-нуклеированным, то есть полипропиленовая композиция должна быть частично закристаллизована в β-модификации. Таким образом, предпочитается, чтобы степень β-модифицирования полипропиленовой композиции составляла бы, по меньшей мере, 50%, более предпочтительно, по меньшей мере, 60%, еще более предпочтительно, по меньшей мере, 65%, подобно тому, как, по меньшей мере, 70% (согласно определению по методу ДСК при использовании второго нагревания, подробно описанного в разделе с примерами).
В дополнение к этому, гетерофазный пропиленовый сополимер (ГЕСО) предпочтительно содержит также и β-нуклеирующие добавки. Предпочтительные β-нуклеирующие добавки более подробно определяют далее там, где описывается способ изготовления гетерофазного пропиленового сополимера (ГЕСО) изобретения. Количество β-нуклеирующих добавок находится в диапазоне от 0,0001 до 2,0% мас., более предпочтительно в диапазоне от 0,0005 до 0,5% мас., при расчете на массу гетерофазного пропиленового сополимера (ГЕСО).
Само собой разумеется то, что определенное влияние на желательные свойства также оказывает и соотношение между количествами пропиленовой матрицы (А) и эластомерного сополимера (В) в гетерофазном пропиленовом сополимере (ГЕСО). Таким образом, предпочитается, чтобы гетерофазный пропиленовый сополимер (ГЕСО) содержал бы
(а) по меньшей мере, 65,0% мас., более предпочтительно, по меньшей мере, 70,0% мас. и/или не более чем 95,0% мас., еще более предпочтительно от 65,0 до 92,0% мас., даже более предпочтительно от 72 до 90% мас., пропиленовой матрицы (А) при расчете на совокупное количество полимерных компонентов в гетерофазном пропиленовом сополимере (ГЕСО), более предпочтительно при расчете на совокупное количество гетерофазного пропиленового сополимера (ГЕСО),
(b) не более чем 35,0% мас., более предпочтительно, по меньшей мере, 5,0% мас. и/или не более чем 30% мас., еще более предпочтительно от 8,0 до 35,0% мас., даже более предпочтительно от 10,0 до 28,0% мас., эластомерного сополимера (В) при расчете на совокупное количество полимерных компонентов в гетерофазном пропиленовом сополимере (ГЕСО), более предпочтительно при расчете на совокупное количество гетерофазного пропиленового сополимера (ГЕСО).
В дополнение к этому, необходимо понимать то, что совокупный уровень содержания сомономеров, то есть α-олефинов, отличных от пропилена, в совокупном гетерофазном пропиленовом сополимере (ГЕСО) является довольно умеренным. В соответствии с этим предпочитается, чтобы гетерофазный пропиленовый сополимер (ГЕСО) характеризовался бы совокупным уровнем содержания сомономера, предпочтительно уровнем содержания этилена, равным или меньшим 20,0% мас., более предпочтительно равным или меньшим 15,0% мас., еще более предпочтительно равным или меньшим 10,0% мас.
Кроме того, необходимо понимать то, что значение MFR2 (230°С) гетерофазного пропиленового сополимера (ГЕСО) является довольно низким, то есть меньшим чем 1,0 г/10 мин, более предпочтительно меньшим чем 0,7 г/10 мин, еще более предпочтительно меньшим чем 0,5 г/10 мин, а даже более предпочтительно меньшим чем 0,35 г/10 мин.
Кроме того, гетерофазный пропиленовый сополимер (ГЕСО) может быть бимодальным или мультимодальным. Однако предпочитается, чтобы эластомерный сополимер (В) был бы мультимодальным, подобным бимодальному.
Выражения «мультимодальный» или «бимодальный», использующиеся в настоящем документе, относятся к модальности полимера, то есть форме кривой его молекулярно-массового распределения, которая представляет собой график зависимости фракции молекулярной массы от его молекулярной массы. Как будет разъяснено далее, полимерные компоненты настоящего изобретения могут быть получены по ступенчатому постадийному способу при использовании реакторов в последовательной конфигурации и ведении операции при различных условиях проведения реакций. Как следствие, каждая фракция, полученная в конкретном реакторе, будет характеризоваться своим собственным молекулярно-массовым распределением. При наложении кривых молекулярно-массовых распределений от данных фракций друг на друга для получения кривой молекулярно-массового распределения конечного полимера данная кривая может обнаруживать наличие двух и более максимумов или быть, по меньшей мере, отчетливо уширенной в сопоставлении с кривыми для индивидуальных фракций. Такой полимер, полученный на двух и более последовательных стадиях, называют бимодальным или мультимодальным в зависимости от количества стадий.
Среднечисленную молекулярную массу (Mn) и среднемассовую молекулярную массу (Mw), а также молекулярно-массовое распределение (ММР) в настоящем изобретении определяют по методу эксклюзионной хроматографии размеров (ЭХР) при использовании прибора Waters Alliance GPCV 2000, снабженного работающим в интерактивном режиме вискозиметром. Температура печи составляет 140ºС. В качестве растворителя используют трихлорбензол (ISO 16014). Точный способ измерения определен в разделе с примерами.
Кроме того, необходимо понимать то, что гетерофазный пропиленовый сополимер (ГЕСО) делает возможным изготовление труб, в частности покрытий стальных труб или слоев многослойных труб, характеризующихся довольно высокой ударопрочностью. В соответствии с этим предпочитается, чтобы гетерофазный пропиленовый сополимер (ГЕСО) в состоянии, полученном при литьевом формовании, и/или трубы на основе упомянутой полипропиленовой композиции характеризовался/характеризовались бы ударопрочностью согласно измерению в соответствии с испытанием на удар по Шарпи (ISO 179 1eA (2000)) при -20ºС, равным, по меньшей мере, 22,0 кДж/м2, более предпочтительно, по меньшей мере, 25,0 кДж/м2, еще более предпочтительно, по меньшей мере, 30,0 кДж/м2.
В дополнение к этому, необходимо понимать то, что гетерофазный пропиленовый сополимер (ГЕСО) делает возможным изготовление труб, в частности стальных труб, характеризующихся довольно высокой стойкостью к деформированию, то есть высокой жесткостью. В соответствии с этим предпочитается, чтобы гетерофазный пропиленовый сополимер (ГЕСО) в состоянии, полученном при литьевом формовании, и/или трубы на основе упомянутого гетерофазного пропиленового сополимера (ГЕСО) характеризовался/характеризовались бы модулем упругости при изгибе согласно измерению в соответствии с документом ISO 178, равным, по меньшей мере, 900 МПа, более предпочтительно, по меньшей мере, 1000 МПа, еще более предпочтительно, по меньшей мере, 1100 МПа.
Кроме того, настоящее изобретение также относится к использованию гетерофазного пропиленового сополимера (ГЕСО) изобретения для труб, в частности стальных труб, или частей труб. Предпочтительно гетерофазный пропиленовый сополимер (ГЕСО) изобретения используют в качестве слоя покрытия для труб, в частности стальных труб.
Кроме того, настоящее изобретение также относится к трубам и/или трубным фитингам, в частности стальным трубам или многослойным трубам, содержащим гетерофазный пропиленовый сополимер (ГЕСО), определенный в настоящем изобретении. В частности, гетерофазный пропиленовый сополимер (ГЕСО), соответствующий данному изобретению, наносят в виде слоя покрытия для труб, в частности стальных труб, или в виде слоя в многослойных трубах. Данные трубы, в частности, демонстрируют модуль упругости при изгибе и ударопрочность, определенные в предшествующих абзацах.
Термин «труба», использующийся в настоящем документе, подразумевает включение пустотелых изделий, имеющих длину, большую, чем диаметр. Кроме того, термин «труба» также должен включать дополнительные детали, подобные фитингам, клапанам и всем деталям, которые обычно необходимы, например, для систем трубопроводов.
Специалист в соответствующей области техники легко заметит то, что гетерофазный пропиленовый сополимер (ГЕСО) изобретения в вышеупомянутых трубах может быть использован в качестве вспененного и/или поверхностного слоя.
Гетерофазный пропиленовый сополимер (ГЕСО), использующийся для труб, соответствующих изобретению, может содержать обычные вспомогательные материалы, например, вплоть до 10% мас. наполнителей и/или от 0,01 до 2,5% мас. стабилизаторов и/или от 0,01 до 1% мас. технологических добавок и/или от 0,1 до 1% мас. антистатиков и/или от 0,2 до 3% мас. пигментов и/или армирующих добавок, например стекловолокна, в каждом случае на основе использующегося гетерофазного пропиленового сополимера (ГЕСО). Однако в данном отношении необходимо отметить то, что любые из таких вспомогательных материалов, которые используются в качестве высокоактивных α-нуклеирующих добавок, такие как определенные пигменты (например, фталоцианиновый синий) и определенные минеральные наполнители (например, тальк), в соответствии с настоящим изобретением не используются.
В соответствии с настоящим изобретением также предлагается и способ изготовления гетерофазного пропиленового сополимера (ГЕСО), обсуждавшегося ранее. Эластомерный сополимер (В) может быть перемешан с пропиленовой матрицей (А) после полимеризаций для их получения, а после этого β-нуклеирован. Однако более желательно гетерофазный пропиленовый сополимер (ГЕСО) получают по многостадийному способу, а после этого β-нуклеируют. В одном конкретном предпочтительном варианте реализации, по меньшей мере, в одном суспензионном реакторе получают пропиленовую матрицу (А), а после этого, по меньшей мере, в одном газофазном реакторе получают эластомерный сополимер (В). В соответствии с этим гетерофазный пропиленовый сополимер (ГЕСО) настоящего изобретения обычно может быть получен в каскаде, включающем вплоть до 4 реакторов, где первым реактором является реактор, содержащий большой объем жидкости, предпочтительно в виде петлевой конструкции, а все последующие реакторы представляют собой газофазные реакторы предпочтительно в виде конструкции с псевдоожиженным слоем. Компоненты, полученные в первых двух реакторах, представляют собой кристаллизуемые пропиленовые гомополимеры или сополимеры, содержащие неосновное количество этилена и/или других альфа-олефинов (максимально 8% мас.), (образующие матрицу), в то время как компонент, полученный в третьем реакторе, представляет собой в основном аморфный сополимер, содержащий повышенные количества сомономера, а компонент, полученный в четвертом реакторе, представляет собой либо также в основном аморфный сополимер, либо кристаллический этиленовый гомо- или сополимер. В соответствии с одним конкретным вариантом реализации могут быть использованы только три реактора либо при обходе второго реактора по байпасу, либо при неиспользовании четвертого реактора. В соответствии с еще одним конкретным вариантом реализации используют только первый и третий реакторы.
В последующем изложении один предпочтительный способ описывается более подробно: такой способ изготовления настоящего изобретения включает следующие стадии:
(i) подача пропилена и необязательно другого α-олефина (олефинов) в системе первого реактора, предпочтительно включающей суспензионный реактор и необязательно газофазный реактор, для получения пропиленовой матрицы (А),
(ii) перепускание полученной пропиленовой матрицы (А) в систему второго реактора, предпочтительно включающую, по меньшей мере, один газофазный реактор,
(iii) полимеризация пропилена и, по меньшей мере, одного другого С2-С10 α-олефина в упомянутом втором реакторе в присутствии пропиленовой матрицы (А) для получения эластомерного сополимера (В),
(iv) перемешивание, в частности перемешивание в расплаве, полученного материала с β-нуклеирующими добавками, в частности с β-нуклеирующими добавками в количестве в диапазоне от 0,0001 до 2,0% мас. при расчете на массу упомянутой композиции, при температурах в диапазоне от 175 до 300°С,
(v) охлаждение и кристаллизация β-нуклеированного гетерофазного пропиленового сополимера (ГЕСО).
Последовательность (i) и (iii) может быть реализована в обратном порядке, то есть сначала может быть получен эластомерный сополимер (В), а после этого - пропиленовая матрица (А). Однако предпочтительно иметь последовательность от (i) до (iii), указанную ранее.
Подачи сомономера в различные реакторы могут быть адаптированы для получения гетерофазного пропиленового сополимера (ГЕСО), обладающего желательными свойствами, и количества сомономера легко могут быть определены специалистом в соответствующей области техники.
В результате использования - как было указано ранее - петлевого реактора и, по меньшей мере, одного газофазного реактора в последовательной конфигурации и проведения работы в различных условиях может быть получена мультимодальная (например, бимодальная) пропиленовая матрица (А).
Дополнительные подробности в отношении изготовления гетерофазных пропиленовых сополимеров (ГЕСО) могут быть найдены в документе WO 97/40080.
В такой методике использующаяся система катализатора может варьироваться от стадии к стадии, но предпочтительно является идентичной для всех стадий. В особенности предпочтительным является использование форполимеризованного гетерогенного (то есть нанесенного на носитель) катализатора.
В качестве катализатора получения гетерофазного пропиленового сополимера (ГЕСО) предпочтительно используют систему катализатора Циглера-Натта. Такие системы катализатора Циглера-Натта на современном уровне техники известны и содержат компонент катализатора, компонент сокатализатора и внешний донор. Компонент катализатора системы катализатора главным образом содержит магний, титан, галоген и внутренний донор. Доноры электронов контролируют стереоспецифические свойства и/или улучшают активность системы катализатора. На современном уровне техники известно множество доноров электронов, включающее простые эфиры, сложные эфиры, полисиланы, полисилоксаны и алкоксисиланы.
Катализатор в качестве компонента прокатализатора предпочтительно содержит соединение переходного металла. Соединение переходного металла выбирают из группы, состоящей из соединений титана, характеризующихся степенью окисления 3 или 4, соединений ванадия, соединений циркония, соединений кобальта, соединений никеля, соединений вольфрама и соединений редкоземельных металлов, при этом в особенности предпочтительными являются трихлорид титана и тетрахлорид титана.
Предпочитается использовать катализаторы, которые могут выдерживать воздействие высоких температур, преобладающих в петлевом реакторе. Обычные катализаторы Циглера-Натта для изотактической полимеризации пропилена в общем случае характеризуются пределом рабочей температуры, равным приблизительно 80°С, выше которого они либо становятся дезактивированными, либо утрачивают свою стереоспецифичность. Данная низкая температура полимеризации может накладывать практическое ограничение на эффективность теплоотвода в петлевом реакторе.
Один предпочтительный катализатор, использующийся в соответствии с изобретением, описывается в документе ЕР 591224, в котором описывается способ получения композиции прокатализатора из дихлорида магния, соединения титана, низшего спирта и сложного эфира фталевой кислоты, содержащего, по меньшей мере, пять атомов углерода. В соответствии с документом ЕР 591224 между низшим спиртом и сложным эфиром фталевой кислоты проводят реакцию переэтерификации при повышенной температуре, благодаря чему в результате взаимодействия низшего спирта и фталевого сложного эфира сложноэфирные группы меняют свои места.
Дихлорид магния может быть использован как таковой, или он может быть объединен с диоксидом кремния, например, в результате проведения абсорбирования на диоксиде кремния с использованием раствора или суспензии, содержащих дихлорид магния. Использующимся низшим спиртом предпочтительно могут являться метанол или этанол, в частности этанол.
Соединением титана, использующимся при получении прокатализатора, предпочтительно является органическое или неорганическое соединение титана, которое характеризуется степенью окисления 3 или 4. Кроме того, с соединением титана могут быть перемешаны и соединения других переходных металлов, такие как соединения ванадия, циркония, хрома, молибдена и вольфрама. Соединением титана обычно являются галогенид или оксигалогенид, органогалогенид металла или чисто металлоорганическое соединение, в котором к переходному металлу присоединены только органические лиганды. В частности, предпочтительными являются галогениды титана, в особенности тетрахлорид титана.
Алкокси-группа использующегося сложного эфира фталевой кислоты содержит, по меньшей мере, пять атомов углерода, предпочтительно, по меньшей мере, восемь атомов углерода. Таким образом, в качестве сложного эфира могут быть использованы, например, пропилгексилфталат, диоктилфталат, диизодецилфталат и дитридецилфталат. Молярное соотношение между сложным эфиром фталевой кислоты и галогенидом магния предпочтительно составляет приблизительно 0,2:1.
Переэтерификация может быть проведена, например, в результате выбора пары сло