Способ получения механической или электрической энергии из топлива, содержащего спирт

Иллюстрации

Показать все

Изобретение относится к двигателестроению, в частности к способам подготовки различных топлив для двигателей внутреннего сгорания. Изобретение делает возможным эффективное использование топлив на основе спирта в двигателе внутреннего сгорания для генерирования электрической или механической энергии, например, в применении к транспортным средствам. Способ получения механической или электрической энергии из топлива, содержащего спирт, включает контактирование газообразной смеси исходных материалов, содержащей топливо на основе спирта, с катализатором риформинга в зоне реакции риформинга, с получением продукта газовой смеси, полученной с помощью риформинга, содержащей водород, где катализатор риформинга содержит структуру носителя из металлической губки и медное покрытие, по меньшей мере, частично покрывающее поверхность структуры носителя из металлической губки; объединение продукта газовой смеси, полученной с помощью риформинга, с кислородсодержащим газом, с образованием поступающей газовой смеси; введение поступающей газовой смеси, содержащей кислород и продукт газовой смеси, полученной с помощью риформинга, в камеру сгорания двигателя внутреннего сгорания и горение поступающей газовой смеси, с получением смеси выхлопных газов. Поступающая газовая смесь, которая вводится в камеру сгорания двигателя внутреннего сгорания, содержит, по меньшей мере, примерно 80% водорода и другие компоненты, получаемые в продукте газовой смеси, полученной с помощью риформинга; высвобождение выходящего потока выхлопных газов, содержащего смесь выхлопных газов, из камеры сгорания; использование энергии горения для генерирования механической или электрической энергии и приведение выходящего потока выхлопных газов в тепловой контакт с зоной реакции риформинга для нагрева катализатора риформинга в ней. Второй вариант способа получения механической или электрической энергии из топлива включает введение поступающей газовой смеси, содержащей кислород и продукт газовой смеси, полученной с помощью риформинга, в камеру сгорания двигателя внутреннего сгорания и горение поступающей газовой смеси с получением смеси выхлопных газов. Поступающая газовая смесь, которая вводится в камеру сгорания двигателя внутреннего сгорания, содержит, по меньшей мере, примерно 80% водорода и метана, получаемых в продукте газовой смеси, полученной с помощью риформинга. Третий вариант способа получения механической или электрической энергии из топлива, содержащего этанол включает контактирование газообразной смеси исходных материалов, содержащей этанольное топливо, с катализатором риформинга, содержащим медь, в зоне реакции риформинга, с получением продукта газовой смеси, полученной с помощью риформинга, содержащей водород, метан и компонент окиси углерода, выбранный из группы, состоящей из моноокиси углерода, двуокиси углерода и их смеси, где молярное отношение метана к компоненту окиси углерода в продукте газовой смеси, полученной с помощью риформинга, составляет примерно от 0,9 примерно до 1,25 и скорость, при которой производится метан в газовой смеси, полученной с помощью риформинга, составляет, по меньшей мере, примерно 50% от скорости поступления этанола, который вводится в зону реакции риформинга, как молярное отношение. Поступающая газовая смесь, которую вводят в камеру сгорания двигателя внутреннего сгорания, содержит, по меньшей мере, примерно 80% водорода, метана и компонента окиси углерода, получаемых в продукте газовой смеси, полученной с помощью риформинга; и использование энергии горения для генерирования механической или электрической энергии. 3 н. и 26 з.п. ф-лы, 8 ил., 5 табл.

Реферат

Настоящее изобретение, в целом, относится к системам энергоснабжения с использованием риформинга спирта, а более конкретно к эффективному риформингу спиртов с получением газовых смесей, содержащих водород, для использования в качестве топлива в двигателях внутреннего сгорания, таких как двигатели, которые используют для генерирования электрической или механической энергии в системах энергоснабжения транспортных средств.

Применение спиртов, в особенности этанола, в транспортных средствах вызывает все возрастающий интерес в качестве альтернативы ископаемым топливам для двигателей внутреннего сгорания. Этанол представляет собой возобновляемое топливо, как правило, получаемое в результате ферментирования сельскохозяйственной биомассы. В отличие от ископаемых топлив, двуокись углерода, высвобождаемая во время сжигания этанола, не представляет собой увеличения уровня тепличных газов, поскольку атомы углерода, высвобождаемые во время горения, представляют собой атмосферную двуокись углерода, фиксируемую растениями, из которых получают этанол.

Однако имеются трудности, связанные с использованием топлива на основе спирта в двигателях внутреннего сгорания. Низкие значения теплоты сгорания метанола (15,9 МДж/литр) и этанола (21,3 МДж/л) значительно меньше, чем у обычного бензина (32 МДж/литр), согласно сообщению F.Black в "An Overview of Technical Implications of Methanol and Ethanol as Highway Vehicle Fuels," SAE Paper 912413, 1991. Таким образом, необходим больший объем топлива на основе спирта, если он используется с той же эффективностью, что уменьшает ценность этанола для потребителя в объемном выражении.

Кроме того, холодный запуск представляет собой проблему для двигателей с топливом на основе спирта, поскольку при низкой температуре топливо не имеет достаточного давления паров для образования горючей смеси. Двигатели на безводном этаноле не могут запускаться при температурах окружающей среды ниже примерно 15°C (59°F). По этой причине этанол в Соединенных Штатах обычно смешивают с бензином (как правило, 15% бензина в смеси E85), так что бензин может инициировать горение в рабочих средах с низкими температурами. Двигатели на E85 могут осуществлять холодный запуск при низких температурах посредством массированного перерасхода топлива, для нагнетания достаточного количества летучего топлива в цилиндр, для достижения зажигания. Это приводит к высоким уровням выбросов углеводородов и моноокиси углерода, эта проблема значительно усугубляется тем фактом, что каталитический преобразователь еще не находится при рабочей температуре. (Смотри J. Ku et al., "Conversion of a 1999 Silverado to Dedicated E85 С Emphasis on Cold Start and Cold Driveability", SAE 2000-01-0590, 2000.) Более того, проблемы с холодным запуском могут по-прежнему существовать даже при использовании E85 и сходных топливных смесей при более низких температурах. В качестве решения проблемы холодного запуска G.Вт. Davis et al. предлагают в Proc. Intersoc. Energy Conver. Eng. Con., 2000, 35, pp. 303-8 дополнить смесь E85/воздух водородом.

Две наиболее важных переменных, определяющих эффективность двигателя внутреннего сгорания, представляют собой степень расширения и отношение воздух:топливо. Степень расширения представляет собой отношение объема цилиндра в момент, когда открывается выпускной клапан, к объему при максимальном сжатии. Степень расширения часто, но не всегда, эквивалентна степени сжатия. Отношение сжатие двигателя представляет собой отношение объемов между поршнем и головкой цилиндра до и после хода сжатия. Отношение воздух:топливо иногда выражается как λ, а иногда как коэффициент избытка топлива, обозначаемый с помощью φ. Лямбда (λ) вычисляется посредством деления реального отношения воздух:топливо на стехиометрическое отношение воздух:топливо для топлива, которое должно сгорать. Коэффициент избытка топлива вычисляется посредством деления реального отношения топливо:воздух на стехиометрическое отношение топливо:воздух для топлива, которое должно сгорать.

Internal Combustion Engine Fundamentals by John B. Heywood (McGraw Hill, New York, 1988) описывает воздействие степени расширения и коэффициента избытка топлива на эффективность двигателя внутреннего сгорания. Увеличение степени расширения двигателя повышает эффективность, поскольку увеличивает λ. Увеличение λ выше 1,0 соответствует использованию "более бедных" смесей топливо-воздух (то есть смесей с избытком воздуха по сравнению с тем, чего требует стехиометрия).

Максимально достижимая степень сжатия устанавливается пределом детонации. Увеличение сжатия приводит к увеличению температуры и давления газа в цилиндре, которое вызывает спонтанное преждевременное зажигание, известное как "детонация". Способность топлива противостоять детонации количественно определяется по его октановому числу. Как метанол, так и этанол представляют собой относительно высокооктановые топлива, но метан, водород и моноокись углерода являются более устойчивыми к детонации и поэтому могут использоваться с высокой эффективностью в двигателе внутреннего сгорания, работающем с высоким отношением сжатия или расширения.

Бедное горение улучшает эффективность топлив отчасти потому, что оно обеспечивает полное сгорание топлива, но прежде всего из-за уменьшения температуры сжигаемого газа. Более низкая температура уменьшает потери тепла на стенках цилиндров и улучшает термодинамическую эффективность, с которой газ действует на поршень. Например, J. Keller et al. сообщает в SAE Special Publication 1574, 2001, pp. 117-22, что работающий четырехтактный двигатель внутреннего сгорания с искровым зажиганием, использующий водород в качестве топлив, при бедных условиях (коэффициент избытка топлива = 0,35-0,45, соответствующее λ = 2,2-2,9) и при высоком отношении сжатия (до 20) дает тепловые коэффициенты полезного действия 47%. Дополнительное преимущество низкотемпературного горения представляет собой тот факт, что образование оксидов азота (NOx) сводится к минимуму.

Когда отношение воздух:топливо становится слишком малым (и температура газа становится слишком малой), смесь не сможет зажечься или "дает перебои". Альтернативно, смесь может сгорать слишком медленно или не полностью. Поскольку водород будет гореть на воздухе при концентрациях примерно до 4% и демонстрирует большую скорость распространения пламени, помогая быстрому и полному сгоранию, дополнение топлива водородом делает возможной надежную работу при бедных условиях. Как сообщается C.G. Bauer et al. в Int. J. Hydrogene Energy, 2001, 26, 55-70, скорости горения водорода, метана и бензина на воздухе при нормальной температуре и давлении (NTP) составляют 264-325, 37-45 и 37-43 см/сек соответственно.

Риформинг спиртов представляет собой альтернативу сжиганию топлива на основе спирта непосредственно в двигателе внутреннего сгорания. В способе риформинга спирт разлагается на неконденсирующиеся газы, которые могут вводиться в двигатель внутреннего сгорания. L. Pettersson сообщает в Combust. Sci. and Tech., 1990, pp. 129-143, что работа двигателя внутреннего сгорания на метаноле, полученном с помощью риформинга, вместо жидкого метанола может улучшить эффективность. Ключевые факторы, ответственные за улучшение эффективности, представляют собой высокое отношение воздух:топливо, увеличение теплоты сгорания спиртов, полученных с помощью риформинга, по сравнению со спиртами, не получаемых с помощью риформинга, и возможность использования более высоких отношений сжатия.

Известно, что запуск двигателя внутреннего сгорания на смеси неконденсирующихся газов, получаемых посредством риформинга метанола, легче, чем запуск на жидком метанольном топливе, когда температура окружающей среды является низкой. Например, L. Greiner et al. сообщает в Proceedings of International Symposium on Alcohol Fuels Technology, 1981, paper 111-50, CAS no. 1981:465116, что зажигание и непрерывная работа при -25°C может достигаться посредством риформинга метанола с использованием тепла от электрического тока, получаемого с помощью батареи. Однако батарея быстро разряжается, вызывая ранний и сложный переход к использованию жидкого метанольного топлива и исключая любое преимущество в энергетической эффективности, связанное с использованием метанола, полученного с помощью риформинга, в качестве топлива.

В патенте США №4520764, выданном M. Ozawa et al., и в JSAE Review, 1981, 4, 7-13, автор T. Hirota, сообщается об использовании метанола, полученного с помощью риформинга, для питания двигателя внутреннего сгорания при запуске и во время стационарной работы. Выхлоп двигателя используется для нагрева риформера для метанола. Используя бедное горение (λ=1,7) и высокую степень сжатия (14), они достигают превосходного теплового коэффициента полезного действия 42%. Для сравнения, максимальное значение для метанола, не получаемого с помощью риформинга, составляет примерно 33%. Ozawa et al. сообщают, что двигатель может запускаться на продукте риформинга (водороде и CO), который хранится в емкости высокого давления.

Системы энергоснабжения на метаноле, полученном с помощью риформинга, имеют тяжелую тенденцию к возникновению вспышек пламени, если смесь топливо-воздух не является достаточно бедной, из-за высокой концентрации водорода. L.M. Das в Int. J. Hydrogen Energy, 1990, 15, 425-43 сообщает, что когда смесь топливо-воздух не является достаточно бедной, возникновение тяжелых вспышек пламени является проблемой для двигателей, работающих на водороде. T.G. Adams в SAE Paper 845128, 1984, 4.151-4.157 сообщает, что смеси CO-H2 от риформинга метанола дают вспышки пламени при высокой концентрации. В результате, скорость, при которой топливо может вводиться в двигатель, и максимальная мощность двигателя ограничиваются.

Системы энергоснабжения для транспортных средств, включая топливный элемент, питаемый водородом, для получения электрической энергии, также предлагаются. Транспортное средство на топливном элементе может снабжаться баками высокого давления для хранения водорода или топливным процессором, способным преобразовывать спирт или другое жидкое углеводородное топливо в водород. Бортовой риформинг жидких топлив дал бы возможность транспортным средствам на топливных элементах для достижения диапазонов, сравнимых с автомобилями на бензиновом топливе.

Бортовой риформинг жидких или газообразных топлив для получения газовых смесей, содержащих водород, может концептуально подразделяться на две категории, в зависимости от необходимой температуры. Является выгодным как термодинамически, так и кинетически осуществлять риформинг метанола до водорода и моноокиси углерода или двуокиси углерода с преобразованием, большим чем 95%, при температурах примерно 300°C. Обзор риформинга метанола можно найти в статье "Hydrogen Generation from Methanol" by J. Agrell, B. Lindstrom, L.J. Pettersson и S.G. Jaras in Catalysis-Specialist Periodical Reports, 16, Royal Society of Chemistry, Cambridge, 2002, pp. 67-132. Morgenstern et al. описывают полное преобразование этанола в метан, водород и CO/CO2 ниже примерно 300°C. Смотри публикацию заявки на патент США №2004/0137288 Al и "Low Temperature Reforming of Ethanol over Copper-Plated Raney Nickel: A New Route to Sustainable Hydrogen for Transportation," Energy and Fuels, Vol. 19, No. 4, pp. 1708-1716 (2005). Хотя известны другие топлива, риформинг которых может осуществляться примерно при 300°C, такие как глицерол, ни одно из них не имеется в достаточных количествах, чтобы служить в качестве моторных топлив.

Большинство других способов риформинга являются сильно эндотермическими и поэтому требуют температур примерно 700°C, из-за стабильностей связей углерод-водород в молекуле. Риформинг метана и бензина, а также высокотемпературный риформинг этанола до водорода и моноокиси углерода также принадлежат к этой категории. Хотя значительное количество исследований посвящено бортовому генерированию водорода посредством высокотемпературного риформинга, питание двигателя внутреннего сгорания при высокой температуре риформинга не является практичным, по большей части, из-за затрат энергии на генерирование необходимого тепла посредством сжигания части топлива.

В противоположность этому, питание двигателя внутреннего сгорания метанолом, полученным с помощью риформинга, является известным в данной области и облегчается тем фактом, что риформер может поддерживаться при необходимой температуре (как правило, примерно 300°C) с помощью тепла выхлопа двигателя. Даже при этом высокая теплопроводность является необходимой для катализатора и риформера, для эффективного использования выхлопа двигателя в качестве источника тепла. Hirota сообщает в JSAE Review, 1981, 4, 7-13, что, хотя риформинг метанола требует температуры всего лишь 300°C, принимая во внимание рабочие характеристики теплообменников современных риформеров, требуется разность температур примерно в 100°C между выхлопом и катализатором, так что нижний предел температуры выхлопа равен приблизительно 400°C. Этот предел соответствует скорости двигателя примерно 1400 об/мин на холостом ходу. Таким образом, при современном уровне техники имеются сложности при поддержании температуры риформера (и таким образом, активности катализатора), когда двигатель находится почти на холостом ходу.

Ряд статей описывают также высокотемпературный паровой риформинг этанола до моноокиси углерода и водорода с использованием медноникелевых катализаторов на носителе на основе окиси алюминия в соответствии с уравнением реакции (1), ниже. В системах энергоснабжения на основе топливных элементов было бы необходимым приведение в контакт риформата с соответствующим низкотемпературным катализатором конверсии водяного газа в соответствии с уравнением реакции (2) для генерирования дополнительного водорода и устранения CO, яда для топливного элемента.

CH 3 CH 2 OH(газ) + H 2 O(газ) → 2CO + 4H 2 (1)

конверсия водяного газа: CO + H 2 O → CO 2 + H 2 (2)

Реакция (1) является сильно эндотермичной, что подразумевает необходимость в температурах риформинга примерно 700°C для полного преобразования этанола в водород. Высокая температура, необходимая для реакции, создает несколько проблем, когда пытаются использовать полученный таким образом с помощью риформинга этанол для генерирования электрической или механической энергии. Во-первых, как отмечено выше, выхлоп двигателя является недостаточно горячим для обеспечения тепла, необходимого для риформера. Соответственно, высокотемпературный риформинг этанола с нагревом от выхлопа для применений в системах энергоснабжения транспортных средств не является широко разрабатываемым или исследуемым. Во-вторых, дезактивирование катализатора во время высокотемпературного риформинга этанола, как сообщается, является тяжелым. Главная причина дезактивирования представляет собой образование нагара из-за формирования полиэтилена на поверхности катализатора, который преобразуется в графит. Дегидратация этанола до этилена, катализируемая кислотными активными центрами на носителе, как предполагается, представляет собой коренную причину дезактивирования катализатора. (Смотри Freni, S.; Mondello, N.; Cavallaro, S.; Cacciola, G.; Parmon, V.N.; Sobyanin, V.A. React. Kinet. Catal. Lett. 2000, 71, 143-52.) О высоких уровнях формирования этилена сообщается для катализаторов на носителе на основе окиси алюминия (смотри Haga, F.; Nakajima, T.; Yamashita, K.; Mishima, S.; Suzuki, S. Nippon Kagaku Kaishi, 1997, 33-6).

Morgenstern et al. исследовали системы энергоснабжения транспортных средств на основе топливных элементов, питаемые водородом, производимым посредством низкотемпературного (например, примерно ниже 400°C) риформинга спирта, в частности этанола, над катализатором, содержащим медь на поверхности металлической структуры носителя (например, осажденного на меди никеля Ренея). Morgenstern et al. предположили, что низкотемпературный риформинг этанола может быть разделен на две стадии, хотя конкурирующий механизм также является возможным. В соответствии с уравнениями реакций (3)-(5), этанол сначала обратимо дегидрируется до ацетальдегида, с последующим декарбонилированием ацетальдегида, с образованием моноокиси углерода и метана. После конверсии водяного газа получаются 2 моль водорода на моль этанола.

CH 3 CH 2 OH (газ) → CH 3 CHO (газ) + H 2

ΔH = +68,1 кДж/моль (3)

CH 3 CHO (газ) → CH 4 + CO

ΔH = -19,0 кДж/моль (4)

В целом после конверсии водяного газа:

CH 3 CH 2 OH + H 2 O → CH 4 + CO 2 + 2H 2 (5)

По сравнению с обычным высокотемпературным риформингом этанола, который дает 6 моль водорода на моль этанола после конверсии водяного газа (уравнения реакция (1) и (2)), явный недостаток пути низкотемпературного риформинга представляет собой его низкий выход водорода, с получением двух молей водорода на моль этанола после конверсии водяного газа. Однако Morgenstern et al. учат, что на борту транспортного средства с топливным элементом метан в риформате проходил бы через узел топливного элемента без деградирования его рабочих характеристик и выходящий поток из топливного элемента может вводиться в следующий далее двигатель внутреннего сгорания для использования энергетической ценности метана (вместе с любым остаточным водородом, этанолом и ацетальдегидом). Избыточное тепло от выхлопа двигателя используется для нагрева риформера и для осуществления эндотермического дегидрирования этанола.

Несмотря на преимущества, обеспечиваемые в концепции Morgenstern et al. и других, промышленная разработка систем энергоснабжения транспортных средств на основе топливных элементов сдерживается сложностью и высокой стоимостью узла топливного элемента, а также проблемами холодного запуска и переходных характеристик. Хранение водорода на борту транспортного средства создает проблемы с безопасностью и накладывает обременения массы и стоимости, связанные с баками высокого давления для хранения, а также с потерями коэффициента полезного действия, вызываемыми необходимостью сжатия водорода до давлений 5-10,000 фунт/кв.дюйм.

Соответственно, по-прежнему имеется необходимость в системах энергоснабжения на основе риформинга спирта в автомобильных и других применениях, которые используют двигатель внутреннего сгорания для первичного генерирования энергии и эффективно используют энергетическую ценность спиртов с высокой эффективностью, чтобы сделать возможным холодный запуск без подмешивания обычного бензина и сделать возможным работу с более бедной смесью воздух:топливо для двигателя внутреннего сгорания.

Сущность изобретения

Настоящее изобретение направлено на способы производства механической или электрической энергии из топлива, содержащего спирт. В одном из вариантов осуществления, способ включает в себя приведение в контакт газообразной смеси исходных материалов, содержащей топливо на основе спирта, с катализатором риформинга в зоне реакции риформинга, с получением продукта газовой смеси, полученной с помощью риформинга, содержащей водород. Катализатор риформинга содержит структуру носителя из металлической губки и медное покрытие, по меньшей мере, частично покрывающее поверхность структуры носителя из металлической губки. Структуру носителя из металлической губки получают с помощью способа, включающего в себя выщелачивание алюминия из сплава, содержащего алюминий и основной металл. В соответствии с одним из вариантов осуществления, катализатор риформинга получают посредством осаждения меди на структуре носителя из металлической губки. Поступающая газовая смесь, содержащая кислород, и продукт газовой смеси, полученной с помощью риформинга, вводится в камеру сгорания двигателя внутреннего сгорания и сгорает, с получением выхлопной газовой смеси. Выходящий поток выхлопных газов, содержащий смесь выхлопных газов, высвобождается из камеры сгорания, и энергия горения используется для генерирования механической или электрической энергии. Выходящий поток выхлопных газов приводится в тепловой контакт с зоной реакции риформинга для нагрева катализатора риформинга в ней.

В соответствии с другим вариантом осуществления настоящего изобретения, предусматривается способ производства механической или электрической энергии из топлива, содержащего этанол. Способ включает в себя приведение в контакт газообразной смеси исходных материалов, содержащей этанольное топливо, с катализатором риформинга в зоне реакции риформинга, с получением продукта газовой смеси, полученной с помощью риформинга, содержащей водород и метан. Катализатор риформинга содержит медь на поверхности металлической структуры носителя. Поступающая газовая смесь, содержащая кислород и продукт газовой смеси, полученной с помощью риформинга, вводится в камеру сгорания двигателя внутреннего сгорания и сгорает с получением смеси выхлопных газов. Выходящий поток выхлопных газов, содержащий смесь выхлопных газов, высвобождается из камеры сгорания, и энергия горения используется для генерирования механической или электрической энергии. Выходящий поток выхлопных газов приводится в тепловой контакт с зоной реакции риформинга для нагрева катализатора риформинга в ней.

Дополнительный вариант осуществления настоящего изобретения для производства механической или электрической энергии из топлива, содержащего этанол, включает в себя приведение в контакт газообразной смеси исходных материалов, содержащей этанольное топливо, с катализатором риформинга, содержащим медь, в зоне реакции риформинга, с получением продукта газовой смеси, полученной с помощью риформинга, содержащей водород, метан и компонент окиси углерода, выбранный из группы, состоящей из моноокиси углерода, двуокиси углерода и их смесей. Молярное отношение метана к компоненту окиси углерода в продукте газовой смеси, полученной с помощью риформинга, составляет примерно от 0,9 примерно до 1,25, и скорость, с которой производится метан в газовой смеси, полученной с помощью риформинга, составляет, по меньшей мере, примерно 50% от скорости поступления этанола, вводимого в зону реакции риформинга, в молярном отношении. Поступающая газовая смесь, содержащая кислород и продукт газовой смеси, полученной с помощью риформинга, вводится в камеру сгорания двигателя внутреннего сгорания и сгорает с получением смеси выхлопных газов. Энергия горения используется для генерирования механической или электрической энергии.

Настоящее изобретение дополнительно направлено на систему энергоснабжения на основе риформинга спирта для производства механической или электрической энергии из топлива на основе спирта. Способ включает в себя сначала вступление в контакт газообразной смеси исходных материалов, содержащей топливо на основе спирта, с катализатором риформинга в зоне реакции риформинга, с получением продукта газовой смеси, полученной с помощью риформинга, содержащей водород. Форкамерная газовая смесь, содержащая кислород и первую часть продукта газовой смеси, полученной с помощью риформинга, вводится в форкамеру сгорания в сообщении текучих сред с камерой сгорания двигателя внутреннего сгорания. Поступающая газовая смесь, содержащая кислород и вторую часть продукта газовой смеси, полученной с помощью риформинга, вводится в камеру сгорания. Форкамерная газовая смесь зажигается в форкамере сгорания для генерирования обогащенной водородом струи пламени и для того, чтобы вызвать горение поступающей газовой смеси, вводимой в камеру сгорания, при этом образуется выходящий поток выхлопных газов. Энергия горения используется для генерирования механической или электрической энергии.

В другом варианте осуществления системы энергоснабжения на основе риформинга спирта, газообразная смесь исходных материалов, содержащая этанол, приводится в контакт с катализатором риформинга в зоне реакции риформинга с получением продукта газовой смеси, полученной с помощью риформинга, содержащей водород и метан. Форкамерная газовая смесь, содержащая кислород и первую часть продукта газовой смеси, полученной с помощью риформинга, или этанольное топливо, вводится в форкамеру сгорания в сообщении текучих сред с камерой сгорания двигателя внутреннего сгорания. Поступающая газовая смесь, содержащая кислород и топливо, вводится в камеру сгорания. Форкамерная газовая смесь зажигается в форкамере сгорания с генерированием струи пламени и вызывает горение поступающей газовой смеси, вводимой в камеру сгорания, при этом образуется выходящий поток выхлопных газов. Энергия горения используется для генерирования механической или электрической энергии.

Еще в одном варианте осуществления система энергоснабжения на основе риформинга спирта для производства механической или электрической энергии из топлива на основе спирта включает в себя приведение в контакт газообразной смеси исходных материалов, содержащей топливо на основе спирта, с катализатором риформинга в зоне реакции риформинга, с получением продукта газовой смеси, полученной с помощью риформинга, содержащей водород. Поступающая газовая смесь, содержащая кислород и продукт газовой смеси, полученной с помощью риформинга, вводится в камеру сгорания двигателя внутреннего сгорания и сгорает с получением смеси выхлопных газов. Выходящий поток выхлопных газов, содержащих смесь выхлопных газов, высвобождается из камеры сгорания, и энергия горения используется для генерирования механической или электрической энергии. По меньшей мере, часть выходящего потока выхлопных газов используется и объединяется с поступающей газовой смесью, вводимой в камеру сгорания двигателя внутреннего сгорания.

Еще один вариант осуществления направлен на способ производства механической или электрической энергии в системе энергоснабжения, содержащей двигатель внутреннего сгорания. Двигатель внутреннего сгорания использует четырехтактный рабочий цикл и содержит, по меньшей мере, одну камеру сгорания и впускной клапан в сообщении текучих сред с камерой сгорания. Впускной клапан имеет открытое и закрытое положение. Двигатель внутреннего сгорания способен создавать степень расширения камеры сгорания, которая больше, чем соответствующая степень сжатия. Способ включает в себя введение поступающей газовой смеси, содержащей кислород, и топливо, выбранное из группы, состоящей из бензина, спирта, полученного с помощью риформинга, и их смесей, в камеру сгорания двигателя внутреннего сгорания. Продолжительность времени, когда впускной клапан остается в открытом положении, в течение рабочего цикла контролируется в ответ на тип топлива, вводимого в камеру сгорания. Поступающая газовая смесь сгорает в поступающей газовой смеси, и энергия горения используется для генерирования механической или электрической энергии.

Настоящее изобретение дополнительно направлено на многостадийный способ риформинга топлива на основе спирта, содержащего этанол. Способ включает в себя приведение в контакт газообразной смеси исходных материалов, содержащей этанольное топливо, с катализатором риформинга в первой зоне реакции риформинга при температуре ниже примерно 400°C, с получением газовой смеси, полученной с помощью частичного риформинга, содержащей водород и метан. Катализатор риформинга содержит медь на поверхности металлической структуры носителя с высокой тепловодностью. Затем газовая смесь, полученная с помощью частичного риформинга, приводится в контакт с катализатором риформинга во второй зоне реакции риформинга при температуре, более высокой, чем температура, поддерживаемая в первой зоне реакции риформинга, для риформинга метана, содержащегося в газовой смеси, полученной с помощью частичного риформинга, и получения продукта газовой смеси, полученной с помощью риформинга, содержащей дополнительный водород.

Другие цели и особенности настоящего изобретения будут частично понятны и частично изложены далее.

Краткое описание чертежей

Фиг.1 представляет собой схему системы энергоснабжения на основе риформинга спирта, которая использует бортовое хранение газов, полученных с помощью риформинга;

фиг.2 представляет собой схему системы энергоснабжения на основе риформинга спирта, пригодную для применения в транспортных средствах;

фиг.3 представляет собой фрагмент поперечного сечения системы зажигания с помощью струи пламени, используемой в системе энергоснабжения на основе риформинга спирта;

фиг.4 представляет собой схему системы энергоснабжения на основе риформинга спирта, которая использует зажигание с помощью струи, пригодной для применений в транспортных средствах;

фиг.5 представляет собой схему риформера, используемого при исследованиях активности риформинга этанола в Примере 7;

фиг.6 представляет собой графическое изображение предсказанных выбросов NOx для систем энергоснабжения с двигателем внутреннего сгорания на бензине, водороде, этаноле и на этаноле, полученном с помощью риформинга, при условиях высокой нагрузки, как моделируется в Примере 11;

фиг.7 представляет собой графическое изображение предсказанных температур выхлопа для системы энергоснабжения с двигателем внутреннего сгорания на этаноле, полученном с помощью риформинга, как моделируется в Примере 11; и

фиг.8 представляет собой графическое изображение, сравнивающее предсказанную пиковую эффективность двигателя системы энергоснабжения с двигателем внутреннего сгорания на этаноле, полученном с помощью риформинга, с эффективностью систем энергоснабжения на водороде, этаноле и бензине, как моделируется в Примере 11.

Описание предпочтительных вариантов осуществления

В соответствии с настоящим изобретением, предусматриваются усовершенствованные способы риформинга спиртов и системы энергоснабжения на основе риформинга спирта, использующие эти способы. Способы риформинга спиртов предпочтительно используют катализатор риформинга с высокой тепловодностью, который делает возможным эффективный низкотемпературный риформинг топлива на основе спирта, с получением газовой смеси, полученной с помощью риформинга, содержащей водород. Настоящее изобретение делает возможным эффективное использование топлива на основе спирта в двигателе внутреннего сгорания для генерирования электрической или механической энергии.

Не ограничиваясь какой-либо конкретной теорией, повышенная эффективность предпочтительных вариантов осуществления описываемого изобретения, как считается, осуществляется посредством, по меньшей мере, трех механизмов. Во-первых, сам процесс риформинга увеличивает низшую теплоту сгорания (LHV) топлива. В случае этанола, LHV увеличивается примерно на 7%. Поскольку энергия, необходимая для осуществления реакции риформинга, обеспечивается, по меньшей мере, частично, выхлопом от сгорания избытка, в предпочтительных вариантах осуществления не является необходимым использование теплоты сгорания топлива для осуществления реакции и не имеется необходимости в увеличении LHV. Во-вторых, газовая смесь, полученная с помощью риформинга, представляет собой высокооктановое топливо, которое делает возможным достижение высоких отношений сжатия. В-третьих, газовая смесь, полученная с помощью риформинга, может сгорать при бедных условиях, поскольку продукты реакции воспламеняются при относительно бедных концентрациях. Выигрыш в эффективности процесса риформинга подтверждается посредством моделирования горения, как описано в Примере 11.

В одном из предпочтительных вариантов осуществления настоящего изобретения, газовые смеси, содержащие водород, для сжигания в двигателе внутреннего сгорания получают посредством риформинга топлива на основе спирта способом, который делает возможным удовлетворение потребностей риформера в тепловой энергии с использованием избытка тепла, извлекаемого из выхлопа двигателя. В другом предпочтительном варианте осуществления, низкотемпературный риформинг этанольного топлива дает продукт газовой смеси, полученной с помощью риформинга, содержащей водород и метан, в то же время, сводя к минимуму дезактивирование катализатора риформинга из-за образования нагара. Изобретение, описываемое здесь, обеспечивает преимущества по сравнению с другими технологиями, используемыми при эксплуатации теплосодержания спиртов с высокой эффективностью, включая преобразование спиртов в водород с помощью обычных высокотемпературных процессов риформинга и использование продукта риформинга, содержащего водород, в топливных элементах систем энергоснабжения транспортных средств.

A. Топливо на основе спирта

Газообразная смесь исходных материалов, содержащая топливо на основе спирта, приводится в контакт с катализатором риформинга в зоне реакции риформинга риформера. Предпочтительно, топливо на основе спирта содержит первичный спирт, такой как метанол, этанол и их смеси. В соответствии с особенно предпочтительным вариантом осуществления, топливо на основе спирта содержит этанол. Предпочтительный катализатор риформинга, используемый при осуществлении настоящего изобретения, является особенно эффективным при низкотемпературном риформинге газообразной смеси исходных материалов, содержащей этанол, делая возможным эффективное использование этого безвредного для окружающей среды и экономически привлекательного топлива в системе энергоснабжения транспортных средств с относительно умеренными затратами.

Использование газообразного топлива, содержащего водород, получаемого от риформинга этанола, обеспечивает эффективные средства запуска транспортного средства на топливе на основе этанола при низких температурах, делая необязательным смешивание этанола с бензином, как в смешанных топливах E85. Однако катализаторы риформинга, используемые в вариантах осуществления настоящего изобретения, также являются пригодными для использования при риформинге смешанных топлив этанол/бензин (например, E85), поскольку сера в бензиновой части топлива не высвобождается в течение процесса риформинга из-за низких температур, при которых предпочтительно осуществляется реакция риформинга. Таким образом, не происходит заметного сульфидного отравления медных поверхностей катализатора.

В случае, когда отравление серой влияет на рабочие характеристики риформера, ее влияние может быть сведено к минимуму посредством использования бензина с низким содержанием серы в смешанной топливной смеси. Поскольку бензин в основном служит для облегчения запуска, предпочтительными являются низшие алканы, как правило, с очень низким содержанием серы, такие как изооктан. Альтернативно или в дополнение к этому, слой меди Ренея с высокой площадью поверхности может включаться перед зоной реакции риформинга для поглощения серы и защиты катализатора риформинга и, необязательно, чтобы действовать в качестве предварительного нагревателя и/или испарителя. Медь Ренея является относительно недорогой и может легко заменяться при необходимости.

Осуществление настоящего изобретения делает возможным использование топлив на основе спирта, которые содержат воду. Современные топлива на основе этанола, как правило, являются по существу безводными, и значительная часть стоимости производства этанола топливного качества связана со стадией дегидратирования. Кроме того, безводный этанол, в отличие от этанола, содержащего воду, не может транспортироваться в существующей инфраструктуре трубопроводов, поскольку этанол легко поглощал бы воду, присутствующую в трубопроводе. Таким образом, при осуществлении настоящего изобретения, не является необходимым дегидратирование исходных материалов для этанольного топлива, и стоимость производства этанольного топлива может быть уменьшена. Кроме того, использование настоящего изобретения в системах энергоснабжения транспортных средств делает возможным распределение этанола с помощью современной инфраструктуры нефтяных трубопроводов, вместо железной дороги.

Как отмечено выше, топливо на основе спирта, используемое в смеси исходных материалов, вводимой в риформер, предпочтительно содержит этанол. Однако также могут использоваться смеси исходных материалов на основе спирта, содержащие метанол и смеси метанол-этанол, необязательно содержащие, кроме того, воду. В одном из предпочтительных вариантов осуществления настоящего изобретения, смесь исходных материалов на основе спирта содержит смесь этанола и