Способ получения иммортализованной клетки человека, стабильно трансфицированная иммортализованная клетка человека, способ рекомбинантной продукции целевого белка человека, применение вектора трансфекции

Иллюстрации

Показать все

Изобретение относится к области биотехнологии, а именно к способу получения иммортализованной клетки человека, стабильно трансфицированной последовательностью нуклеиновой кислоты, стабильно трансфицированной иммортализованной клетке человека, полученной данным способом, способу рекомбинантной продукции целевого белка человека и применению вектора трансфекции. Способ получения иммортализованной клетки человека включает трансфекцию иммортализованной клетки-хозяина человека в бессывороточных условиях вектором трансфекции, содержащим ген, кодирующий целевой белок человека, промотор и сигнал полиаденилирования (полиА) гормона роста быка, где указанный промотор и сигнал полиА связаны с 5'- и 3'-концом гена, кодирующего целевой белок человека соответственно и начало репликации. Указанный вектор трансфекции дополнительно несет, по меньшей мере, один ген маркера селекции. Отбирают стабильно трансфицированные клетки. Предложенное изобретение позволяет получить стабильно трансфицированные иммортализованные клетки человека для получения рекомбинантных белков человека. 4 н. и 12 з.п. ф-лы, 16 ил., 2 табл., 5 пр.

Реферат

Данное изобретение относится к улучшенному способу получения в бессывороточных условиях иммортализованной клеточной линии человека, стабильно трансфицированной в бессывороточных условиях специфическим вектором, несущим ген, кодирующий белок, который представляет интерес. Кроме того, данное изобретение относится к продуцирующей клеточной линии, полученной указанным способом, способу получения указанного белка, представляющего интерес, с использованием указанной продуцирующей клеточной линии, и самому специфическому вектору, несущему ген, представляющий интерес.

Уровень техники

Рекомбинантное получение белков человека в целом выполняется путем культивирования стабильно трансфицированных линий эукариотических клеток, предпочтительно млекопитающих, и выделения белка из культурального бульона. В тех случаях когда рекомбинантные белки предназначены для фармацевтических применений, в течение длительного времени существовала практика применения клеточных линий, не принадлежащих человеку, с целью исключения риска сохранения при совместной очистке инфекционных агентов, которые могут накапливаться и экспрессироваться клетками человека. В продукции некоторых белков человека, таких как фактор VIII свертывания крови, обнаружено, что использование клеточных линий, не принадлежащих человеку, приводит к определенным недостаткам, например неудовлетворительным уровням секреции экспрессированного белка в среду. Полагают, что это может происходить вследствие незначительности отличий разных типов клеток млекопитающих, касающихся внутриклеточных путей трансляции белка и их модификации, которые также обладают эффектом на биологическую активность экспрессируемого полипептида. Кроме того, существенно, что терапевтические белки, очищенные из систем экспрессии, не принадлежащих человеку, загружены клеточными компонентами, которые могут приводить к усилению аллергических реакций у пациентов. Также затруднение состоит в том, что в белках человека, рекомбинантно продуцированных в системах экспрессии, не принадлежащих человеку, обнаружен паттерн гликозилирования, не характерный для человека. Полагают, что это повышает вероятность антигенных реакций у пациента. Кроме того, биологическая стабильность и эффективность белков крови, таких как факторы свертывания крови, существенно зависят от паттерна их N-гликозилирования. Особенно важны периферические и концевые моносахариды, поскольку они детектируются специфическими рецепторами клеток, которые ответственны за их деградацию. Факторы свертывания крови, например, в качестве концевых моносахаридов несут остатки сиаловой кислоты. Модификация композиции сиаловых кислот в антеннах гликопротеинов может привести к гетерогенным паттернам гликозилирования. Таким образом, возникновение модификации серьезнейшим образом сказывается на биологической стабильности и эффективности. Следовательно, важным моментом в получении рекомбинантных факторов свертывания крови является оценка влияния гликозилирования продуцирующих клеточных линий, не принадлежащих человеку, по сравнению с клеточными линиями человека. С другой стороны, стали доступными общие способы экспрессии высокого уровня белка желаемого гена, включающие иммортализованные стабильно трансфицированные клеточные линии, экспрессирующие вирусные белки, активирующие транскрипцию (например, патент США 5712119). Эти клеточные линии могут быть трансформированы векторной конструкцией, в которой подходящий вирусный промотор транскрипции функционально связан с последовательностью ДНК, кодирующей ген, представляющий интерес; белки из клеточных линий, активирующие транскрипцию, активируют вирусный промотор транскрипции и, следовательно, инициируют экспрессию гена, представляющего интерес.

Таким же важным, как клеточная линия, является вектор, используемый для введения рекомбинантного гена в иммобилизованную продуцирующую клеточную линию. Для трансляции белков млекопитающих применяется широкое разнообразие векторов (например, Witsch-Baumgartner, M. et al. Am. J. Genet (2000). 66, 402-412 клонированная кДНК DHCR7 в экспрессионном векторе pCI-neo млекопитающих и экспрессированная в клетках HEK 293; McGarvey, T. W. et al. Oncogene (2001) 20, 1041-1051 клонированный ген TERE1 в экспрессионном векторе pTARGET млекопитающих и экспрессированный в переходно-клеточных карциномах мочевого пузыря человека; и Lin Lin et al. J Biol Chem (2002) 277 (44) 41872-8 клонированный ген AchR в векторе экспрессии клеток млекопитающих pEF6/myc-His и экспрессированный в клетках 293). Недавно разработанный очень мощный вектор, который, как доказано, способен вызвать сверхэкспрессию рекомбинантных белков, - это так называемый вектор пкДНК™3.1 фирмы Invitrogen. Li J. et al., Life Sci. 2004 Apr 16; 74(22):2693-705 успешно сверхэкспрессировали деацетилазы гистонов с помощью пкДНК3.1 в клетках HEK 293. Клетки стабильно трансфицировали и культивировали в присутствии сыворотки. Yuan-Gen Fu. et al., World J Gastroenterol 2003 продуцировали рекомбинантную каспазу Caspase-3 с помощью основанного на пкДНК3.1(+) эукариотического вектора в клеточной линии рака желудка SGC7901, временно трансфицированной указанным вектором, и культивировали в присутствии сыворотки. Ma H. et al., Invest Ophthalmol Vis Sci. 2000 Dec; 41(13):4232-9 исследовали отсутствие стабильных белков и отсутствие ферментативной активности, проявляемой белками Lp82 и белками, связанными с Lp82, субклонированными в векторе пкДНК3.1 с применением COS-7 в качестве клеточной линии. Клетки были временно трансфицированы и культивировались в присутствии сыворотки в среде. Сверхэкспрессия тиоредоксина предотвращает NO-индуцированное уменьшение активности NO-синтазы в эндотелиальных клетках легких. Zhang J. et al., Am J Physiol. 1998 Aug; 275(2 Pt 1): L288-93 описали сверхэкспрессию гена тиоредоксина в культивируемых эндотелиальных клетках легочной артерии свиньи путем временной трансфекции этих клеток вектором пкДНК3.1. Трансфицированные клетки культивировали в среде с добавлением сыворотки. Shinki T. et al., Proc Natl. Acad. Sci. USA 1997 Nov 25; 94(24):12920-5 сравнили кДНК полного размера митохондриальной цитохромоксидазы Р450 смешанной функции из почек крысы, 25-гидроксивитамин D3-1альфа-гидроксилазы с витамин D-дефицитной кДНК почек крысы, субклонировали ее в вектор экспрессии млекопитающих пкДНК3.1(+) и временно трансфицировали вектор в трансформированные клетки почек обезьяны COS-7. Трансфицированные клетки культивировали в среде с добавлением сыворотки. Zhang et al., Acta Biochimica et Biophysica Sinica 2004, 36(10):707-712 описывают трансфекцию эмбриональных клеток почек 293 человека пкДНК, содержащей ген, кодирующий слитый белок гуманизированного одноцепочечного Fv-антитела 520C9 и интерлейкина-2 человека. После трех дней культивирования клеток в бессывороточной среде SFM II брали супернатант. Полученный слитый белок обладал связывающей специфичностью p185 (многообещающей мишенью для иммунотерапии рака груди) и сохранял важную иммуностимуляторную активность IL-2. Chen, J.Z. et al., Int J Biochem Cell Biol. 2004 Aug; 36(8):1554-61 сверхэкспрессировали белки Bim, которые являются существенными факторами апоптоза, с использованием клеток HEK 293, трансфицированных пкДНК-Bim альфа3.

Дальнейшей мерой по повышению безопасности рекомбинантных белков для фармацевтических применений является применение в процессе культивирования бессывороточной среды, поскольку применение сыворотки представляет собой риск с точки зрения безопасности как источник нежелательных загрязнений. Такое бессывороточное культивирование имеет недостаток, состоящий в том, что выход производственного процесса в целом значительно снижается. Другой проблемой безопасности является использование сыворотки при трансфекции клеток-хозяев как обычного способа на практике, поскольку применение сыворотки в процедуре трансфекции может вызвать включение нежелательного биологического материала в клетки, который позже загрязняет продукт, экспрессируемый клетками в ходе процесса продукции. Хотя некоторые доступные способы продукции рекомбинантных белков (включая таковые, указанные выше) позволяют бессывороточное культивирование, стабильная бессывороточная трансфекция клеток человека неизвестна. На 19th ESACT Meeting, Хэрроугэйт (Harrogate), 5-8 июня 2005 года бессывороточную трансфекцию клеток CHO предложили Kuchenbecker et al. Таким образом, желательно разработать эффективный и безопасный способ получения рекомбинантных белков человека.

Сущность изобретения

Неожиданно было обнаружено, что незагрязненный белок человека (т.е. препарат белка, свободного от нежелательных белковых побочных продуктов) может быть получен с гена, представляющего интерес, с хорошим выходом на иммортализованных клеточных линиях человека, стабильно трансфицированных в бессывороточных условиях. Более детально данное изобретение представляет:

(1) способ получения иммортализованной клеточной линии человека, стабильно трансфицированной последовательностью нуклеиновой кислоты, содержащей ген, кодирующий целевой белок человека или его производное, или его мутант, промотор и сигнал полиаденилирования (полиА) гормона роста быка, где указанные промотор и сигнал полиА связаны с 5'- и 3'-концом гена, кодирующего указанный целевой белок человека соответственно, где способ включает трансфекцию иммортализованной линии человеческих клеток-хозяев в бессывороточных условиях трансфицирующим вектором, содержащим указанную последовательность нуклеиновой кислоты и начало репликации;

(2) изложенный выше способ по (1), в котором вектор трансфекции происходит из вектора пкДНК3.1, имеющего последовательность SEQ ID NO:4 или 5;

(3) изложенный выше способ по (1) или (2), в котором клеточная линия человека представляет собой клетки почек эмбриона человека, выбранные из клеток 293 (ATCC CRL-1573; DSM ACC 305), клеток Freestyle 293 (в дальнейшем - клетки 293F; Invitrogen R79007) и клетки 293T (ATCC CRL 11268; DSM ACC 2494);

(4) изложенный выше способ по (1)-(3), в котором белок человека представляет собой фактор свертывания крови IX (например, кодированный п.о. 939-2324 SEQ ID NO:l), альфа-1-антитрипсин (в дальнейшем «A1AT»; например, кодируемый п.о. 913-2259 SEQ ID NO:2), фактор свертывания крови VIII (включая фактор VIII дикого типа, как показано в SEQ ID NO:8, или мутантный фактор VIII с делецией B-домена, кодируемый п.о. 783-5162 SEQ ID NO:3), фактор VII/VIIa (включая формы a и b, которые кодируются SEQ ID No:13 и 14), гранулоцитарный колониестимулирующий фактор (G-CSF, включая формы G-CSF a, b и c, показанные в SEQ ID No:15, 16 и 17 соответственно) или фактор фон Виллебранда (vWF);

(5) вектор трансфекции, содержащий начало репликации и ген, кодирующий белок человека, определенный в (1) и (2) выше, предпочтительно указанный вектор трансфекции является вектором пкДНК3.1, содержащим ген белка человека, определенный выше в (4);

(6) иммортализованную клеточную линию человека, которая может быть получена способом, определенным выше в (1)-(5), предпочтительно указанную клеточную линию человека, определенную выше в (3) или (4); и

(7) способ рекомбинантного получения целевого белка человека, или его производного, или его мутанта, который включает культивирование иммортализованной клеточной линии человека, определенной выше в (6), предпочтительно в бессывороточных условиях.

Описание чертежей

Фиг.1: Белок дикого типа фактора свертывания крови IX (FIX) человека. Схематическое изображение гена FIX с нетранслируемым 5' участком (5' UTR) и его 3' UTR участком. Показано восемь доменов непроцессированного белка из 461 аминокислот: S: сигнальный пептид; P: пропептид; домен G1a: домен -карбоксиглютамила; домен H: гидрофобная последовательность; домен EGF: домен, подобный домену эпидермального фактора роста; L: связующая последовательность; AP: активационный пептид; Каталитический домен. Полностью сформированный белок FIX имеет длину в 415 аминокислот и приблизительный молекулярный вес 55 кДа.

Фиг.2: Вектор пкДНК3.1-FIX. Вектор кольцевой ДНК содержит 6960 пар оснований (п.о.), точная последовательность которых дана в SEQ ID NO:1. На схематическом изображении показаны промотор CMV (CMV), ген FIX человека (hFIX), начало репликации fl (fl), ген гигромицина (Hyg) под контролем промотора SV40 (SV40), участок полиA (SV40 полиA), начало репликации pUC и ген резистентности к ампициллину (Amp), так же как и многочисленные сайты рестрикции. Этот вектор является производным от ресеквенированного вектора пкДНК3.1-пкДНК3.1Hygro(+)-zz с SEQ ID NO:5.

Фиг.3: Вектор пкДНК3.1-A1AT. Вектор кольцевой ДНК содержит 6914 п.о., его точная последовательность приведена в SEQ ID NO:2. На схематическом изображении показаны промотор энхансерной последовательности CMV, A1AT кДНК, сигнал полиаденилирования (полиА) гормона роста быка, включая последовательность терминирования транскрипции для усиления стабильности мРНК, начало репликации fl (fl), ген гигромицина (Hyg) под контролем промотора SV40 (SV40), участок полиА SV40 (SV40 полиA), начало репликации pUC и ген резистентности к ампициллину (Amp), так же как и многочисленные сайты рестрикции. Этот вектор получен от вектора пкДНК3.1Hygro(+)-zz с SEQ ID NO:5.

Фиг.4: Временная трансфекция различных эмбриональных клеток почек человека векторами, кодирующими альфа-1-антитрипсин. Показано сравнение клеточных линий при исследовании временной трансфекции. Количество (%) альфа-1-антитрипсина (A1AT), экспрессированное на 106 клеток, показано для клеток 293, 293T и 293F. Количество A1AT, экспрессируемое в клетках 293F, временно трансфицированных пкДНК3.1-A1AT, было принято за 100%.

Фиг.5: Временная трансфекция клеточной линии 293F различными векторами, кодирующими альфа-1-антитрипсин. Показано сравнение концентраций A1AT, экспрессированных различными векторами с применением временно трансфицированной клеточной линии Freestyle 293F. Уровень экспрессии A1AT пкДНК3.1-A1AT был принят за 100%. Также были протестированы различные другие векторы, несущие ген A1AT: внутренний (in-house) вектор pTG1-A1AT (in-house вектор для продуцирования рекомбинантного A1AT человека, как показано на Фиг.10), pCMV Script® A1AT (Stratagene) и pcl neo-A1AT (Promega) сравнивали с пкДНК3.1-A1AT (пкДНК3.1). Ни один из других векторов не приближался к высокому уровню экспрессии, наблюдавшемуся с пкДНК3.1-A1AT.

Фиг.6: Полиакриламидный гель-электрофорез в присутствии додецилсульфата натрия (SDS-PAGE) и вестерн-блот супернатанта культуры клеток. Аликвоты супернатанта клеток Freestyle 293F, временно трансфицированных пкДНК3.1-A1AT (дорожки 1-3 и 6-8) или с контрольной плазмидой, экспрессирующей зеленый флуоресцентный белок (GFP) (дорожки 4 и 8), анализировали с помощью SDS-PAGE и вестерн-блота. Дорожка 1 содержит маркер молекулярного веса, а дорожка 5 - пустая. Полоса A1AT обозначена стрелкой. Также видна полоса 27 кДа, соответствующая GFP на дорожках 4 и 8.

Фиг.7 показывает вектор пкДНК3.1-F.VIII. Вектор содержит 9975 п.о., чья точная последовательность показана в SEQ ID NO:3. Белок фактора VIII, кодируемый п.о. 783-5162, представляет собой мутант фактора VIII с делецией B-домена, как описано в WO 01/70968. Опять-таки этот вектор происходит от вектора пкДНК3.1Hygro(+)-zz с SEQ ID NO:5.

Фиг.8: Сравнение среднего количества продуцированного фактора VIII трех лучших стабильно трансфицированных клонов, клеток 293 и 293F, трансфицированных пкДНК3.1-FVIII и in-house-вектором pTGF8-2hyg-s, точная последовательность которого приведена в SEQ ID NO:7.

Фиг.9 показывает вектор pTG1-A1AT. Вектор содержит 5610 п.о., точная последовательность которых показана в SEQ ID NO:6.

Фиг.10 показывает вектор pCR2.1d2-GCSFb. Вектор содержит 4542 п.о., точная последовательность которых показана в SEQ ID NO:21.

Фиг.11 показывает вектор pДНК3.1-GCSFb. Вектор содержит 6237 п.о., точная последовательность которых показана в SEQ ID NO:22.

Фиг.12 показывает вектор pCINeo-GCSFb. Вектор содержит 6101 п.о., точная последовательность которых показана в SEQ ID NO:23.

Фиг.13 показывает вектор pCMVScript-GCSFb. Вектор содержит 4920 п.о., точная последовательность которых показана в SEQ ID NO:24.

Фиг.14 показывает вектор pTG2-GCSFb-hyg-as. Вектор содержит 6917 п.о., точная последовательность которых показана в SEQ ID NO:25.

Фиг.15 приводит сравнение количества rhG-CSF, продуцированного различными конструкциями экспрессии в соответствии с Примером 9.

Фиг.16 показывает вестерн-блот rhG-CSF, продуцированного в соответствии с Примером 9.

Подробное описание изобретения

Данное изобретение представляет улучшенный способ трансфекции и получения рекомбинантных белков человека в иммортализованных клеточных линиях человека полностью в бессывороточных и безбелковых условиях. Это позволяет бессывороточную трансфекцию и получение белков человека. Способ может включать одну или более стадию (стадий) очистки, включая процедуры инактивации вируса, что уменьшает риск заражения рекомбинантного белка патогенами человека. Поскольку рекомбинантные белки человека, продуцированные в клеточных линиях человека, обладают паттерном гликозилирования человека, они также менее подвержены деградации по сравнению с белками человека, у которых отсутствует их естественный паттерн гликозилирования. В целом способ по данному изобретению представляет различные преимущества по сравнению с ранее существовавшим уровнем в данной области техники.

В частности, способ по варианту воплощения (7) данного изобретения представляет эффективную систему получения безопасных и высокоактивных рекомбинантных факторов свертывания крови человека, например факторов IX и FVIII, для терапевтических применений при гемофилии B и A у человека. Способ пригоден для экспрессии белков дикого типа, но может также быть использован для мутантных форм таких белков, например фактора VIII, особенно стабильных в отношении протеолитической инактивации, и, таким образом, позволяет применять жесткие протоколы вирусной инактивации.

Предпочтительный вариант способа по варианту воплощения (7) данного изобретения включает бессывороточное культивирование иммортализованной клеточной линии, несущей вектор, имеющий промотор, связанный с 5'-концом последовательности ДНК, кодирующей указанный белок крови человека. 3'-конец последовательности ДНК, кодирующей указанный белок крови человека, функционально связан с полиА сигналом гормона роста быка. В соответствии с данным изобретением иммортализованная клеточная линия человека стабильно трансфицирована вектором. Чтобы выявить стабильную трансфекцию, вектор может также содержать, помимо гена белка крови человека, по меньшей мере, один ген для выбора маркерной системы, которая функционально связана с промотором.

Пригодные промоторы включают вирусные промоторы, промоторы гена "домашнего хозяйства" (housekeeping), тканеспецифические промоторы и т.д. В случае если промотор является вирусным промотором, клеточная линия не содержит соответствующего белка-активатора вирусной транскрипции для указанного промотора. Однако клетка может содержать белок-активатор вирусной транскрипции, такой как T-антиген, который является комплементом к другому вирусному промотору, который функционально не связан с геном, кодирующим белок крови человека. Предпочтительно промотор представляет собой промотор SV40, промотор CMV, промотор EF-1альфа, промотор HSV TK и т.д., наиболее предпочтительным промотором является промотор CMV, т.е. конститутивный основной промежуточный ранний промотор цитомегаловируса.

Выражения «трансфекция» или «трансфицированный» относятся к введению нуклеиновой кислоты в клетку в условиях, позволяющих экспрессию белка. В целом нуклеиновая кислота представляет собой последовательность ДНК, в частности вектор или плазмиду, несущие ген, представляющий интерес, под подходящим промотором, чья экспрессия контролируется указанным промотором. Однако термин «трансфекция» включает в себя также трансфекцию РНК. Специалисты в данной области техники знакомы с различными способами трансфекции, такими как использующие молекулы-носители, подобные катионным липидам, таким как DOTAP (Roche), DOSPER (Roche), Fugene (Roche), Transfectam® (Promega), TransFast™ (Promega) и Tfx™ (Promega), липофектамин (Invitrogene) и 293fectin™ (Invitrogene) или фосфат кальция и DEAE декстран. Они также знакомы с технологиями прямой трансфекции. Они включают в себя электропробой мембраны, бомбардировку частицами-носителями, покрытыми нуклеиновой кислотой (gene gun) и микроинъекцию. Наконец, специалисты в данной области техники также знакомы с трансфекцией нуклеиновой кислотой с использованием вирусных векторов. Выражения «временно трансфицированный» или «временная трансфекция» относятся к временной, т.е. непостоянной экспрессии гена, представляющего интерес, благодаря эписомной природе интродуцированной нуклеиновой кислоты. Именно благодаря своей природе трансфекция РНК или цитолитическим вирусом могут быть использованы только для временной экспрессии. Эписомные нуклеиновые кислоты, включая в себя ДНК (плазмиды или векторы), подвергаются деградации клетками в течение двух-четырех дней, и, следовательно, экспрессия представляющего интерес гена после этого прекращается.

Формулировки «стабильно трансфицированный» или «стабильная трансфекция» относятся к постоянной экспрессии представляющего интерес гена благодаря интеграции трансфицированной ДНК в геном клетки. Большинство, если не все, клеток обладают потенциалом для включения эписомной ДНК в свой геном, хотя и на очень низком уровне. Однако применяются сложные стратегии увеличения числа отобранных клеток, которые интегрировали трансфицированную ДНК. Для этого вектор должен содержать, по меньшей мере, один ген маркера селекции, такой как, например, гигромицин.

Термины «стабильная трансфекция» или «стабильно трансфицированный» в данном документе также используются для обозначения клеток, несущих плазмиды, которые могут реплицироваться автономно и таким образом использоваться для долговременной экспрессии чужеродных генов. Одна из систем переноса генов, особенно пригодных для «стабильной трансфекции» клеток, основана на рекомбинантных ретровирусах. Поскольку интеграция провирусной ДНК является обязательной стадией в ходе ретровирусного цикла репликации, инфицирование клеток рекомбинантным ретровирусом приводит к получению очень большой фракции клеток, которые интегрировали представляющий интерес ген и, таким образом, стабильно трансфицированы.

Термин «культивированный» обозначает поддержание клеток/клеточных линий in vitro в контейнерах со средой, поддерживающей их пролиферацию и экспрессию гена. Таким образом, культивирование приводит к аккумулированию экспрессированных секретируемых белков в культуральной среде. Среда обычно содержит добавки, стабилизирующие pH, так же как и аминокислоты, липиды, микроэлементы, витамины и другие компоненты, улучшающие рост. Формулировки «бессывороточное», «бессывороточная трансфекция» или «бессывороточное культивирование» обозначают трансфекцию и культивирование клеток в среде, содержащей подходящие добавки, за исключением какого-либо вида сыворотки. Добавки выбирают из аминокислот, липидов, микроэлементов, витаминов и других компонентов, усиливающих рост. Часто условия «бессывороточной» культуры даже более строги, и, если не добавлены экзогенные белки или они уже включены в среду, среда именуется «безбелковой». Термин «иммортализованная клеточная линия человека» обозначает клетки человека, которые не являются первичными клетками, взятыми непосредственно из организма. В частности, он обозначает постоянно существующую клеточную культуру, которая пролиферирует неопределенно долго при наличии соответствующей свежей среды и пространства и, таким образом, избегает предела Хейфлика.

Термин «концентрирование» обозначает концентрирование продуцированного рекомбинантного белка из культуральной среды. По сути это также приводит к концентрированию белка. Специалисты в данной области техники знакомы с технологиями концентрирования, такими как фильтрация, включая ультрафильтрацию, центрифугирование, преципитацию и т.д. Концентрирование необязательно приводит к получению чистого белка, и выделенный белок еще может содержать небелковые и белковые загрязнения. Часто требуются дополнительные стадии очистки.

Термин «очистка» относится к стадиям, применяемым к выделенному белку, с целью получения существенно очищенного (по меньшей мере, 60% чистоты, предпочтительно, по меньшей мере, 75% чистоты, более предпочтительно более 90% чистоты, а наиболее предпочтительно более 99,9% чистоты) рекомбинантного белка человека. Чистота может быть измерена подходящим способом. Специалисты в данной области техники знакомы с технологиями, применимыми для очистки рекомбинантного белка, такими как иммуноаффинная хроматография, аффинная хроматография, преципитация белка, буферный обмен, ионообменная хроматография, гидрофобная хроматография, эксклюзионная гель-хроматография, электрофорез. Кроме того, очистка может включать стадию вирусной инактивации, такую как теплообработка и/или обработка детергентом-растворителем (SD) в твердом или жидком состоянии, в присутствие или в отсутствие химических веществ, включая в себя ингибиторы протеаз. Далее очистка может включать в себя одну или более стадий устранения прионов, такую как преципитация белка, фильтрация, стадии хроматографии, в частности стадии аффинной хроматографии (см., например, "Partitioning of TSE infectivity during ethanol fractionation of human plasma", Gregori, L. et al., Biologicals 32 1-10; 2 (2004); и "Removal of TSE agents from blood products", Foster, P.R., Vax Sanguinis 87 (Suppl. 2), S7-S10 (2004)). После вирусной инактивации может потребоваться любая дополнительная, выбранная из перечисленных выше, стадия очистки для удаления химических веществ, используемых для вирусной инактивации.

Термин «вектор» означает какую-либо генетическую конструкцию, такую как плазмида, фаг, космида и т.д., которая способна к репликации при ассоциации с соответствующими контролирующими элементами, в которую фрагменты ДНК могут быть встроены или клонированы. Вектор содержит уникальные сайты рестрикции и может быть способен к автономной репликации в клетке-хозяине. Термин включает носители при клонировании и экспрессии. «Вектор» может также нести один или более дополнительных регуляторных элементов, указанные регуляторные элементы предпочтительно выбирают из сайтов сплайсинга, сайтов рекомбинации, сайтов полиА, энхансеров, сайта мультиклонирования и последовательности прокариотических плазмид.

Термин «функционально связанный» означает конфигурацию вектора, в которой промотор располагается в векторе таким образом, что это может стимулировать транскрипцию последовательности ДНК, кодирующей белок, представляющий интерес, в частности белок крови человека.

Термин «зрелый» означает молекулярную структуру данного белка, уже прошедшего процессинг, т.е. белка, у которого отсутствует сигнал секреции на N-конце.

Термин «промотор» означает участок регуляторной последовательности ДНК, связываемый РНК-полимеразой и факторами транскрипции в период инициации транскрипции.

Термин «энхансер» означает цис-действующую последовательность, которая усиливает действие эукариотического промотора и может функционировать в любой ориентации или в любом положении (позади или впереди) по отношению к промотору.

Термин «сигнал полиаденилирования (полиА)» означает специализированную терминирующую последовательность. Она сигнализирует о присоединении «хвоста» аденинов к концу мРНК, что делает возможным экспорт мРНК в цитоплазму. При достижении цитоплазмы хвост полиА мРНК сохраняется в ходе трансляции белка и стабилизирует мРНК в ходе экспрессии белка.

Термин «кодирует» или «кодирующий» означает свойство последовательности нуклеиновой кислоты проходить транскрипцию (в случае ДНК) или трансляцию (в случае мРНК) в полипептид (белок) in vitro или in vivo при помещении под контроль соответствующей регуляторной последовательности.

Для цели данного применения термин «экспрессировать», «экспрессирующий» или «экспрессия» означает транскрипцию и трансляцию гена, кодирующего белок.

«Белки человека» по данному изобретению включают в себя, но не ограничиваются ими, белки человека, полипептиды, их мутации и модификации. В частности, белки человека включают в себя рекомбинантные белки плазмы, например факторы свертывания крови (такие, как фактор VIII, фактор VII/VIIa, фактор V, фактор IX, фактор XI, фактор фон Виллебранда и т.д.), факторы роста (такие, как эритропоэтин и т.д.), колониестимулирующие факторы (CSF) (такие, как гранулоцитстимулирующий фактор (G-CSF), макрофаг CSF (M-CSF), гранулоцит-макрофаг CSF (GM-CSF)), цитокины (такие, как интерлейкины, включая интерлейкин-3 и т.д.), ингибиторы протеаз (такие, как альфа-1-антитрипсин (A1AT), химотрипсин и т.д.), транспортные белки (такие, как гормоны и т.д.), белки, действующие как ингибиторы и регуляторы, и им подобные. Кроме того, термин включает в себя мутации и модификации этих белков или полипептидов, особенно мутации или модификации, обеспечивающие лучшую стабильность рекомбинантного белка, увеличение времени полужизни или лучшее восстановление, и включают в себя мутантов с делециями, замещениями или вставками, а также химические мутации функциональных групп соответственно. Особенно предпочтительны белки, которые могут быть продуцированы способом по изобретению по данной заявке, каковыми являются фактор VIII человека (включая в себя фактор с делецией В-домена или дикого типа), фактор IX человека, G-CSF человека, A1AT человека, фактор VII/VIIa человека и фактор фон Виллебранда.

Рекомбинантная продукция фактора VIII и IX известна в данной области техники (EP-A-160457; WO-A-86/01961, Патенты США 4770999, 5521070 и 5521070). В случае фактора VIII рекомбинантная экспрессия субъединиц для продукции комплексов, демонстрирующих свертывающую активность, известна в данной области техники (например, в EP-A-150735, EP-A-232112, EP-A-0500734, WO-91/07490, WO-95/13300, патенты США 5045455 и 5789203). Более того, описана экспрессия усеченных версий кДНК, частично или полностью лишенных последовательности, кодирующей сильно гликозилированный B-домен (например, в WO-86/06101, WO-87/04187, WO-87/07144, WO-88/00381, EP-A-251843, EP-A-253455, EP-A-254076, патентах США 4868112 и 4980456, EP-A-294910, EP-A-265778, EP-A-303540 и WO-91/09122). Конкретный мутантный фактор VIII, в котором B-домен между положениями Arg(аргинин)740 и Glu(глютамин)1649 замещен богатым аргинином пептидом-линкером, имеющим, по меньшей мере, 3 остатка Arg и содержащим 10-25 аминокислотных остатков (в котором кодирование указанного фактора VIII близко к последовательности зрелого фактора VIII дикого типа, показано в SEQ ID NO:9), описан в WO 01/70968, которая включена в данное изобретение во всей ее полноте. В частности, богатый аргинином (Arg) пептид-линкер имеет 14-20 аминокислотных остатков, притом что линкер, содержащий:

аминокислотную последовательность SFSQNSRH (SEQ ID NO:10), и/или

аминокислотную последовательность QAYRYRRG (SEQ ID NO:11), и/или

аминокислотную последовательность SFSQNSRHQAYRYRRG (SEQ ID NO:12), особенно предпочтителен. Такой белок, появляющийся в результате мутации B-домена фактора VIII, кодируется нуклеотидами (nt) 783-5162 SEQ ID NO:3.

G-CSF является линия-специфической небольшой молекулой в крови человека, которая стимулирует продукцию костным мозгом определенного типа белых кровяных клеток, известных как нейтрофилы. Нейтрофилы играют центральную роль в иммунной системе организма и защите от инфекции. G-CSF (особенно последовательности кДНК их a, b и c-форм даны в SEQ ID NO:15, 16 и 17 соответственно; белок b-формы G-CSF (в дальнейшем - белок «G-CSFb») показан в SEQ ID NO:27) в естественных условиях продуцируется моноцитами, фибробластами и эндотелиальными клетками. В норме концентрация в крови составляет около 40 пг/мл у здоровых людей. В плазме пациентов уровень G-CSF может снижаться более чем в десять раз. G-CSF также продуцируется в таких раковых клеточных линиях, как клетки 5637, которые секретируют около 70 нг/мл. Для терапии рекомбинантный G-CSF человека продуцируется в E.coli как N-конец метилированная негликозилированная форма Amgen Inc. (Filgrastim/Neupogen®), который также доступен как полиэтиленгликолированный (PEGylated) продукт (Pegfilgrastim/Neulasta®). Другое лекарство продуцируют в клетках CHO на фирме Chugai Pharmaceuticals Co, что дает гликозилированный продукт (Lenograstim/Granocyte®). G-CSF используется в качестве лекарства при лечении нейтропении - наследственной или вызванной химиотерапией (рака), ВИЧ или трансплантацией костного мозга. В этих случаях обычная доза составляет 5 мкг/кг в день.

Конкретная последовательность кДНК A1AT, пригодная по изобретению в соответствии с данной заявкой, дана в п.о. 973-2259 SEQ ID NO:2. Конкретно, последовательности кДНК фактора VII/VIIa даны в SEQ ID NО:13 и 14, соответствующих их формам a и b. Конкретная кДНК фактора фон Виллебранда (vWF) дана в SEQ ID NO:18.

Система селекционных маркеров включает в себя резистентность к гигромицину, устойчивость к пуромицину, резистентность к неомицину, резистентность к аденозиндеаминазе (ADA), резистентность к аминогликозидфосфотрансферазе (neo, G418, APH), резистентность к блеомицину (флео, блео, зеоцин), резистентность к цитозиндеаминазе (CDA, CD), резистентность к цитозиндеаминазе (CDA, CD), резистентность к дигидрофолатредуктазе (DHFR), устойчивость к гистидинолдегидрогеназе (hisD), резистентность к гигромицин-B-фосфотрансферазе (HPH), резистентность к пуромицин-N-ацетилтрансферазе (PAC, puro), резистентность к тимидинкиназе (TK) и резистентность к ксантин-гуанинфосфорибозилтрансферазе (XGPRT, gpt). Особенно предпочтителен ген резистентности к гигромицину. Также ген селекционного маркера может быть функционально связан с полиА сигналом, таким как производный от гормона роста быка (BGH) или сигнал полиаденилирования SV40.

Трансфицированные клетки постоянно подвергаются в культуральной среде воздействию белка системы селекционного маркера, такого как гигромицин, в ходе фазы селекции, что приводит к выживанию только тех клеток, которые несут вектор. Специалистам в данной области техники известны альтернативные селекционные маркеры, пригодные для формирования стабильно трансфицированных клеток, так же как концентрации избранных селективных агентов, которые необходимо применить.

Особенно предпочтительный вектор по данному изобретению несет промотор CMV, ген гигромицина, последовательность полиA и ген, представляющий интерес, а также предпочтительно вектор пкДНК3.1 (Invitrogen), имеющий последовательность SEQ ID NO:4, в которой ресеквенирование указанного вектора, как было обнаружено фактически, имеет последовательность, показанную в SEQ ID NO:5.

Иммортализованные клеточные линии, пригодные для способа по данному изобретению, выбраны из группы клеток почек, мочевого пузыря, печени, легких, сердечной мышцы, гладких мышц, яичников или желудочно-кишечного тракта. Эти клетки могут нести в геноме аденовирусные последовательности ДНК, в частности первые 4344 нуклеотида последовательностей Ad5. Предпочтительными являются фетальные клетки почек человека (HEK), выбранные из группы, включающей в себя клетки 293 (ATCC CRL-1573; DSM ACC 305; ECACC ref.: 85120602), клетки 293T (DSM ACC 2494; ECACC: tsa201, ref. 96121229) и клетки Freestyle 293 (клетки 293F; Invitrogen R79007). Наиболее предпочтительными являются клетки 293F. Эти иммортализованные клеточные линии, несущие вектор, культивировали в условиях, позволяющих экспрессию рекомбинантного гена. В целом это - стандартные условия культивирования, известные специалистам в данной области техники, однако в случае клеток, несущих ген фактора IX человека, в среду необходимо включить витамин K.

Конкретный вариант воплощения данного изобретения состоит в бессывороточной продукции рекомбинантного белка в бессывороточной культуре стабильно иммортализованных клеток, которые также трансфицированы в бессывороточных условиях. Для этого какую-либо из описанных выше иммортализованных клеточных линий человека, предпочтительно клеточную линию 293F, трансфицируют и культивируют в бессывороточных условиях. Клетки стабильно трансфицируются в суспензионной культуре в отсутствие сыворотки, а затем адаптируются к росту адгезивных клеток для отбора отдельных клеточных клонов. По получении индивидуальных клонов их выращивают в адгезионном состоянии. После отбора лучших продуцентных клонов клетки переносят в суспензионную культуру. В течение всей процедуры получения стабильной клеточной линии и дальнейшего выращивания для продукции белка клетки выращивают в бессывороточной среде, и они никогда не вступают в соприкосновение с сывороткой или человеческими или животными белками. Рекомбинантный белок крови, такой как любой из факторов свертывания крови или ингибитор протеаз, такой как A1AT, или факторов роста (такого, как G-CSF и GM-CSF), выделяют из культурального бульона, за чем следуют стандартные стадии очистки. Более детально конкретный вариант воплощения бессывороточной