Снегоход, имеющий систему смазки с электронным управлением

Иллюстрации

Показать все

Изобретение может быть использовано в снегоходах, имеющих систему смазки с электронным управлением. Снегоход содержит раму (16) с моторным отсеком (20), туннель (18), проходящий назад от моторного отсека (20), гусеницу, расположенную под туннелем (18), и пару лыж, соединенных с рамой (16). Двигатель (24) и резервуар (70) для масла расположены в моторном отсеке (20). Электронный масляный насос (72) сообщается по текучей среде с резервуаром (70) для масла и с двигателем (24) для подачи смазочного материала в двигатель (24). Электронный управляющий блок (160) электрически соединен с электронным масляным насосом (72) для управления приведением в действие электронного масляного насоса (72). Раскрыт способ работы электронного масляного насоса (72). Технический результат заключается в нелинейной зависимости подачи смазочного материала в двигатель от частоты вращения двигателя. 2 н. и 22 з.п. ф-лы, 16 ил.

Реферат

Перекрестная ссылка

Настоящая заявка испрашивает приоритет по предварительной заявке на патент США № 60/945709, поданной 22 июня 2007 г. и озаглавленной "Снегоход, имеющий систему смазки с электронным управлением", которая включена сюда во всей полноте посредством ссылки.

Область техники, к которой относится изобретение

Настоящее изобретение относится к снегоходу, имеющему систему смазки с электронным управлением.

Предпосылки изобретения

Снегоходы обычно имеют систему смазки, в которой используется масляный насос, который приводится механическим способом двигателем снегохода. Этот тип масляного насоса обычно называют механическим масляным насосом.

Когда двигатель работает согласно четырехтактному принципу, смазочный материал содержится в резервуаре для масла, который обычно соединен или объединен с двигателем, таком как масляный поддон. Механический масляный насос накачивает смазочный материал из резервуара для масла, вызывая его циркуляцию через двигатель. После циркуляции через двигатель смазочный материал возвращается в резервуар для масла.

Когда двигатель работает согласно двухтактному принципу, смазочный материал содержится в резервуаре для масла, который обычно отделен от двигателя. Механический масляный насос накачивает смазочный материал из резервуара для масла в картер двигателя. Из картера смазочный материал проходит к цилиндрам, где он сгорает со смесью топлива и воздуха. Поскольку смазочный материал сгорает в двигателе, резервуар для масла должен периодически пополняться смазочным материалом для надлежащей работы двигателя.

При наличии механического масляного насоса, приводимого двигателем, количество накачиваемого смазочного материала прямо пропорционально частоте вращения двигателя. Таким образом, чем быстрее вращается двигатель, тем больше смазочного материала накачивается механическим масляным насосом, и зависимость между частотой вращения двигателя и количеством накачиваемого смазочного материала является линейной. Однако фактические потребности в смазочном материале для двигателя, особенно в случае с двигателем, работающем согласно двухтактному принципу, не являются линейно пропорциональными частоте вращения двигателя.

Некоторые механические масляные насосы, приводимые двигателем, также соединены с рычагом дроссельной заслонки, который приводится в действие водителем транспортного средства, таким образом, что положение рычага дроссельной заслонки регулирует производительность механического масляного насоса. Хотя это обеспечивает улучшенное снабжение двигателя смазочным материалом, это не обеспечивает учет других факторов, которые воздействуют на фактические потребности в смазочном материале для двигателя, таких как температура окружающего воздуха и высота.

Для двухтактного двигателя фактическая потребность в смазочном материале зависит, по меньшей мере, частично от выходной мощности двигателя, а не от частоты вращения двигателя. Чем выше выходная мощность, тем больше требуется смазочного материала. Существуют моменты в ходе работы двухтактного двигателя, когда частота вращения двигателя высокая, но выходная мощность двигателя низкая. В такие моменты механический масляный насос, приводимый двигателем, выдает много смазочного материала, даже притом, что фактические потребности низки. Один такой случай возникает тогда, когда гусеница снегохода проскальзывает на пятне льда. В этом случае частота вращения двигателя является высокой вследствие проскальзывания, но фактическая выходная мощность является низкой. Существуют другие моменты, когда фактические потребности в смазочном материале ниже, чем может выдавать механический масляный насос, приводимый двигателем. Например, при запуске весь смазочный материал, который присутствовал в двигателе, пока он не работал, находится на дне картера. Накопленного смазочного материала было бы достаточно для смазки двигателя в течение первых нескольких минут работы, однако механический масляный насос вследствие его соединения с двигателем добавляет смазочный материал независимо от этого. Таким образом, в случае с двигателем, работающим согласно двухтактному принципу, использование механического масляного насоса приводит к большему потреблению двигателем смазочного материала, чем фактически требуется. Это также приводит к уровню выброса выхлопных газов, который более высок, чем уровень выброса выхлопных газов, который существовал бы при подаче в двигатель смазочного материала в соответствии с его фактическими потребностями, поскольку сгорает больше смазочного материала, чем необходимо.

Фактические потребности в смазочном материале для двигателя снегохода также являются функцией, как минимум, одного или более из высоты, на которой работает снегоход, температуры двигателя и положения рычага дроссельной заслонки. Поскольку снегоходы часто работают в гористых районах и когда температуры могут сильно изменяться в зимнее время, фактические потребности в смазочном материале для двигателя могут значительно зависеть от этих факторов, и их, таким образом, следует принимать во внимание. Обычные системы смазки снегоходов с использованием механических масляных насосов вследствие линейной зависимости между частотой вращения двигателя и количеством накачиваемого смазочного материала не способны работать с учетом этих факторов.

Согласно известному уровню техники на некоторых снегоходах были применены механизмы, которые могут модифицировать количество смазочного материала, выдаваемого масляным насосом в соответствии с частотой вращения двигателя. Эти механизмы располагали двумя (нормальная/высокая или нормальная/низкая) или тремя (нормальная/высокая/низкая) установками масляного насоса. Хотя эти установки обеспечивали некоторое регулирование количества смазочного материала, подаваемого в двигатель масляным насосом, поскольку насос все же механически соединен с двигателем, зависимость еще остается линейной, и, таким образом, они не решают всех проблем, описанных выше. Установки просто обеспечивают последовательную подачу большего или меньшего количества смазочного материала в зависимости от обстоятельств, чем при нормальных установках.

Таким образом, существует потребность в снегоходе, имеющем систему смазки, которая снабжает двигатель снегохода количеством смазочного материала, которое соответствует или приближается к фактическим потребностям в смазочном материале для двигателя.

Существует также потребность в снегоходе, имеющем систему смазки, которая подает смазочный материал в двигатель снегохода нелинейно относительно частоты вращения двигателя и других факторов.

Кроме того, поскольку механический масляный насос в снегоходах приводится двигателем, мощность, требуемая для привода насоса двигателем, потеряна для привода гусеницы снегохода.

Таким образом, существует потребность в снегоходе, имеющем систему смазки, которая требует меньшей мощности от двигателя, чем было бы необходимо для привода обычного механического масляного насоса.

Наконец, поскольку снегоходы используются в зимнее время, температура окружающей среды иногда может быть достаточно низкой, в результате чего смазочный материал становится слишком вязким для эффективного накачивания.

Таким образом, существует также потребность в снегоходе, имеющем систему смазки, которая может накачивать смазочный материал при низких температурах, и в способе работы системы смазки.

Сущность изобретения

Целью настоящего изобретения является решение, по меньшей мере, части проблем, существующих согласно известному уровню техники.

Другой целью настоящего изобретения является получение снегохода, который электронным способом регулирует поток масла от масляного насоса в двигатель.

Другой целью настоящего изобретения является получение снегохода, имеющего электронный масляный насос.

Другой целью настоящего изобретения является получение снегохода, имеющего масляный насос вблизи узла снегохода, генерирующего тепло.

Другой целью настоящего изобретения является получение способа работы электронного масляного насоса. Согласно одному объекту изобретение обеспечивает получение снегохода, имеющего раму. Рама включает моторный отсек и туннель, проходящий назад от моторного отсека. Под туннелем расположена бесконечная ведущая гусеница для продвижения снегохода. Пара лыж в рабочем положении соединена с рамой. Двигатель расположен в моторном отсеке. Двигатель в рабочем положении соединен с бесконечной ведущей гусеницей. В моторном отсеке расположен резервуар для масла. Электронный масляный насос сообщается по текучей среде с резервуаром для масла. Электронный масляный насос сообщается по текучей среде с двигателем для подачи смазочного материала к двигателю. Электронный управляющий блок электрически соединен с электронным масляным насосом для управления приведением в действие электронного масляного насоса.

Согласно дополнительному объекту с двигателем соединен датчик частоты вращения двигателя. Датчик частоты вращения двигателя электрически соединен с электронным управляющим блоком для передачи сигнала, представляющего частоту вращения двигателя, электронному управляющему блоку. Электронный управляющий блок управляет приведением в действие электронного масляного насоса на основе, по меньшей мере частично, сигнала, представляющего частоту вращения двигателя.

Согласно другому объекту электронный масляный насос расположен снаружи от резервуара для масла и соединен с донной частью резервуара для масла.

Согласно дополнительному объекту электронный масляный насос соединен прямо с донной частью резервуара для масла.

Согласно другому объекту двигатель включает пару цилиндров. Электронный масляный насос включает одно входное отверстие и первую пару выходных отверстий. Каждая первая пара выходных отверстий сообщается по текучей среде с соответствующей парой цилиндров.

Согласно дополнительному объекту двигатель также включает пару выпускных клапанов. Каждый из пары выпускных клапанов сообщается по текучей среде с соответствующим одним из пары цилиндров. Электронный масляный насос также включает вторую пару выходных отверстий. Каждое из второй пары выходных отверстий сообщается по текучей среде с соответствующим одним из пары выпускных клапанов.

Согласно другому объекту снегоход также имеет, по меньшей мере, один генерирующий тепло компонент. Электронный масляный насос расположен вблизи, по меньшей мере, одного генерирующего тепло компонента. По меньшей мере, один генерирующий тепло компонент включает, по меньшей мере, один из: глушителя, сообщающегося по текучей среде с выпускным каналом двигателя, шланга для охлаждающей жидкости, сообщающегося по текучей среде с системой охлаждения двигателя, и теплообменника, сообщающегося по текучей среде с системой охлаждения двигателя.

Согласно дополнительному объекту электронный масляный насос расположен вблизи глушителя, шланга для охлаждающей текучей среды и теплообменника.

Согласно другому объекту электронный масляный насос расположен вблизи двигателя.

Согласно дополнительному объекту электронный масляный насос включает электромагнитную катушку.

Согласно другому объекту изобретение обеспечивает получение способа работы электронного масляного насоса, включающего электромагнитную катушку. Способ содержит: задание времени цикла электронного масляного насоса; задание первого периода времени, причем первый период времени является более продолжительным, чем время хода электронного масляного насоса; соединение электромагнитной катушки с источником энергии в течение первого периода времени; и отключение электромагнитной катушки от источника энергии в течение оставшегося времени цикла.

Согласно другому объекту первый период времени меньше или равен времени цикла минус время возвращения электронного масляного насоса.

Согласно дополнительному объекту первый период времени составляет процентную часть времени цикла.

Согласно другому объекту первый период времени составляет от 30 до 50 процентов времени цикла.

Согласно дополнительному объекту первый период времени составляет приблизительно 40 процентов времени цикла.

Согласно другому объекту первый период времени является постоянным независимо от времени цикла.

Согласно дополнительному объекту соединение электромагнитной катушки с источником энергии в течение первого периода времени подает тепло к смазочному материалу в электронном масляном насосе.

Согласно другому объекту способ также содержит считывание частоты вращения двигателя, в который электронный масляный насос подает смазочный материал. Первый период времени постоянный, когда частота вращения двигателя является меньшей, чем заданная частота вращения двигателя, независимо от времени цикла.

Согласно дополнительному объекту заданная частота вращения двигателя является частотой вращения двигателя на холостом ходу.

Согласно другому объекту способ также содержит: считывание температуры окружающего воздуха, уменьшение предела частоты вращения двигателя до частоты, с которой электронный масляный насос подает смазочный материал, когда температура окружающего воздуха ниже заданной температуры, и в котором определение времени цикла электронного масляного насоса включает считывание частоты вращения двигателя.

Согласно дополнительному объекту способ также содержит: считывание счетчика и увеличение предела частоты вращения двигателя, когда счетчик показывает значение больше заданной величины.

Согласно другому объекту определение продолжительности цикла электронного масляного насоса включает считывание положения дросселя.

Согласно дополнительному объекту определение продолжительности цикла электронного масляного насоса включает считывание давления окружающего воздуха.

Согласно другому объекту определение продолжительности цикла электронного масляного насоса включает считывание температуры охлаждающей жидкости.

Согласно дополнительному объекту определение продолжительности цикла электронного масляного насоса включает определение того, находится ли двигатель в периоде обкатки.

Согласно другому объекту определение продолжительности цикла электронного масляного насоса включает считывание данных, связанных с электронным масляным насосом.

Каждый вариант осуществления настоящего изобретения имеет, по меньшей мере, один из вышеупомянутых объектов и/или аспектов, но не обязательно имеет все из них. Следует понимать, что некоторые объекты настоящего изобретения, которые исходят из попыток достижения вышеупомянутых целей, могут не удовлетворять этим целям и/или могут удовлетворять другим целям, не указанным здесь конкретно.

Дополнительные и/или альтернативные признаки, объекты и преимущества вариантов осуществления настоящего изобретения станут очевидными из нижеследующего описания, прилагаемых чертежей и прилагаемой формулы изобретения.

Краткое описание чертежей

Для лучшего понимания настоящего изобретения, так же как и других его объектов и других признаков, сделаны ссылки на нижеследующее описание, которое следует использовать в сочетании с прилагаемыми чертежами, на которых:

фиг.1 - вертикальный вид справа снегохода, соответствующего изобретению;

фиг.2 - вид в перспективе спереди и справа резервуара для масла и узла электронного масляного насоса для использования в снегоходе, показанном на фиг.1;

фиг.3 - вид в перспективе сзади и слева резервуара для масла и узла электронного масляного насоса, показанного на фиг.2;

фиг.4 - вид в перспективе спереди и справа внутренних узлов снегохода, показанного на фиг.1, с удалением для ясности некоторых компонентов;

фиг.5 - вид в перспективе сзади и справа внутренних узлов снегохода, показанного на фиг.1, с удалением для ясности некоторых компонентов;

фиг.6 - вид в перспективе с пространственным разделением деталей электронного масляного насоса, используемого в узле, показанном на фиг.2;

фиг.7 - вид в перспективе сзади и слева альтернативного варианта выполнения электронного масляного насоса, показанного на фиг.6;

фиг.8 - вид в перспективе спереди и справа электронного масляного насоса, показанного на фиг.7;

фиг.9 - схематическая иллюстрация некоторых из различных датчиков и компонентов, примененных в снегоходе, показанном на фиг.1;

фиг.10 - логическая схема, иллюстрирующая управление электронным масляным насосом;

фиг.11 - график, иллюстрирующий зависимость между частотой работы электронного масляного насоса, частотой вращения двигателя и открыванием дроссельной заслонки;

фиг.12 - пара графиков, иллюстрирующих зависимость между током, прилагаемым к электронному масляному насосу, положением поршня насоса и временем;

фиг.13A - логическая схема, иллюстрирующая альтернативное управление электронным масляным насосом;

фиг.13B - логическая схема, иллюстрирующая другое альтернативное управление электронным масляным насосом;

фиг.14 - схематическая иллюстрация альтернативного варианта выполнения системы смазки для использования в снегоходе, показанном на фиг.1; и

фиг.15 - схематическая иллюстрация другого альтернативного варианта выполнения системы смазки для использования в снегоходе, показанном на фиг.1.

Подробное описание предпочтительных

вариантов осуществления изобретения

На фиг.1 показан снегоход 10, включающий передний конец 12 и задний конец 14, которые показаны последовательно согласно направлению движения снегохода 10. Снегоход 10 включает раму 16, которая включает туннель 18 и моторный отсек 20. С рамой соединена передняя подвеска 22. Туннель 18 в целом состоит из одной или более частей листового металла, изогнутых для формирования перевернутой U-образной конфигурации. Туннель 18 проходит назад вдоль продольной средней линии 61 снегохода 10 и соединен передней стороной с моторным отсеком 20. Двигатель 24, который схематически показан на фиг.1, удерживается в моторном отсеке 20 рамы 16. Применен рулевой узел (не показан), в котором две лыжи 26 расположены на переднем конце 12 снегохода 10 и прикреплены к передней подвеске 22 при помощи пары узлов 28 передней подвески. Каждый узел 28 передней подвески включает стойку 30 лыжи, пару А-образных рычагов 32 и амортизатор 29 для соединения в рабочем положении соответствующих лыж 26 с рулевой колонкой 34. Предполагаются другие типы узлов 28 передней подвески, такие как подвеска с качающимся рычагом или телескопическая подвеска. Рулевое устройство, такое как руль 36, расположенный перед водителем, присоединено к верхнему концу рулевой колонки 34, позволяя водителю поворачивать стойки 30 лыж и, таким образом, лыжи 26 для управления снегоходом 10.

В задней части 14 снегохода 10 расположена бесконечная ведущая гусеница 65. Бесконечная ведущая гусеница 65 расположена в целом под туннелем 18 и в рабочем положении соединена с двигателем 24. Бесконечная ведущая гусеница 65 приводится для вращения вокруг заднего узла 42 подвески для продвижения снегохода 10. Задний узел 42 подвески включает пару направляющих 44, находящихся в скользящем контакте с бесконечной ведущей гусеницей 65. Задний узел 42 подвески также включает один или более амортизаторов 46, которые могут также включать спиральную пружину (не показана), окружающую отдельный амортизатор 46. Для прикрепления направляющих 44 к раме 16 применены рычаги 48 и 50 подвески. В заднем узле 42 подвески также применено одно или более паразитных колес 52.

На переднем конце 12 снегохода 10 двигатель 24 ограждают обтекатели 54, таким образом создавая внешнюю оболочку, которая не только предохраняет двигатель 24, но также может быть декорирована, делая снегоход 10 более эстетически привлекательным. Как правило, обтекатели 54 включают кожух (не показан) и одну или более боковых панелей, которые могут открываться для обеспечения доступа к двигателю 24, когда это требуется, например, для осмотра или обслуживания двигателя 24. В конкретном снегоходе 10, показанном на фиг.1, боковые панели могут быть открыты с поворотом вокруг вертикальной оси наружу от снегохода 10. Ветровое стекло 56 соединено с обтекателями 54 вблизи переднего конца 12 снегохода 10. В альтернативном варианте ветровое стекло 56 может быть соединено непосредственно с рулем 36. Ветровое стекло 56 действует как лобовое стекло для уменьшения силы потока воздуха, воздействующего на водителя, когда снегоход 10 движется.

На раме 16 расположено сиденье 58 седельного типа. Задняя часть сиденья 58 может включать багажное отделение или может использоваться для устройства пассажирского места (не показано). На противоположных сторонах снегохода 10 ниже сиденья 58 расположены две опоры 60 для ног для расположения ног водителя.

Как показано на фиг.2 и 3, система смазки снегохода 10 включает резервуар 70 для масла и электронный масляный насос 72. Резервуар 70 для масла расположен в моторном отсеке 20 (см. фиг.4) и сформирован таким образом, чтобы он был приспособлен для расположения между различными другими узлами, расположенными в моторном отсеке 20. Резервуар 70 для масла предпочтительно прикреплен к раме 16 и предпочтительно расположен немного позади двигателя 24. Поскольку резервуар 70 для масла прямо не соединен с двигателем 24, резервуар 70 для масла частично изолирован от вибрации, создаваемой двигателем 24. Резервуар 70 для масла предпочтительно выполнен из пластмассы. Как можно видеть на фиг.3, часть 74 резервуара 70 для масла полупрозрачна для визуального контроля уровня смазочного материала в резервуаре 70 для масла. Отметки 76 уровня обеспечивают визуальное указание относительного уровня смазочного материала в резервуаре 70. Крышка 78 предназначена для открывания или закрывания маслозаливного отверстия (не показано) в резервуаре 70 для масла. От верхней части резервуара 70 для масла к узлу двигателя 24, такому как водяной насос (не показан), проходит шланг 80 для подачи к нему смазочного материала. Когда резервуар 70 для масла заполнен выше уровня верхнего конца шланга 80, шланг 80 заполняется смазочным материалом. Смазочный материал, присутствующий в шланге 80, тогда постепенно подается под действием силы тяжести к узлу, с которым соединен шланг 80. Объем смазочного материала в шланге 80 предпочтительно достаточен для снабжения смазочным материалом узла, пока резервуар 70 для масла не будет еще раз заполнен выше уровня верхнего конца шланга 80.

Как также можно видеть на фиг.2 и 3, электронный масляный насос 72 расположен снаружи от резервуара 70 для масла. Вход 82 электронного масляного насоса 72 соединен прямо с донной частью резервуара 70 для масла на стороне резервуара 70 для масла, которая противоположна стороне маслозаливного отверстия. Вход 82 предпочтительно соединен с самой низкой точкой резервуара 70 для масла. Электронный масляный насос 72 имеет четыре выхода 84, 86. Два выхода 84 соединены со шлангами 88. Как можно видеть на фиг.4, шланги 88 соединены с двумя выпускными клапанами 90 двигателя 24 (по одному выпускному клапану 90 на цилиндр 92) для подачи к ним смазочного материала. Одна возможная конструкция выпускных клапанов 90 описана в патенте США № 6244227, выданном 12 июня 2001 г. и включенном сюда посредством ссылки. Следует понимать, что предусматриваются другие конструкции выпускных клапанов 90, которые не отходят от объема настоящего изобретения. Два выхода 86 соединены со шлангами 94. Как можно видеть на фиг.4, шланги 94 соединены с картером 96 двигателя 24. Каждый шланг 94 сообщается по текучей среде с внутренней полостью (не показана) в картере 96 (по одной внутренней полости на цилиндр 92) для подачи смазочного материала к коренным подшипникам (не показаны) и другим расположенным там узлам. Следует понимать, что когда двигатель 24 имеет больше или меньше цилиндров 92, электронный масляный насос 72 должен иметь количество выходов 84 и 86, которое соответствует количеству цилиндров. Например, если двигатель 24 имеет три цилиндра 92, электронный масляный насос 72 может иметь три выхода 84 и три выхода 86. Также предусматривается, что могут использоваться два электронных масляных насоса 72, когда количество выходных отверстий становится слишком большим для единственного электронного масляного насоса 72. Также предусматривается, что электронный масляный насос 72 может подавать смазочный материал только к цилиндрам 92 (через картер 96) и что выпускные клапаны 90 могут смазываться каким-либо другим способом. В этом случае может использоваться электронный масляный насос 72', имеющий только два выходных отверстия 86 (для двигателя 24, имеющего два цилиндра 92), как показано на фиг.7 и 8. Также предусматривается, что электронный масляный насос 72 может подавать смазочный материал к другим узлам и частям двигателя 24.

Теперь со ссылками на фиг.4 и 5 будут описаны система охлаждения, система выпуска и расположение электронного масляного насоса 72 относительно этих систем. Система охлаждения имеет резервуар для охлаждающей жидкости (не показан), который подает охлаждающую жидкость к остальной части системы по трубе 98. Охлаждающая жидкость может также проходить назад к резервуару для охлаждающей жидкости по трубе 98, когда охлаждающая жидкость расширяется в системе охлаждения, когда температура охлаждающей жидкости увеличивается. Подобным образом газовые пузыри в системе охлаждения могут проходить к резервуару для охлаждающей жидкости по трубе 98. Охлаждающая жидкость в системе проходит по шлангу 100 для охлаждающей жидкости к тройниковому соединителю 102 и от тройникового соединителя 102 к шлангу 104 для охлаждающей жидкости. Из шланга 104 для охлаждающей жидкости охлаждающая жидкость входит в каналы для охлаждающей жидкости (не показаны) в двигателе 24, таким образом поглощая тепло двигателя 24. Охлаждающая жидкость затем выходит из двигателя 24 через шланг 106 для охлаждающей жидкости. Из шланга 106 для охлаждающей жидкости охлаждающая жидкость входит в термостат 108. Когда температура охлаждающей жидкости ниже заданной температуры, термостат направляет охлаждающую жидкость назад в шланг 100 для охлаждающей жидкости, и оттуда охлаждающая жидкость циркулирует через двигатель 24, как описано выше. Когда температура охлаждающей жидкости превышает заданную температуру, термостат 108 предотвращает вхождение охлаждающей жидкости в шланг 100 для охлаждающей жидкости и перенаправляет охлаждающую жидкость в шланг 110 для охлаждающей жидкости. Предусматривается, что термостат 108 может перенаправлять только часть охлаждающей жидкости в шланг 110 для охлаждающей жидкости и выпускать остальную часть потока охлаждающей жидкости в шланг 100 для охлаждающей жидкости. Из шланга 110 для охлаждающей жидкости охлаждающая жидкость проходит к первому теплообменнику 112 для ее охлаждения. Первый теплообменник 112 формирует верхнюю центральную часть туннеля 18. От первого теплообменника 112 охлаждающая жидкость проходит в шланг 114 для охлаждающей жидкости. Из шланга 114 для охлаждающей жидкости охлаждающая жидкость проходит ко второму теплообменнику 116 (большая часть которого скрыта двигателем 24 на фиг.4), расположенному в задней части моторного отсека 20, также для ее охлаждения. Предусматривается, что первый и второй теплообменники 112, 116 могут быть расположены в другом месте на снегоходе 10 и что может использоваться только один из первого и второго теплообменников 112, 116. От второго теплообменника 116 охлаждающая жидкость проходит в шланг 118 для охлаждающей жидкости. Из шланга 118 для охлаждающей жидкости охлаждающая жидкость проходит к тройниковому соединителю 102, в шланг 104 для охлаждающей жидкости, в двигатель 24, в шланг 106 для охлаждающей жидкости и назад в термостат 108, как описано ранее. Термостат 108 направляет охлаждающую жидкость через первый и второй теплообменники 112, 116, пока температура охлаждающей жидкости не станет опять ниже заданной температуры.

Система выпуска принимает отработанные газы от выпускных отверстий 120 (фиг.4) двигателя 24. Выпускные клапаны 90 регулируют поток отработанных газов через выпускные отверстия 120. Выпускной коллектор (не показан) соединен с выпускными отверстиями 120. Отработанные газы выходят из выпускных отверстий через выпускной коллектор к глушителю 122 (фиг.5). Из глушителя 122 отработанные газы выходят через выпускную трубу (не показана) в атмосферу.

Как можно видеть на фиг.4 и 5, электронный масляный насос 72 расположен вблизи генерирующих тепло компонентов снегохода 10. Эти генерирующие тепло компоненты включают шланги 110 и 114 для охлаждающей жидкости, теплообменник 116, глушитель 122 и двигатель 24. Шланги 110 и 114 для охлаждающей жидкости и теплообменник 116 выделяют тепло благодаря горячей охлаждающей жидкости, проходящей через них. Глушитель 122 генерирует тепло вследствие прохождения через него горячих отработанных газов. Двигатель 24 генерирует тепло вследствие сгорания, происходящего в цилиндрах 92. Электронный масляный насос 72 расположен достаточно близко к этим генерирующим тепло компонентам, в результате чего тепло, генерируемое ими, когда снегоход 10 находится в действии, нагревает смазочный материал, содержащийся в электронном масляном насосе 72. Таким образом, будучи нагретым, смазочный материал сохраняет уровень вязкости, который позволяет легко накачивать его электронным масляным насосом 72. Предусматривается, что расположение электронного масляного насоса 72 вблизи, по меньшей мере, одного из этих генерирующих тепло компонентов может быть достаточным для поддержания уровня вязкости смазочного материала в электронном масляном насосе 72.

Теперь со ссылками на фиг.6 будут описаны детали электронного масляного насоса 72. Электронный масляный насос 72 известен как возвратно-поступательный соленоидный насос. Электронный масляный насос 72 имеет корпус 124, имеющий вход 82 и выходы 84, 86, сформированные как единое целое с ним. Как можно видеть, выходы 86 больше, чем выходы 84. Это связано с тем, что к цилиндрам 92 выходами 86 должно быть подано больше смазочного материала, чем требуется для подачи к выпускным клапанам 90 выходами 84. Вокруг выхода 82 расположены два уплотнительных кольца 126 для предотвращения просачивания смазочного материала, присутствующего в резервуаре 70 для масла, через соединение между выходом 82 и резервуаром 70 для масла. В выходе 82 расположен фильтр 128 для предотвращения попадания посторонних частиц в электронный масляный насос 72. В корпус 124 вставлена заглушка 130 в центральном положении относительно выходных отверстий 84, 86. Вокруг заглушки 130 расположено уплотнительное кольцо 132, уплотняющее соединение между заглушкой 130 и корпусом 124. В проходах выходных отверстий 84 расположены обратные клапаны 134 для предотвращения вхождения смазочного материала в корпус 124 через выходы 84. Подобным образом в проходах выходных отверстий 86 расположены обратные клапаны 136 для предотвращения вхождения смазочного материала в корпус 124 через выходы 86. Обратные клапаны 134, 136 имеют размеры, соответствующие размерам их соответствующих выходных отверстий 84, 86. Держатель 138 поршней имеет расположенные на нем четыре поршня 140, 142. Как можно видеть, поршни 142 больше, чем поршни 140. Поршни 142 используются для накачивания смазочного материала через большие выходы 86, и поршни 140 используются для накачивания смазочного материала через меньшие выходы 84. Между держателем 138 поршней и заглушкой 130 расположена пружина 144. Держатель 138 поршней соединен с опорой 146. Вокруг опоры 146 расположено уплотнительное кольцо 148 для предотвращения утечки смазочного материала, присутствующего в корпусе 124, в секцию электронного масляного насоса 72, которая расположена напротив стороны опоры 146, с которой соединен держатель 138 поршней (то есть слева от опоры 146 на фиг.6). Якорь 150, выполненный из намагничиваемого материала, такого как железо, соединен с опорой 146. Якорь 150 с возможностью скольжения расположен в гильзе 152. Гильза 152 расположена в центре каркаса 154 катушки. Каркас 154 катушки имеет катушку 156 (показана штриховыми линиями на фиг.6), намотанную вокруг него. Концы катушки 156 соединены с соединителем 158, который используется для соединения электронного масляного насоса 72 с электронным управляющим блоком 160 (фиг.4). В корпусе 162 соленоида расположен каркас 154 катушки. Между каркасом 154 катушки и концом корпуса 162 соленоида расположена шайба 164. Между якорем 150 и концом корпуса 162 соленоида расположена пружина 166. Для прикрепления корпуса 162 соленоида к корпусу 124 используются три резьбовых крепежных средства 168. Когда корпус 162 соленоида прикреплен к корпусу 124, все компоненты, показанные между ними на фиг.6, кроме соединителя 158, располагаются в объеме, созданном корпусом 162 соленоида и корпусом 124.

Электронный масляный насос 72 работает следующим образом. Смазочный материал входит в корпус 124 через вход 82. К катушке 156 прилагается ток через электронный управляющий блок 160, как будет описано более подробно ниже. Ток, приложенный к катушке 156, генерирует магнитное поле. Якорь 150 скользит к корпусу 124 (вправо на фиг.6) под действием магнитного поля. Опора 146 и поршни 140, 142 движутся вместе с якорем 150. Это перемещение якоря также вызывает сжатие пружины 144 между держателем 138 поршней и заглушкой 130. Перемещение поршней 140, 142 к корпусу 124 вызывает сжатие смазочного материала, содержащегося в корпусе 124, и вызывает вытеснение смазочного материала из электронного масляного насоса 72 через выходы 84, 86 через обратные клапаны 134, 136. Как только смазочный материал был вытеснен из электронного масляного насоса 72, электронный управляющий блок 160 после определенной задержки прекращает приложение тока к катушке 156, которая тогда больше не создает магнитное поле. Поскольку якорь больше не налагает силу для сжатия пружины 144, пружина 144 расширяется, таким образом возвращая поршни 140, 142, опору 146 и якорь 150 в их начальные положения (влево на фиг.6). Пружина 166 предотвращает соударение якоря 150 с концом корпуса 162 соленоида, которое создавало бы шум и потенциально могло бы повредить якорь 150, и противодействует силе пружины 144 для расположения якоря 150 в правильном начальном положении. Возвращаясь к их начальным положениям, поршни 140, 142 создают всасывание внутрь корпуса 124. Всасывание наряду с силой тяжести заставляет больше смазочного материала проходить в корпус 124 через вход 82. Обратные клапаны 134, 136 предотвращают возвращение смазочного материала, который был вытеснен из электронного масляного насоса 72, в корпус через выходы 84, 86. Когда якорь 150 возвращается в его начальное положение, электронный управляющий блок 160 прилагает ток к катушке 156, и цикл повторяется.

Предусматривается, что могут использоваться другие типы электронных масляных насосов. Например, мог бы использоваться электронный роторный насос. В альтернативном варианте якорь 150 возвратно-поступательного электронного масляного насоса 72, описанного выше, может быть заменен постоянным магнитом. В этом варианте приложение тока в первом направлении к катушке 156 вызывает перемещение постоянного магнита и, таким образом, поршней 140, 142 в первом направлении, и приложение тока во втором направлении к катушке 156 вызывает перемещение постоянного магнита во втором направлении, противоположном первому. Таким образом, благодаря управлению перемещением постоянного магнита в обоих направлениях этот тип насоса обеспечивает дополнительное управление возвратно-поступательным движением насоса по сравнению с соленоидным насосом 72, описанным выше.

Как описано выше, электронный управляющий блок 160 электрически соединен с соединителем 158 электронного масляного насоса 72 для подачи тока к катушке 156. Электронный управляющий блок 160 соединен с источником 161 энергии (фиг.9) и на основе входных сигналов от одного или больше различных датчиков, описанных ниже относительно фиг.9, регулирует моменты, когда ток от источника 161 энергии должен подаваться к электронному масляному насосу 72, таким образом, чтобы надлежащее количество смазочного материала подавалось к цилиндрам 92 двигателя 24. Как можно видеть на фиг.9, датчик 170 частоты вращения двигателя соединен с двигателем 24 и электрически соединен с электронным управляю