Измерительная система для среды, протекающей в технологическом трубопроводе

Иллюстрации

Показать все

Измерительная система, предназначенная для измерения плотности среды, протекающей в технологическом трубопроводе вдоль оси потока в измерительной системе, в случае среды, которая является изменяющейся в отношении термодинамического состояния, в частности среды, которая является, по меньшей мере, частично сжимаемой. Измерительная система содержит, по меньшей мере, один датчик температуры, по меньшей мере, один датчик давления, по меньшей мере, один датчик течения и измерительный электронный блок. Датчик температуры размещен в месте измерения температуры, реагирует, главным образом, на локальную температуру (ϑ) протекающей среды и подает, по меньшей мере, один сигнал измерения температуры, находящийся под влиянием локальной температуры среды, подлежащей измерению. Датчик давления размещен в месте измерения давления, реагирует, главным образом, на локальное, в частности статическое, давление (р) протекающей среды и подает, по меньшей мере, один сигнал измерения давления, находящийся под влиянием локального давления (р) в среде, подлежащей измерению. Измерительный электронный блок связан, по меньшей мере, временно, с датчиком температуры, датчиком давления и датчиком течения. Измерительный электронный блок определяет предварительное измеренное значение плотности, которое представляет плотность, которую текущая среда только предположительно имеет в виртуальном месте измерения плотности, в частности, в виртуальном месте измерения плотности, расположенной на заранее заданном расстоянии, вдоль оси потока, от места измерения давления и/или места измерения температуры. Измерительный электронный блок выдает, с применением этого предварительного измеренного значения плотности, равно как и, по меньшей мере, значения коррекции плотности, определяемого во время работы и зависящего как от скорости потока среды, так также и от локальной температуры, преобладающей в месте измерения температуры, по меньшей мере, временно, по меньшей мере, одно измеренное значение плотности, в частности, цифровое измеренное значение плотности, отличающееся от предварительного измеренного значения плотности и представляющее, в виде мгновенного значения, более точно, чем предварительное измеренное значение плотности, локальную плотность (ρ), которую текущая среда фактически имеет в виртуальном месте измерения плотности. Технический результат - повышение точности измерения давления и/или температуры текучей среды. 2 н. и 42 з.п. ф-лы, 4 ил., 1 табл.

Реферат

Изобретение относится к измерительной системе для измерения плотности среды, являющейся изменяющейся в отношении термодинамического состояния, в частности, по меньшей мере, частично сжимаемой, протекающей в технологическом трубопроводе, таком как технологическая магистраль или труба, вдоль оси потока в измерительной системе. Измерительная система производит измерения посредством датчика температуры, датчика давления и измерительного электронного блока, поддерживающего, в каждом случае, связь, по меньшей мере, временно, с датчиком температуры и датчиком давления, и выдающей, по меньшей мере, временно, по меньшей мере, одно измеренное значение плотности, представляющее настолько точно, насколько это возможно, локальную плотность этой текущей среды.

Для регистрации описывающих технологический процесс измеряемых переменных текущей среды, таких как переменная термодинамического состояния, плотность или выводимые из них измеряемые переменные, и для выдачи измеренных значений, соответствующим образом представляющих такие измеряемые переменные, в технологии измерений производственного процесса применяют измерительные системы, устанавливаемые вблизи от этого процесса. Это реализуется, в частности, также в связи с автоматизацией химических процессов или процессов, включающих в себя добавление материалам стоимости. Эти измерительные системы часто составлены из двух или больше отдельных измерительных устройств нижнего уровня, которые поддерживают связь друг с другом, и каждый из которых расположен непосредственно на или в технологическом трубопроводе, через который протекает среда. Измеряемые переменные, подлежащие регистрации, могут включать в себя, помимо плотности, также, например, другие переменные термодинамического состояния, в частности такие переменные, которые способны регистрироваться датчиком и, в результате, являются непосредственно измеряемыми, такими как, например, давление или температура, непосредственно или косвенным образом измеряемые параметры потока, такие как, например, скорость потока, объемный расход, например удельный объемный расход, или массовый расход, например удельный массовый расход, или другие сложные переменные переноса, такие как, например, тепловой поток, равно как также и другие измеряемые переменные, относящиеся к конкретной среде, такие как, например, вязкость, по меньшей мере, частично жидкой, порошкообразной, парообразной или газообразной среды, передаваемой в технологическом трубопроводе, реализованном, например, в форме магистральной трубы.

В частности для косвенного (именуемого ниже как виртуального) измерения плотности, основанного на сигналах измерения давления и температуры, генерируемых посредством соответствующих датчиков, равно как также измеряемых переменных, возможно выводимых из них, например, массового расхода или объемного расхода, было принято большое количество промышленных стандартов, которые рекомендуют в значительной степени стандартизированный, а следовательно, сопоставимый способ вычисления, в частности, также с применением непосредственно зарегистрированных и, следовательно, фактически измеренных температур и/или давлений, и которые находят свое применение как функцию области применения и среды. Примеры таких стандартов включают в себя, в порядке примера, промышленный стандарт "IAWPS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam" ("Формулировка 1997 года промышленного стандарта IAWPS по термодинамическим свойствам воды и пара") (IAWPS - IF97) ассоциации IAWPS (International Association for the Properties of Water and Steam - Международная ассоциация по термодинамическим свойствам воды и пара), "A.G.A. Manual for the Determination of Supercompressibility Factors for Natural Gas - PAR Research Project NX-19" ("Справочник A.G.A. (Американской газовой ассоциации) по определению коэффициентов сверхсжимаемости для природного газа - Научно-исследовательский проект PAR NX - 19") Американской газовой ассоциации (AGA - NX19, библиотека Конгресса, номер 63-23358), международный стандарт ISO 12213: 2006 Международной организации по стандартизации, Раздел 1-3 "Natural gas - Calculation of compression factor" ("Природный газ - вычисление коэффициента сжатия"), равно как также и упоминающийся там документ "A.G.A. Compressibility Factors for Natural Gas and Other Related Hydrocarbon Gases", American Gas Association Transmission Measurement Committee Report No. 8 (AGA-8) ("Американская газовая ассоциация: Коэффициенты сжимаемости для природного газа и других связанных с ним углеводородных газов", отчет номер 8 комитета по транспортировке и измерениям Американской газовой ассоциации) и "High Accuracy Compressibility Factor Calculation for Natural Gases and Similar Mixtures by Use of a Truncated Viral Equation", GERG Technical Monograph TM2 1998 & Fortschritt-Berichte VDI (Progress Reports of the Association of German Engineers), Series 6, No. 231 1989 ("Высокоточное вычисление коэффициента сжимаемости для природных газов и аналогичных смесей при помощи усеченного "вирусного" уравнения". Техническая Монография ТМ 2, GERG, 1998 и Fortschritt-Berichte VDI (Промежуточные отчеты Ассоциации немецких инженеров), серия 6, номер 231 1989)(SGERG-88).

Часто, определение плотности может также служить для преобразования непосредственно измеряемого массового расхода, в конечном счете, в косвенно или виртуально измеряемый объемный расход или наоборот. Для непосредственного измерения параметров потока, служащих для этого в качестве первично измеряемых переменных, соответственно, например, локальной скорости потока, локального объемного расхода или локального массового расхода - измерительные системы рассматриваемого типа включают в себя, по меньшей мере, один соответствующий датчик расхода, который, реагируя, по меньшей мере, преимущественно на параметр потока, первично регистрируемой для этой текущей среды, или также на изменения этого параметра, подает во время работы, по меньшей мере, один измерительный сигнал, в частности электрический измерительный сигнал, находящийся под соответствующим влиянием измеряемой первично регистрируемой переменной и представляющий ее настолько точно, насколько это возможно. Этот, по меньшей мере, один датчик расхода может, в таком случае, быть реализован таким образом, чтобы контактировать со средой, по меньшей мере, частично, например, будучи погруженным в нее, или проводить измерения внешним образом через стенку технологического трубопровода или мембрану, или диафрагму. Обычно, в таком случае, датчик расхода создается посредством, чаще всего, очень сложного преобразователя расхода, который устанавливается надлежащим образом непосредственно в технологический трубопровод или в байпас, передающие среду.

Существующие на рынке преобразователи расхода обычно выполнены в виде предварительно откалиброванных модулей заводского изготовления, снабженных несущей трубкой, встраиваемой в соответствующий технологический трубопровод, и также, по меньшей мере, одним надлежащим образом предварительно собранным с ней элементом, преобразующим физический параметр в электрический сигнал. Этот преобразующий элемент, возможно в сочетании с самой несущей трубкой и/или другими компонентами преобразователя расхода, в частности пассивно-вводимыми компонентами, такими как, например, препятствия на пути потока, выступающие в поток, и/или активными компонентами преобразователя расхода, такими как, например, соленоидное устройство, расположенное снаружи на поддерживающей трубке, для создания магнитного поля, или издающие звук элементы, образует, по меньшей мере, один датчик расхода, подающий измерительный сигнал. В технологии промышленных измерений широко распространены, в частности, магнитоиндуктивные преобразователи расхода, преобразователи расхода, оценивающие время пробега ультразвуковых волн, созданных в текущей среде, преобразователи вихревого потока, в частности вихревые преобразователи расхода, преобразователи расхода с колеблющимися измерительными трубками, преобразователи расхода, использующие перепады давления, или тепловые измерительные преобразователи расхода. Принципы конструкции и функционирования магнитоиндуктивных преобразователей расхода описаны, например, в ЕР - А 1039269, US - A 6031740, US - A 5540103, US - A 5351554, US - A 4563904, в то время как эти принципы для ультразвуковых преобразователей расхода представлены, например, в US - В 6397683, US - В 6330831, US - В 6293156, US - В 6189389, US - A 5531124, US - A 5463905, US - A 5131279, US - A 4787252. Поскольку также и другие из вышеупомянутых принципов измерения, обычно осуществляемых на практике в промышленных измерительных преобразователях расхода, аналогичным образом в достаточной мере известны специалистам в данной области техники, то дальнейшее объяснение этих и других принципов измерения, принятых в технологии промышленных измерений и осуществляемых посредством измерительных преобразователей расхода, могут быть здесь опущены.

Промышленные измерительные системы, регистрирующие параметры потока, часто включают в себя системы, в случае которых, по меньшей мере, одно из мест изменения, подающих сигналы фактического измерения и, следовательно, именуемых ниже реальными, образовано посредством компактного встроенного в трубопровод измерительного устройства, имеющего преобразователь расхода вышеупомянутого вида. Другие примеры таких измерительных систем, в частности измерительных систем, образованных посредством компактных, встроенных в трубопровод измерительных устройств с преобразователями расхода, известными по своей сути специалистам в данной области техники, кроме того, подробно представлены, помимо прочего, в ЕР - А 605944, ЕР - А 984248, ЕР - А 1767908, GB - А 2142725, US - A 4308754, US - A 4420983, US - A 4468971, US - A 4524610, US - A 4716770, US - A 4768384, US - A 5052229, US - A 5052230, US - A 5131279, US - A 5231884, US - A 5359881, US - A 5458005, US - A 5469748, US - A 5687100, US - A 5796011, US - A 5808209, US - A 6003384, US - A 6053054, US - A 6006609, US - В 6352000, US - В 6397683, US - В 6513393, US - В 6644132, US - В 6651513, US - В 6651512, US - В 6880410, US - В 6910387, US - В 6938496, US - В 6988418, US - В 7007556, US - В 7010366, US - A 2002/0096208, US -A 2004/0255695, US - A 2005/0092101, US - A 2006/0266127, WO - A 88/02476, WO - A 88/02853, WO - A 95/08758, WO - A 95/16897, WO - A 97/25595, WO - A 97/46851, WO - A 98/43051, WO - A 00/36379, WO - A 00/14485, WO - A 01/02816, WO - A 02/086426, WO - A 04/023081 или WO - A 04/081500, WO - A 05/095902, равно как также в не публиковавшихся ранее заявках DE 102006034296.8 и 102006047815.0 правообладателя по данному изобретению.

Для дальнейшей обработки или оценки измерительных сигналов, выданных в измерительных системах, такие системы дополнительно содержат, по меньшей мере, один соответствующий измерительный электронный блок. Измерительный электронный блок, поддерживающий соответствующим образом связь с подходящим измерительным преобразователем, в частности, также с, по меньшей мере, одним преобразующим элементом, выдает во время работы, с применением, по меньшей мере, одного измерительного сигнала, периодически, по меньшей мере, одно измеренное значение, являющееся мгновенным представлением измеряемой переменной, соответственно, например, измеренное значение массового расхода, измеренное значение объемного расхода, измеренное значение плотности, измеренное значение вязкости, измеренное значение давления, измеренное значение температуры или тому подобное. Измеренные значения, особенно косвенно или также виртуально измеряемое измеренное значение плотности, часто в таком случае определяются посредством высокосложных вычислений в соответствии с одним из упомянутых промышленных стандартов, например "AGA 4", "AGA 8", "AGA - NX19, "IAWPS - IF97", "SGERG - 88" или им подобных.

Для размещения измерительного электронного блока, такие измерительные системы наиболее часто включают в себя соответствующий корпус электронного блока, который, как предложено, например, в US - А 6397683 или WO - А 00/36379, может быть расположен на расстоянии от измерительного преобразователя и соединен с ним посредством гибкого кабеля. Однако, в качестве альтернативы этому или в дополнение к этому, корпус электронного блока может также, как это показано, например, в ЕР - А 903651 или ЕР - А 1008836, быть расположен непосредственно на измерительном преобразователе или на корпусе измерительного преобразователя, отдельно размещающем в себе измерительный преобразователь, таким образом, чтобы образовывать компактное встроенное в трубопровод измерительное устройство, например, кориолисово устройство измерения массового расхода/плотности, ультразвуковое устройство измерения расхода, вихревое устройство измерения расхода, тепловое устройство измерения расхода, магнитоиндуктивное устройство измерения расхода или подобные им устройства. В случае, когда корпус электронного блока располагается на корпусе измерительного преобразователя, корпус электронного блока, как это показано, например, в ЕР - А 984248, US - А 4716770, или US - А 6352000, часто также служит для размещения внутри него некоторых механических компонентов измерительного преобразователя, таких как, например, элементы, деформирующиеся при работе на основе механических воздействий, мембранные, стержневые, втулочные или трубчатые деформирующиеся или вибрирующие элементы; в этой связи сравните также US - В 6352000, упомянутый выше.

В случае измерительных систем описанного вида, измерительный электронный блок обычно имеет электрическое соединение через электрические провода или беспроводным способом по радио с описанной электронной системой обработки данных, наиболее часто расположенной на пространственном удалении и также являющейся пространственно распределенной по отношению к измерительному электронному блоку. Этой системе обработки данных направляются в кратчайшее время измеренные значения, выданные измерительной системой. Измеренные значения направляются посредством сигналов измеренного значения, несущих измеренные значения. Измерительные системы описанного вида, кроме того, обычно соединены посредством сети передачи данных (основанной на проводной и/или радио- связи), предусмотренной в рамках описанной системы обработки данных, между собой и/или с соответствующими электронными блоками управления технологическим процессом, например, с программируемыми логическими контроллерами (PLC - контроллерами), установленными локально, или компьютерами для управления технологическим процессом, установленными в помещении для дистанционного управления, куда пересылаются измеренные значения, выданные посредством измерительной системы и надлежащим образом представленные в цифровой форме и соответствующим образом закодированные. Посредством компьютеров для управления технологическим процессом переданные измеренные значения можно с применением соответствующим образом установленных компонентов программного обеспечения дополнительно обрабатывать и визуализировать как соответствующие результаты измерения, например, на мониторах и/или преобразовывать в управляющие сигналы для других устройств нижнего уровня, таких как, например, управляемые магнитным способом клапаны, электродвигатели и т.д., реализованные в качестве исполнительных механизмов для управления технологическим процессом. Соответственно, система обработки данных также обычно служит для преобразования сигнала измеренного значения, подаваемого из измерительного электронного блока, в соответствии с требованиями расположенных ниже (по потоку передачи данных) сетей передачи данных, например, соответствующим образом представляя такой сигнал в цифровую форму и, при необходимости, преобразуя его в соответствующую телеграмму и/или оценивая его на месте. Для таких целей в этих системах обработки данных предусматриваются имеющие электрические соединения с соответствующими соединительными линиями оценивающие схемы, которые осуществляют предварительную или последующую обработку, и, если это необходимо, соответствующим образом преобразуют измеренные значения, принятые от измерительного электронного блока. Для передачи данных в таких промышленных системах обработки данных служат, по меньшей мере, на отдельных участках, в частности, последовательные, полевые шины, такие как, например, FOUNDATION FIELDBUS, CAN (шина локальной сети контроллеров), CAN-OPEN (открытая шина локальной сети контроллеров), RACKBUS - RS 485, PROFIBUS и т.д., или, например, также сети, основанные на стандарте ETHERNET, так же как и соответствующие стандартизованные протоколы передачи данных, которые чаще всего независимы от варианта применения.

Обычно, посредством управляющих компьютеров можно, помимо такой визуализации, контроля и управления технологическим процессом, также осуществлять дистанционное обслуживание, задание параметров и/или контроль подсоединенной измерительной системы. Соответственно, измерительный электронный блок современных измерительных устройств нижнего уровня позволяет, помимо передачи фактических измеренных значений, также передавать различные параметры настройки и/или рабочие параметры, используемые в измерительной системе, такие как, например, калибровочные данные, диапазоны измеряемых значений и/или также диагностические значения, определяемые внутреннем образом в устройствах нижнего уровня. В поддержку этого рабочие данные, предназначенные для измерительной системы, можно, чаще всего, аналогичным образом посылать через вышеупомянутые сети передачи данных, которые, чаще всего, являются гибридными в том, что касается физики передачи данных и/или логики передачи данных.

Помимо оценивающих схем, требующихся для обработки и преобразования измеренных значений, подаваемых от присоединенного измерительного электронного блока, системы обработки данных описанного вида чаще всего включают в себя также схемы электропитания, служащие для снабжения присоединенного измерительного электронного блока, а, в результате, также и соответствующей измерительной системы электрической энергией или мощностью. Схемы электропитания обеспечивают электронный блок соответствующего измерительного устройства надлежащим напряжением электропитания, которое, при необходимости, подается непосредственно по подсоединенной полевой шине и запитывает линии электроснабжения, соединенные с электронным блоком измерительного устройства, так же как и протекающими в ней электрическими токами. Схема электропитания в таком случае может, например, быть предназначена полностью одному измерительному электронному блоку и размещаться вместе с оценивающей схемой, связанной с конкретным измерительным устройством, например, будучи подсоединенной таким образом, чтобы образовывать соответствующий адаптер полевой шины, в корпусе, общем для них обеих, реализованном, например, в виде модуля таврового профиля. Однако нет также ничего необычного и в том, чтобы разместить такие оценивающие схемы и схемы электропитания в каждом случае в отдельных корпусах, если необходимо, то на пространственном удалении друг от друга, и надлежащим образом соединить их проводами друг с другом посредством внешних кабелей.

В случае промышленных измерительных систем, относящихся к рассматриваемому здесь типу, часто, в результате, речь идет о пространственно распределенных измерительных системах, при этом, в каждом случае, множество измеряемых переменных одинакового и/или различного типа локально регистрируются датчиками в реальных, отделенных друг от друга местах измерения, расположенных вдоль оси потока в измерительной системе, определенной технологическим трубопроводом. Эти измеряемые переменные подаются в общий измерительный электронный блок в виде соответствующих электрических измерительных сигналов по проводам, например, также так называемым способом HART® - MULTIDROP или также так называемым способом пакетно-монопольного режима, и/или беспроводным способом, в частности по радио, и/или оптическим способом, при необходимости также закодированными в цифровой сигнал или в передаваемой в цифровой форме телеграмме. Для описанного выше случая, в котором такая измерительная система образована посредством преобразователя расхода, имеется, следовательно, возможность, например, в дополнение к этому, по меньшей мере одному, практически непосредственно регистрируемому параметру потока, служащему в качестве первичной измеряемой переменной, например, объемному расходу, определять, по меньшей мере косвенным образом, и, в результате, измерять посредством того же самого измерительного электронного блока, по меньшей мере виртуально, с применением также других дистанционно регистрируемых измеряемых переменных, например, дистанционно регистрируемой локальной температуры или дистанционно регистрируемого локального давления в среде, также и выводимые из них вторичные измеряемые переменные, такие как, например, массовый расход и/или плотность.

Экспериментальные исследования распределенных измерительных систем, относящихся к рассматриваемому типу, которые, как показано, например, также в US - В 6651512, определяют, посредством непосредственно измеренного объемного расхода и виртуально измеренной плотности, массовый расход как косвенно измеряемую переменную, показали, что, в частности, также несмотря на то, что применение как определяемых внутренним, так и наружным образом измеряемых переменных оказалось очень точным в диапазонах измерений, обычных для соответствующего внутреннего диаметра технологического трубопровода, могут возникать значительные погрешности в результате измерения, виртуального в вышеупомянутом смысле. Эти погрешности вполне могут лежать в диапазоне, составляющем, в основном, 5% от фактически измеряемой переменной, или даже за его пределами. В частности, при определении измеряемых переменных, таких как, например, объемный расход, температура или давление, в качестве промежуточных реально измеряемых переменных, и/или плотности в качестве промежуточной переменной, измеряемой виртуально в соответствии со способами измерения и вычисления, рекомендованными в вышеупомянутых промышленных стандартах.

Кроме того, сравнительные исследования в таком случае дополнительно показали, что вышеупомянутые погрешности измерения могут демонстрировать, помимо прочего, определенную зависимость от мгновенного значения числа Рейнольдса для потока, равно как также от мгновенного термодинамического состояния среды. Однако в этой связи также было обнаружено, что в многочисленных вариантах промышленного применения, особенно тех из них, что касаются сжимаемых сред и/или, по меньшей мере, двухфазных сред, число Рейнольдса или термодинамическое состояние среды могут сильно изменяться не только хронологически, но также и в пространственном отношении, особенно в направлении оси потока в измерительной системе. Помимо вариантов выполнения, имеющих, по меньшей мере, частично сжимаемые среды, в дополнение к этому, варианты выполнения, в частности, также демонстрируют значительную поперечную чувствительность к пространственным изменениям числа Рейнольдса или термодинамического состояния в случае, когда измерение, по меньшей мере, одной из измеряемых переменных происходит в месте измерения (реальной или виртуальной), в котором технологический трубопровод имеет внутренний диаметр, меняющийся, по меньшей мере, от одного из мест изменения (реальных или виртуальных) к другому. Это, например, имеет место при применении формирователей потока, уменьшающих поперечное сечение трубопровода (таким образом, как это бывает в случае, например, сопел, служащих в качестве так называемых редукционных элементов), которые могут найти применение во впускной области измерительных преобразователей расхода, или также при применении формирователей потока, увеличивающих поперечное сечение трубопровода (так называемых диффузоров) в выпускной области измерительных преобразователей расхода. Измерительные системы с такими редукционными элементами и/или диффузорами описаны, например, в GB - А 2142725, US - А 5808209, US - А 2005/0092101, US - В 6880410, US - В 6644132, US - A 6053054, US - В 6644132, US - A 5052229 или US - В 6513393 и используются, например, для улучшения точности измерения измерительных преобразователей расхода. В таком случае, было, кроме того, установлено, что такие поперечные чувствительности, вызванные применением редукционных элементов и/или диффузоров, значительны для отношений внутренних диаметров между, в основном, 0,6 и 0,7, в то время как их влияние для отношений внутренних диаметров с предельными перепадами диаметров, составляющими менее чем 0,2, весьма незначительно.

Другой областью применения, имеющей значительную чувствительность к вышеупомянутым изменениям, в том, что касается их воздействия на требуемую точность измерения, кроме того, являются те измерительные системы, которые предусматриваются для измерения расхода тяжелых газов, таких как, возможно, двуокись углерода или также фосген, или углеродистые составы с длинными цепочками, имеющие молекулярный вес, составляющий более чем 30 г/моль.

Вышеописанное пространственное изменение числа Рейнольдса может, в свою очередь, привести к тому факту, что практически каждая из вышеупомянутых, находящихся на расстоянии друг от друга реальных мест изменения распределенной измерительной системы имеет, во время работы, локальное значение числа Рейнольдса, в значительной степени отклоняющееся от локального значения числа Рейнольдса каждого из других также используемых мест измерения. Равным образом, также упомянутое изменение термодинамического состояния привело бы к тому факту, что находящиеся на расстоянии друг от друга места измерения распределенной измерительной системы могут иметь термодинамические состояния, отличающиеся друг от друга. Ввиду этого, следовательно, каждая из измеряемых переменных, которые измеряются на распределенной базе, должна была бы быть скорректирована в соответствии с конкретным соответствующим локальным значением числа Рейнольдса и/или конкретным соответствующим локальным термодинамическим состоянием задача, которая в отсутствие требующейся для этого информации, а именно в каждом случае других, но дистанционно измеряемых переменных состояния, напрямую невыполнима. Если бы, например, плотность и/или массовый расход, рассчитываемые на основе измеренных переменных состояния - давления и температуры, были рассчитаны без учета изменения числа Рейнольдса или термодинамического состояния, то результатом была бы дополнительная погрешность измерения, имеющая, по существу, квадратичную зависимость от скорости потока. Соответственно, для вышеупомянутой конфигурации, при скоростях потока, меньших чем 10 м/с, требующаяся на настоящий момент точность измерения, составляющая, в основном, от 0,1% до 0,5%, практически более не является значительной.

Исходя из вышеописанных недостатков измерительных систем описанного вида, особенно тех, которые определяют массовый расход или объемный расход, задача данного изобретения заключается в том, чтобы увеличить точность измерения для таких вторичных измеряемых переменных, определяемых с применением пространственно-распределенно регистрируемых переменных термодинамического состояния, таких как давление и/или температура.

Для решения этой задачи создана измерительная система для измерения плотности среды, которая является изменяющейся в части термодинамического состояния, в частности, по меньшей мере, частично сжимаемой, протекающей в технологическом трубопроводе вдоль оси потока в измерительной системе. Для этого измерительная система содержит, по меньшей мере, один датчик температуры, размещенный в месте измерения температуры, реагирующий, главным образом, на локальную температуру (ϑ) протекающей среды и подающий, по меньшей мере, один сигнал измерения температуры, находящийся под влиянием локальной температуры среды, подлежащей измерению; по меньшей мере, один датчик давления, размещенный в месте измерения давления, реагирующий, главным образом, на локальное давление (р), в частности статическое давление, протекающей среды и подающий, по меньшей мере, один сигнал измерения давления, находящийся под влиянием локального давления (р) в среде, подлежащей измерению; и измерительный электронный блок, поддерживающий в каждом случае связь, по меньшей мере, временно, по меньшей мере, с датчиком температуры и датчиком давления, при этом измерительный электронный блок, применяя оба сигнала: сигнал измерения температуры и также, по меньшей мере, сигнал измерения давления, определяет, в частности, в соответствии с одним из промышленных стандартов AGA 8, AGA NX - 19, SGERG - 88 IAWPS - IF97, ISO 12213:2006, предварительное измеренное значение плотности, представляющее плотность, которую текущая среда только предположительно имеет в виртуальном месте измерения плотности, в частности в виртуальном месте измерения плотности, расположенном на заранее заданном расстоянии, вдоль оси потока, от места измерения давления и/или места измерения температуры, и при этом измерительный электронный блок, применяя это предварительное измеренное значение плотности, равно как и применяя, по меньшей мере, одно значение коррекции плотности, определяемое во время работы и зависящее как от скорости потока среды, так также и от локальной температуры, преобладающей в месте измерения температуры, выдает, по меньшей мере временно, по меньшей мере одно измеренное значение плотности, в частности цифровое измеренное значение плотности, отличающееся от предварительного измеренного значения плотности и представляющее, в виде мгновенного значения, более точно, чем предварительное измеренное значение плотности, локальную плотность (ρ), которую текущая среда фактически имеет в виртуальном месте измерения плотности.

В первом варианте выполнения изобретения предусматривается, что значение коррекции плотности соответствует мгновенной локальной изменчивости, по меньшей мере, одной переменной термодинамического состояния среды, в частности, притом что такая мгновенная локальная изменчивость относится к среде, подлежащей измерению в текущий момент времени, так же как и к мгновенным обстоятельствам установки, и/или притом что такая мгновенная локальная изменчивость имеет место вдоль оси потока в измерительной системе, и/или при этом значение коррекции плотности соответствует мгновенной локальной изменчивости числа Рейнольдса текущей среды, в частности, притом что локальная изменчивость числа Рейнольдса относится к среде и/или типу конструкции измерительной системы, или притом что мгновенная изменчивость числа Рейнольдса имеет место вдоль оси потока в измерительной системе.

Во втором предпочтительном варианте выполнения изобретения предусматривается, что измерительный электронный блок определяет периодически во время работы погрешность плотности, соответствующую отклонению, в частности относительному отклонению, предварительного измеренного значения плотности от измеренного значения плотности, и, в частности, выдает такую погрешность также в форме численного измеренного значения плотности. Дополнительно предусматривается, что измерительный электронный блок выдает мгновенную погрешность плотности в форме численного значения погрешности плотности и/или сравнивает мгновенную погрешность плотности с, по меньшей мере, одним заранее заданным эталонным значением и, основываясь на этом сравнении, генерирует, временно, сигнал тревоги, сигнализирующий о нежелательном, в частности, недопустимо высоком расхождении между предварительным измеренным значением плотности и измеренным значением плотности.

В третьем предпочтительном варианте выполнения изобретения предусматривается, что измерительный электронный блок определяет измеренное значение плотности, применяя оба значения из числа предварительного измеренного значения плотности и также значения коррекции плотности.

В четвертом предпочтительном варианте выполнения изобретения предусматривается, что измерительный электронный блок определяет измеренное значение плотности, применяя оба значения из числа предварительного измеренного значения плотности и также значения коррекции плотности, и что измерительный электронный блок применяет значение коррекции плотности при генерировании измеренного значения плотности только тогда, когда оно составляет, по меньшей мере, единицу и, в частности, лежит в диапазоне от 1 до 1,2.

В пятом предпочтительном варианте выполнения изобретения предусматривается, что измерительный электронный блок определяет измеренное значение плотности, применяя оба значения из числа предварительного измеренного значения плотности и также значения коррекции плотности, и что измерительный электронный блок применяет значение коррекции плотности при генерировании измеренного значения плотности только тогда, когда оно составляет самое большее единицу, и, в частности, лежит в диапазоне от 0,8 до 1.

В шестом предпочтительном варианте выполнения изобретения предусматривается, что измерительный электронный блок во время работы периодически сравнивает значение коррекции плотности с, по меньшей мере, одним заранее заданным эталонным значением. Дополнительно предусматривается, что измерительный электронный блок, основываясь на сравнении значения коррекции плотности и эталонного значения, количественно сигнализирует о мгновенном отклонении значения коррекции плотности от эталонного значения и/или генерирует, временно, сигнал тревоги, сигнализирующий о нежелательном, в частности, недопустимо высоком расхождении между значением коррекции плотности и соответствующим эталонным значением.

В седьмом предпочтительном варианте выполнения изобретения предусматривается, что измерительный электронный блок содержит память данных, в частности энергонезависимую память данных, которая хранит, по меньшей мере временно, по меньшей мере один параметр измерительной системы, определяющий исключительно среду, подлежащую измерению в текущий момент времени, в частности такой параметр системы, как удельная теплоемкость (cp) среды, подлежащей измерению в текущий момент времени, молярная масса (n) среды и/или число (f) степеней колебательной свободы атомов или молекул среды, которое определено молекулярным строением среды.

В восьмом предпочтительном варианте выполнения изобретения предусматривается, что измерительный электронный блок определяет измеренное значение плотности, применяя, по меньшей мере, один параметр измерительной системы, определяющий исключительно среду, подлежащую измерению в текущий момент времени.

В девятом предпочтительном варианте выполнения изобретения предусматривается, что измерительный электронный блок содержит память данных, в частности энергонезависимую память данных, которая хранит, по меньшей мере временно, по меньшей мере один параметр измерительной системы, определяющий как среду, подлежащую измерению посредством измерительной системы, так также и мгновенные обстоятельства установки измерительной системы, при этом обстоятельства установки заданы расположением (по отношению друг к другу) мест изменения давления, температуры и плотности, так же как, в каждом случае, формой и размером технологического трубопровода в областях мест изменения давления, температуры и плотности. Измерительный электронный блок также определяет измеренное значение плотности, применяя этот, по меньшей мере, один параметр измерительной системы, определяющий как среду, подлежащую измерению в текущий момент времени посредством измерительной системы, так и также мгновенные обстоятельства установки измерительной системы.

В десятом предпочтительном варианте выполнения изобретения предусматривается, что измерительный электронный блок содержит память данных, в частности энергонезависимую память данных, которая хранит, по меньшей мере временно, по меньшей мере, один параметр измерительной системы, относящийся к первому виду, определяющий среду, подлежащую измерению в текущий момент времени, в частности, удельную теплоемкость среды, подлежащей измерению в текущий момент времени, молярную массу среды и/или число степеней свободы среды, и которая хранит, по меньшей мере, временно, по меньшей мере один параметр измерительной системы, относящийся ко второму виду, определяющий как среду, подлежащую измерению в текущий момент времени, так и также мгновенные обстоятельства установки измерительной системы, при этом обстоятельства установки заданы расположением (по отношению друг к другу) мест изменения давления, температуры и плотности, так же как, в каждом случае, формой и размером технологического трубопровода в областях мест изменения давления, температуры и плотности, и при этом и