Система и способ выполнения буровых работ на нефтяном месторождении с использованием способов визуализации

Иллюстрации

Показать все

Изобретение относится к способу выполнения буровой работы на нефтяном месторождении, имеющем подземный пласт с геологическими структурами и коллекторами. Техническим результатом является комплексный анализ параметров нефтяного месторождения и их воздействия на буровые работы в режиме реального времени, двусторонний обмен информацией с различными источниками в режиме реального времени. Способ включает в себя сбор данных нефтяного месторождения, по меньшей мере, части данных нефтяного месторождения, выработанной на скважинной площадке нефтяного месторождения, избирательного оперирования данными нефтяного месторождения для анализа в режиме реального времени, согласно образованной конфигурации, сравнение данных бурения в режиме реального времени с прогнозами нефтяного месторождения на основании образованной конфигурации, и избирательную регулировку буровой работы на основании сравнения. 6 н. и 18 з.п. ф-лы, 12 ил.

Реферат

Предпосылки создания изобретения

Область техники изобретения

Настоящее изобретение относится к способам выполнения работ нефтяного месторождения, относящихся к подземным пластам с коллекторами в них. Конкретнее, изобретение относится к способам выполнения буровых работ, включающих в себя анализ бурового оборудования, условий бурения и других параметров нефтяного месторождения, влияющих на буровые работы.

Предшествующий уровень техники

Работы, проводимые на нефтяном месторождении, такие как исследования, бурение, испытания на каротажном кабеле, заканчивание и добыча обычно выполняют для установления местоположения и сбора ценных скважинных текучих сред. Как показано на фигуре 1A, исследования часто выполняют с использованием способов сбора данных, таких как сейсмическое сканирование для выработки карт подземных структур. Данные структуры часто анализируют для определения присутствия подземных месторождений, таких как ценных текучих сред или минералов. Данная информация используется для оценки подземных структур и определения местоположения пластов, содержащих необходимые подземные месторождения. Собранные данные можно оценивать и анализировать для определения присутствия таких запасов и их экономически обоснованной доступности.

Как показано на фигурах 1B-1D, одна или несколько скважинных площадок могут быть установлены вдоль подземных структур для отбора ценных текучих сред из подземных коллекторов. Скважинные площадки оборудованы инструментами, способными определять местоположение углеводородов и извлекать их из подземных коллекторов. Как показано на фигуре 1B, бурильные инструменты обычно продвигаются от установок бурения нефтяных скважин в формации вдоль заданной траектории для определения местоположения ценных скважинных текучих сред. Во время буровой работы бурильный инструмент может выполнять внутрискважинные измерения для обследования внутрискважинных условий. В некоторых случаях, как показано на фигуре 1C, бурильный инструмент извлекают и развертывают инструмент на каротажном кабеле в стволе скважин для выполнения дополнительных испытаний скважины. В данном документе термин «ствол скважин» используется взаимозаменяемо с термином «буровой ствол».

После завершения буровой работы скважину можно готовить к эксплуатации. Как показано на фигуре 1D, скважинное оборудование заканчивания развернуто в стволе скважины для заканчивания скважины с подготовкой добычи через нее текучей среды. Текучая среда затем извлекается из коллекторов на забое скважины в ствол скважины и проходит на поверхность. Сооружения добычи установлены на наземных площадках для сбора углеводородов скважинной площадки. Текучая среда, извлеченная из подземного коллектора, проходит на сооружения добычи через транспортирующие устройства, такие как насосно-компрессорная труба. Различное оборудование может быть установлено на нефтяном месторождении для мониторинга параметров нефтяного месторождения и/или оперативного управления работами нефтяного месторождения.

Во время работы нефтяного месторождения обычно собирают данные для анализа и/или мониторинга работ нефтяного месторождения. Такие данные могут включать в себя, например, данные подземного пласта, оборудования, статистические и/или другие. Данные, касающиеся подземного пласта, собирают с использованием различных источников. Такие данные пласта могут быть статическими или динамическими. К статическим данным относится структура пласта и геологическая стратиграфия, определяющая геологическую структуру подземного пласта. К динамическим относятся данные текучих сред, проходящих через геологические структуры подземного пласта. Такие статические и/или динамические данные можно собирать для получения дополнительных знаний о пластах и запасах, содержащихся в них.

Источниками, используемыми для сбора статических данных, могут являться сейсмические инструменты, такие как передвижная сейсмическая станция, посылающая продольные сейсмоволны в землю, как показано на фигуре 1A. Указанные волны измеряют для получения характеристики изменения плотности геологической структуры на различных глубинах. Данную информацию можно использовать для выработки базовых структурных карт подземного пласта. Другие статические измерения можно собирать с использованием способов отбора образцов керна и каротажа скважин. Образцы керна используют для взятия физических образцов пласта на различных глубинах, как показано на фигуре 1B. Скважинный каротаж включает в себя развертывание скважинного инструмента в стволе скважины для сбора данных различных внутрискважинных измерений, таких как плотность, электрическое удельное сопротивление, и т.п., на различных глубинах. Такой скважинный каротаж можно выполнять с использованием, например, бурильного инструмента, показанного на фигуре 1B, и/или инструмента на каротажном кабеле, показанного на фигуре 1C. После выполнения и заканчивания скважины текучая среда проходит на поверхность с использованием эксплуатационной колонны насосно-компрессорной трубы, как показано на фигуре 1D. При прохождении текучей среды к поверхности можно осуществлять мониторинг с различными динамическими измерениями, например, расхода, давления и состава текучей среды. Данные параметры можно использовать для определения различных характеристик подземного пласта.

Датчики можно устанавливать на нефтяном месторождении для сбора данных, относящихся к различным работам нефтяного месторождения. Например, датчики в стволе скважины могут осуществлять мониторинг состава текучей среды, могут быть и размещены вдоль пути прохождения потока, могут осуществлять мониторинг расходов и датчики на сооружениях обработки могут осуществлять мониторинг собранных текучих сред. Другие датчики можно оборудовать для осуществления мониторинга условий на забое, на поверхности, состояния оборудования или других условий. Данные мониторинга часто используют для принятия решений на различных площадках нефтяного месторождения в разное время. Данные собранные указанными датчиками можно дополнительно анализировать и обрабатывать. Данные можно собирать и использовать для текущих или будущих работ. При использовании для будущих работ на тех же или других площадках такие данные можно иногда именовать статистическими данными.

Обработанные данные можно использовать для прогнозирования внутрискважинных условий и принятия решений, касающихся работ нефтяного месторождения. Такие решения могут касаться проектирования скважины, проводки скважины, заканчивания скважины, эксплуатационных уровней, уровней добычи и других конфигураций. Часто данную информацию используют для определения времени начала бурения новых скважин, капремонта существующих скважин или изменения добычи в стволе скважины.

Данные одного или нескольких стволов скважин можно анализировать для планирования или прогнозирования различной производительности данного ствола скважины. В некоторых случаях данные соседних стволов скважин, или стволов скважин с аналогичными условиями или оборудованием, используют для прогнозирования показателей работы скважины. Часто имеется большое число переменных и большие объемы данных для расчета при анализе работы ствола скважины. Поэтому часто целесообразно моделирование режима работы нефтяного месторождения для определения образа действия. Во время предстоящих работ условия работы могут нуждаться в корректировке, поскольку условия меняются, и принимается новая информация.

Разработаны способы моделирования режима работы геологических структур, скважинных коллекторов, стволов скважин, наземного оборудования, а также других участков работы нефтяного месторождения. Примеры способов моделирования раскрыты в следующих патентах/заявках: патент США 5992519, публикации WO 2004049216 и WO 1999/064896, патенты США 6313837, 2003/0216897, 2003/0132934, 20050149307 и 2006/0197759. Обычно существующие способы моделирования используют для анализа только конкретных участков работ нефтяного месторождения. Недавно предприняты попытки использования нескольких моделей в анализе некоторых работ нефтяного месторождения. Смотри, например, патент США № 6980940, публикации WO 04049216, WO 20040220846, WO 10/586283, и патент США 6801197.

Также разработаны способы прогнозирования и/или планирования некоторых работ нефтяного месторождения, таких как буровые работы. Примеры способов для выработки проектов бурения даны в патентах/заявках США №№ 20050236184, 20050211468, 20050228905, 20050209886, 20050209836. Некоторые из способов бурения включают в себя регулирование буровых работ. Примеры таких способов бурения показаны в патентах Великобритании 2392931, 241669. Другие способы бурения направлены на создание буровых работ в режиме реального времени. Примеры способов выполнения бурения в режиме реального времени описаны в патентах/заявках США №№ 7079952, 6266619, 5899958, 5139094, 7003439 и 5680906.

Несмотря на развитие и продвижение различных аспектов проектирования нефтяного месторождения остается необходимость создания способов проектирования и реализации буровых работ на основе комплексного анализа множества различных параметров, влияющих на работы нефтяного месторождения. Необходимо, чтобы такой комплексный анализ параметров нефтяного месторождения и их воздействия на буровые работы выполнялся в режиме реального времени. Дополнительно необходимо, чтобы такие способы давали данные с двусторонним обменом информацией в режиме реального времени с различными источниками, то есть внутренними и/или внешними. Так способы, предпочтительно, дожны иметь, кроме прочего, возможность одного или нескольких из следующего: избирательного оперирования данными для содействия обмену данными, автоматического и/или ручного перевода и/или преобразования данных, обеспечения визуализации данных и/или выходных данных, избирательного доступа к данному числу различных серверов, избирательного доступа к каналам прохождения данных, обеспечения интегрированной обработки выбранных данных в одной операции, обеспечения прямого доступа к источникам данных в режиме реального времени без требования промежуточного средства, отображение данных и/или выходных данных в одном или нескольких изображениях (таких, как двухмерные, трехмерные, сечение скважины), обработка множества различных данных различных форматов, реализация (в автоматическом, ручном, реального времени или другом режиме) команд бурения на основании данных, обновление отображений данных бурения (локальных или удаленных) и модели геологической среды, когда новые данные собраны от скважинных инструментов или на основании данных, сохраняющихся в серверах, и автоматической и/или ручной настройки визуализации живых и статистических данных в других контекстах (таких, как геологические, геофизические) в режиме удовлетворения/превышения требований работоспособности. Идентификация рисков, связанных с бурением скважины, возможно, является наиболее субъективным процессом в сегодняшнем проектировании скважин. Это основывается на персональном понимании части технического проекта скважины, находящейся в стороне по отношению к геологическим параметрам или механическому оборудованию, подлежащему использованию для бурения скважины. Идентификация любых рисков обуславливается интегрированием всей информации по скважинам, геологии и оборудованию в человеческом сознании и ментальном просеивании всей информации, преобразованием взаимозависимостей, основана исключительно на персональном опыте, извлекая который в частях проекта позиционируют потенциальные риски для общего успеха проекта. Это необычайно чувствительно к систематическим ошибкам, вносимым человеком, способности индивидуума запоминать и интегрировать все данные в голове, и индивидуальному опыту для обеспечения распознавания условий, запускающих каждый риск в бурении. Большинство людей неспособны это делать, а те, которые способны, являются непоследовательными, если не следуют строгой технологии или технологической карте. Некоторые системы программного обеспечения рисков бурения на сегодня существуют, но аналогичный процесс с участием человека требуется для идентификации и оценки вероятности каждого индивидуального риска и его последствий. Данные системы являются просто компьютерными системами для записи вручную результатов процесса идентификации риска.

Системы обычного программного обеспечения систем автоматического проектирования скважин могут включать в себя компонент оценки риска. Данный компонент автоматически оценивает риски, связанные с техническими решениями проекта скважины относительно земной геологии и геомеханических параметров и относительно механических ограничений оборудования, отвечающего техническим требованиям или рекомендованного для использования.

Когда пользователь идентифицировал и зафиксировал риски бурения данной скважины, не существует предписанных стандартных способов визуализации для повышения эффективности уже созданной информации по риску. Существуют некоторые способы указания месторасположения риска индивидуальных событий на заданной измеренной глубине или интервале глубин с использованием некоторого типа символа или комбинации формы и рисунка в трехмерном пространстве.

Сущность изобретения

По меньшей мере, в одном аспекте, настоящее изобретение относится к способу выполнения буровых работ на нефтяном месторождении, имеющем подземный пласт с геологическими структурами и коллекторами в них. Способ включает в себя сбор данных нефтяного месторождения, избирательное оперирование данными нефтяного месторождения для анализа в режиме реального времени, согласно образованной конфигурации, сравнение данных бурения в режиме реального времени с прогнозами нефтяного месторождения на основании образованной конфигурации и избирательную регулировку буровых работ на основании сравнения.

В другом аспекте изобретение относится к способу выполнения буровых работ для нефтяного месторождения, имеющего систему бурения для продвижения бурильного инструмента в подземном пласте. Способ включает в себя сбор данных нефтяного месторождения, часть которых является данными бурения в режиме реального времени, выработанными на нефтяном месторождении во время бурения, образование множества событий нефтяного месторождения на основании данных нефтяного месторождения, избирательное отображение множества событий нефтяного месторождения вокруг изображения ствола скважины на устройстве отображения и обновление отображения множества событий нефтяного месторождения во время бурения на основании данных бурения в режиме реального времени.

В другом аспекте изобретение относится к способу выполнения буровых работ для нефтяного месторождения, имеющего систему бурения для продвижения бурового инструмента в подземном пласте. Способ включает в себя сбор данных нефтяного месторождения, часть которых является данными бурения в режиме реального времени, выработанными на нефтяном месторождении во время бурения, создание множества событий нефтяного месторождения на основании данных нефтяного месторождения, форматирование отображения данных на основании части множества событий нефтяного месторождения, выбранных для отображения, и избирательное переформатирование отображения в режиме реального времени в ответ на добавление выбранной части множества событий нефтяного месторождения или избирательную корректировку выбранной части множества событий нефтяного месторождения.

В другом аспекте изобретение относится к машиночитаемому носителю, осуществляющему инструкции, исполняемые компьютером, для выполнения на этапе способа выполнения буровых работ для нефтяного месторождения, имеющего систему бурения для продвижения бурового инструмента в подземном пласте. Инструкции включают в себя функциональные возможности для сбора данных нефтяного месторождения, часть которых выработана на скважинной площадке нефтяного месторождения, избирательного оперирования данными нефтяного месторождения для анализа в режиме реального времени согласно образованной конфигурации, сравнения данных бурения в режиме реального времени с прогнозами нефтяного месторождения на основании созданной конфигурации и избирательной регулировки буровой работы на основании сравнения.

В другом аспекте изобретение относится к системе для выполнения буровой работы на нефтяном месторождении, имеющем подземный пласт с геологическими структурами и коллекторами в них. Система оборудована наземным блоком для сбора данных нефтяного месторождения и инструментом моделирования, функционально соединенным с наземным блоком. Инструмент моделирования имеет множество форматирующих модулей для избирательного форматирования данных нефтяного месторождения согласно конфигурации режима реального времени и множество модулей обработки для избирательного анализа данных нефтяного месторождения на основании конфигурации режима реального времени.

Другие аспекты и преимущества настоящего изобретения должны стать ясными из следующего описания и прилагаемой формулы изобретения.

Краткое описание чертежей

На фигурах 1A-1D показан схематичный вид нефтяного месторождения, имеющего подземные структуры, содержащие в себе коллекторы, на нефтяном месторождении проводятся различные работы.

На фигурах 2A-2D показаны графические воспроизведения данных, собранных инструментами, показанными соответственно на фигурах 1A-1D.

На фигуре 3 показан схематичный вид, частично в сечении, буровой работы на нефтяном месторождении.

На фигуре 4 показана схематичная диаграмма системы для выполнения буровой работы на нефтяном месторождении.

На фигуре 5 показана блок-схема последовательности операций способа выполнения буровой работы на нефтяном месторождении.

На фигуре 6A показан снимок экрана примера трехмерного 3D отображения, представляющего многочисленные события месторождения.

На фигуре 6B показан пример представления многочисленных событий месторождения в трехмерном устройстве отображения.

На фигурах 7, 8, 9A, 9B, 10A, 10B показаны примеры представления многочисленных событий месторождения в трехмерном 3D устройстве отображения.

На фигуре 11 и 12 показана блок-схема последовательности операций дополнительных способов выполнения буровых работ на нефтяном месторождении.

Подробное описание изобретения

Конкретные варианты осуществления изобретения должны быть подробно описаны со ссылкой на прилагаемые чертежи. Одинаковые элементы на различных чертежах указаны одинаковыми позициями для единообразия.

В следующем подробном описании вариантов осуществления изобретения раскрыты многочисленные конкретные детали для обеспечения более глубокого понимания изобретения. В других случаях хорошо известные признаки не описаны подробно, для более ясного раскрытия самого изобретения.

В общем настоящее изобретение относится к интеграции программного обеспечения геолого-геофизического моделирования и системы проектирования скважины для моделирования и отображения геометрии ствола скважины, параметров бурения, количественного выражения риска, и времени и стоимости бурения скважины в геологическом контексте.

Настоящее изобретение включает в себя способы применения, разработанные для нефтегазовой отрасли. На фигурах 1A-1D показан пример нефтяного месторождения 100 с подземными структурами и геологическими структурами в них. Более конкретно, на фигурах 1A-1D показаны схематичные виды нефтяного месторождения 100, имеющего подземные структуры 102, содержащие коллектор 104 и работы, выполняемые на нефтяном месторождении. Различные измерения подземного пласта проводятся различными инструментами на одной площадке. Данные измерения можно использовать для выработки информации о пласте, и/или геологических структурах, и/или текучих средах, содержащихся в нем.

На фигуре 1A показаны геофизические исследования, проводимые передвижной сейсмической станцией 106a для измерения свойств подземного пласта. Геофизические исследования представляют собой сейсмические геофизические исследования с производством акустических колебаний. На фигуре 1A источник 110 акустических волн производит акустические колебания 112, отражающиеся от множества горизонтов 114 в геологическом пласте 116. Акустические колебания 112 принимаются датчиками, такими как сейсмоприемники 118, размещенными на земной поверхности, и сейсмоприемники 118 производят электрические выходные сигналы, именуемые принимаемыми данными 120 на фигуре 1А.

Принятые акустические колебания 112 представляют различные параметры такие, как амплитуда и/или частота. Принятые данные 120 передаются, как входные данные на компьютер 122a передвижной сейсмической станции 106a, и, приняв входные данные, компьютер 122a передвижной станции вырабатывает выходные сейсмические данные 124. Сейсмические данные можно дополнительно обрабатывать, как необходимо, например, посредством предварительной обработки данных.

На фигуре 1B показаны буровые работы, выполняемые буровым инструментом 106b, подвешенным на буровой установке 128 и продвигающимся в подземный пласт 102 для образования ствола 136 скважины. Емкость 130 бурового раствора используется для забора бурового раствора в буровой инструмент посредством трубопровода 132 для циркуляции бурового раствора через буровой инструмент и обратно на поверхность. Буровой инструмент продвигается в пласт для достижения коллектора 104. Буровой инструмент предпочтительно приспособлен для измерения внутрискважинных параметров. Инструмент каротажа во время бурения можно также приспособить для показанного отбора образца 133 керна, или удалить для отбора образца керна с использованием другого инструмента.

Наземный блок 134 используется для осуществления связи с буровым инструментом и работами вне площадки. Наземный блок способен осуществлять связь с буровым инструментом для отправки команд приведения в действие бурового инструмента, и приема данных от него. Наземный блок предпочтительно оснащен компьютерным оборудованием для приема, сохранения, обработки и анализа данных с нефтяного месторождения. Наземный блок осуществляет сбор выходных данных 135, вырабатываемых во время буровых работ. Компьютерное оборудование, такое как оборудование наземного блока, может быть установлено на различных площадках на нефтяном месторождении и/или на удаленных площадках.

Датчики S, такие как измерительные приборы, могут устанавливаться повсеместно в коллекторе, на буровой установке, оборудовании нефтяного месторождения таком, как скважинный инструмент или на других участках нефтяного месторождения для сбора информациии о различных параметрах, таких как наземные параметры, внутрискважинные параметры и/или условия работы. Указанные датчики предпочтительно измеряют параметры бурения, такие как осевая нагрузка на долото, крутящий момент на долоте, давления, температуры, расходы, составы, измеренная глубина, азимут, угол наклона и другие параметры работы на нефтяном месторождении.

Информация, собранная датчиками, может забирать наземный блок и/или другое оборудование сбора данных для анализа или другой обработки. Данные, собранные датчиками, можно использовать индивидуально или в объединении с другими данными. Данные можно собрать в базу данных и все или выбранные части данных можно избирательно использовать для анализа и/или прогноза работы существующих и/или других стволов скважин нефтяного месторождения.

Выходные данные от различных датчиков, установленных вокруг нефтяного месторождения, можно обрабатывать для использования. Данные могут представлять собой статистические данные, данные в режиме реального времени или их комбинации. Данные в режиме реального времени можно использовать в режиме реального времени, или сохранять для последующего использования. Данные можно также объединять со статистическими данными или другими входными данными для дополнительного анализа. Данные можно разместить в отдельных базах данных или объединить в одну базу данных.

Собранные данные можно использовать для выполнения анализа, такого как построение моделей. Например, выходные сейсмические данные можно использовать для выполнения геологической, геофизической имитации и/или имитации технологии исследования и разработки коллектора. Данные коллектора, ствола скважины, наземные данные и/или данные обработки можно использовать для выполнения имитаций добычи из коллектора, ствола скважины, или других имитаций добычи. Выходные данные работы нефтяного месторождения можно вырабатывать датчиками напрямую, или получать после некоторой предварительной обработки или моделирования. Эти выходные данные могут действовать в качестве входных данных для дополнительного анализа.

Данные собирают и сохраняют в наземном блоке 134. Один или несколько наземных блоков можно расположить на нефтяном месторождении, или на удалении, связаными с ним. Наземный блок может быть единым блоком, или комплексной сетью блоков, используемых для выполнения необходимых функций управления данными по всему нефтяному месторождению. Наземный блок может представлять собой систему с ручным или автоматическим управлением. Пользователь может управлять работой наземного блока и/или корректировать ее.

Наземный блок можно оборудовать приемопередатчиком 137 для обеспечения обмена информацией между наземным блоком и различными участками нефтяного месторождения и/или другими площадками. Наземный блок можно также оборудовать также контроллером или функционально соединить с ним для приведения в действие механизмов на нефтяном месторождении. Наземный блок может затем посылать сигналы команд на нефтяное месторождение, реагируя на принятые данные. Наземный блок может принимать команды через приемопередатчик или может сам исполнять команды на контроллер. Можно оборудовать блок обработки данных для анализа данных на месте или на удалении и принятия решений на приведение в действие контроллера. В таком режиме нефтяное месторождение можно избирательно регулировать на основании собранных данных. Данные регулировки можно выполнять автоматически на основании компьютерного протокола, или вручную оператором. В некоторых случаях проекты скважин и/или размещение скважин можно корректировать для выбора оптимальных условий работы или исключения проблем.

На фигуре 1C показана работа на каротажном кабеле, выполняемая инструментом 106c на каротажном кабеле, подвешенном на буровой установке 128 и находящемся в стволе 136 скважины фигуры 1B. Инструмент на каротажном кабеле предпочтительно приспособлен для развертывания в стволе скважины для выполнения каротажных диаграмм скважины, выполнения внутрискважинных испытаний и/или отбра образцов. Инструмент на каротажном кабеле можно использовать для обеспечения работы других способов и устройств для выполнения сейсмических геофизических исследований. Инструмент на каротажном кабеле, показанный на фигуре 1C, может иметь генератор взрывных или акустических волн, подающий соответствующие сигналы в окружающие подземные пласты 102.

Инструмент на каротажном кабеле можно функционально соединить, например, с сейсмоприемниками 118 компьютера 122a передвижной сейсмической станции 106a, показанной на фигуре 1A. Инструмент на каротажном кабеле может также выдавать данные на наземный блок 134. Как показано, выходные данные 135 вырабатывает инструмент на каротажном кабеле и их собирают на поверхности. Инструмент на каротажном кабеле можно устанавливать на различных глубинах в стволе скважины для проведения исследования подземного пласта.

На фигуре 1D показана работа добычи, выполняемая инструментом 106d добычи, развернутым с блока добычи или фонтанного устьевого оборудования 129 в стволе 136 законченной скважины, показанной на фигуре 1C, для извлечения текучей среды из коллекторов на забое скважины и подачи на наземное оборудование 142. Текучая среда проходит из коллектора 104 через перфорационные каналы в обсадной колонне (не показано) в инструмент 106d добычи в стволе 136 скважины и наземное оборудование 142 через сборную сеть 146. Датчики S, установленные на нефтяном месторождении, функционально соединены с наземным блоком 142 для получения данных от него. В процессе добычи выходные данные 135 можно собирать с различных датчиков и отправлять наземный блок и/или оборудование обработки. Указанные данные могут представлять собой, например, данные коллектора, данные ствола скважины, наземные данные и/или данные обработки. Как показано, датчик S может быть установлен в инструменте 106d добычи или связанном с ним оборудовании, таком как фонтанное устьевое оборудование, сборная сеть, наземное оборудование и/или сооружение добычи, для измерения параметров текучей среды, таких как состав текучей среды, расходы, давления, температуры, и/или другие эксплуатационные параметры добычи.

Хотя показана только одна скважинная площадка, должно быть ясно, что нефтяное месторождение может охватывать участок земли, вмещающий в себя одну или несколько скважинных площадок. Одно или несколько сборных сооружений могут быть функционально соединены с одной или несколькими скважинными площадками для избирательного сбора скважинных текучих сред со скважинной площадки.

По всем работам нефтяного месторождения, показанным на фигурах 1A-1D, имеются многочисленные коммерческие факторы. Например, используемое оборудование, показанное на данных чертежах, имеет различную стоимость и/или риски, с ним связанные. По меньшей мере, некоторые из собранных на нефтяном месторождении данных относятся к коммерческим факторам, таким как цена и риск. Указанные коммерческие данные могут включать в себя, например, себестоимость добычи, время бурения, стоимость хранения, цену нефти/газа, погодные факторы, политическую стабильность, налоговую нагрузку, наличие оборудования, геологическую среду и другие факторы, влияющие на стоимость выполнения работ на нефтяном месторождении или потенциальные обязательства, относящиеся к нему. Могут быть приняты решения и разработаны стратегические бизнес-планы уменьшения потенциальных затрат и рисков. Например, проект нефтяного месторождения может основываться на данных коммерческих соображениях. Так, проект нефтяного месторождения может, например, определять размещение буровых установок, а также глубину, число скважин, продолжительность работы и другие факторы, которые должны влиять на затраты и риски, связанные с работой нефтяного месторождения.

Хотя на фигуре 1 показаны инструменты мониторинга, используемые для измерения параметров нефтяного месторождения, должно быть ясно, что инструменты можно использовать для не относящихся к работе нефтяного месторождения работ, таких как работы рудников, водных коллекторов или других подземных сооружений. Также, хотя показаны некоторые инструменты сбора данных, должно быть ясно, что можно использовать различные измерительные инструменты, способные к регистрации таких параметров, как полное время пробега сейсмической волны, плотность, электрическое удельное сопротивлениеие, продуктивность, и т.п., подземного пласта и/или его геологической структуры. Различные датчики S и/или инструменты мониторинга для сбора и/или мониторинга необходимых данных можно размещать на различных позициях по подземному пласту. Другие источники данных можно также создавать на удаленных площадках.

Конфигурация нефтяного месторождения, показанная на фигуре 1, не предполагает ограничения объема изобретения. Часть или все нефтяное месторождение может быть на суше и/или на море. Также, хотя показано одиночное измерение на нефтяном месторождении на одной площадке, в настоящем изобретении можно использовать любые комбинации одного или нескольких нефтяных месторождений, одного или нескольких сооружений обработки и одной или нескольких скважинных площадок.

На фигурах 2A-2D графически показаны данные, собранные инструментами фигур 1A-1D, соответственно. На фигуре 2A показана дорожка 202 сейсмограммы подземного пласта фигуры 1A, взятой инструментом 106a геофизического исследования. Дорожка сейсмограммы измеряет ответный сигнал в двух направлениях за период времени. На фигуре 2B показан образец 133 керна, взятый каротажным инструментом 106b. Испытание керна обычно дает график плотности, электрическое удельное сопротивлениеия или другие физические свойства образца керна по его длине. На фигуре 2C показана скважинная каротажная диаграмма 204 подземного пласта фигуры 1C, взятая инструментом 106c на каротажном кабеле. Каротажная диаграмма, записанная прибором на кабеле, обычно дает измерение электрического удельного сопротивления пласта на различных глубинах. На фигуре 2D показана кривая 206 падения добычи текучей среды, проходящей через подземный пласт фигуры 1D, взятая инструментом 106d измерения добычи. Кривая падения добычи обычно дает продуктивность Q, как функцию времени t.

Соответствующие графики фигур 2A-2C содержат статические измерения, описывающие физические характеристики пласта. Данные измерения можно сравнивать для определения точности измерений и/или проверки наличия ошибок. Таким способом, кривые каждого из соответствующих измерений можно совмещать и масштабировать для сравнения и выверки свойств.

На фигуре 2D представлено динамическое измерение свойств текучей среды, проходящей через ствол скважины. Когда текучая среда проходит через ствол скважины, выполняют измерения свойств текучей среды, таких как расходы, давления, состав, и т.п. Как описано ниже, статические и динамические измерения можно использовать для создания моделей подземного пласта для определения его характеристик.

Модели можно использовать для создания модели геологической среды, задающей подземные условия. Такая модель геологической среды прогнозирует структуру и характер ее изменения при эксплуатации нефтяного месторождения. При сборе новой информации частям модели геологической среды или всей модели может быть необходима корректировка.

На фигуре 3 схематично на виде скважинной площадки 300 показаны детали буровой работы на нефтяном месторождении, такой как буровая работа на фигуре 1B. Система 300 скважинной площадки включает в себя систему 302 бурения и наземный блок 304. В показанном варианте осуществления ствол 306 скважины выполнен роторным бурением общеизвестным способом. Специалистам в данной области техники, использующим выгоды данного изобретения, должно быть ясно, вместе с тем, что настоящее изобретение также находит применение при бурении, отличном от обычного роторного бурения, например наклонно-направленном бурении с использованием забойных турбинных двигателей, и не ограничивается буровыми установками, базирующимися на суше.

Система 302 бурения включает в себя бурильную колонну 308, подвешенную в стволе 306 скважины с буровым долотом 310 на нижнем конце. Система 302 бурения также включает в себя платформу, базирующуюся на суше, и вышечную компоновку 312, установленную над стволом 306 скважины, проходящей подземный пласт F. Компоновка 312 включает в себя ротор 314, ведущую бурильную трубу 316, крюк 318 и вертлюг 319. Бурильная колонна 308 вращается ротором 314, приводимым в движение не показанным средством, соединенным с ведущей бурильной трубой 316 на верхнем конце бурильной колонны. Бурильная колонна 308 подвешена на крюке 318, прикрепленном к талевому блоку также (не показано), посредством ведущей бурильной трубы 316 и вертлюга 319, обеспечивающего вращение бурильной колонны относительно крюка.

Система 302 бурения дополнительно включает в себя буровую текучую среду или раствор 320, хранящийся в емкости 322, оборудованной на скважинной площадке. Насос 324 подает