Вектор для переноса и вакцина против туберкулеза
Иллюстрации
Показать всеИзобретение относится к области биотехнологии, генной инженерии и вирусологии. Вектор для переноса содержит слитую ДНК под контролем слитого промотора. Слитая ДНК состоит из фрагмента ДНК, кодирующего белок-антиген М.tuberculosis, и фрагмента ДНК гена, кодирующего аминокислотную последовательность с номером доступа GenBank № L22858. Сдвоенный промотор состоит из промотора полиэдрина и промотора CMV. Также описана вакцина против туберкулеза, содержащая рекомбинантный вирус ядерного полиэдроза Autographa californica (AcNPV) в качестве активного агента. При этом, рекомбинантный AcNPV содержит последовательность, входящую в вышеописанный вектор. Изобретение может быть использовано в медицине. 2 н. и 4 з.п. ф-лы, 15 ил., 1 табл., 13 пр.
Реферат
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к новому вектору для переноса, рекомбинантному бакуловирусу, получаемому гомологичной рекомбинацией вектора для переноса и ДНК бакуловируса, а также к способам их получения.
Также настоящее изобретение относится к фармацевтическим веществам (например, вакцинам, профилактическим или терапевтическим лекарственным средствам против инфекционных заболеваний, таких как малярия и грипп), содержащим рекомбинантный бакуловирус в качестве активного ингредиента.
УРОВЕНЬ ТЕХНИКИ
Бакуловирус используется в качестве вектора в способе промышленного получения заданного белка с использованием клеток насекомых. В последние годы было открыто, что посредством бакуловируса можно вводить чужеродный ген не только в клетки насекомых, но также и в клетки млекопитающих, и кроме того, была открыта возможность получения вектора, в который вводят ген для терапии. В патентном документе 1 раскрыт рекомбинантный бакуловирусный вектор экспрессии с многочисленными независимыми промоторами, который включает участок ДНК, содержащий ген, кодирующий вирусный неструктурный белок, при промоторе, который получен из раннего гена из бакуловируса, а также включает участок ДНК, содержащий ген, который кодирует вирусный структурный белок, при промоторе, полученном из позднего гена.
В патентном документе 2 раскрыт способ, где в клетку вводят не относящийся к млекопитающим ДНК-вирус, содержащий промотор, контролируемый таким образом, что экзогенный ген экспрессируется из вектора, в котором желаемые экзогенные гены связаны с многочисленными независимыми промоторами, и где экзогенный ген экспрессируется в клетке млекопитающих.
Кроме того, в патентном документе 3 раскрыт способ получения белка посредством технологии рекомбинации генов с использованием бакуловируса, а также раскрыт способ получения белка в результате экспрессии слитого гена, получаемого связыванием гена gp64 из бакуловируса с геном, кодирующим желаемый белок, с получением желаемого белка в том виде, в котором желаемый белок слит с вирусными частицами, сбором слитых с желаемым белком вирусных частиц и отщеплением желаемого белка от вирусных частиц для получения желаемого белка.
В патентном документе 4 для бакуловирусной системы экспрессии раскрыт рекомбинантный бакуловирусный вектор экспрессии с многочисленными независимыми промоторами, который содержит первую последовательность нуклеиновой кислоты, кодирующую маркер для регистрации, связанный в способном к функционированию виде с первым промотором, который активен в клетке-хозяине и не активен в несоответствующей клетке, а также вектор содержит вторую последовательность нуклеиновой кислоты, которая включает чужеродную последовательность нуклеиновой кислоты, связанную в способном к функционированию виде со вторым промотором, который активен в несоответствующей клетке.
В патентном документе 5 раскрыто, что экспрессирующий антиген гемагглютинина (НА) вируса гриппа рекомбинантный бакуловирусный вектор, который связан с полученным из β-актина цыпленка промотором CAG, является эффективным в качестве препарата вакцины, поскольку вектор оказывает профилактический эффект в отношении инфицирования вирусом гриппа.
В патентном документе 6 раскрыт способ получения бакуловирусного вектора, включающий стадию совместной трансфекции, при которой в клетку насекомого совместно трансфицируют плазмиду, в которой гены, кодирующие экспрессирующиеся на клеточной поверхности белки, были связаны с бакуловирусным промотором, а промотор получен из клетки млекопитающего, соответственно, а также трансфицируют плазмиду, в которой гены, кодирующие экспрессирующиеся на клеточной поверхности белки, были связаны с двумя бакуловирусными промоторами, соответственно.
Кроме того, в патентном документе 7 раскрыто исследование активности против вируса гриппа в отношении инфицирования вирусом гриппа, где использовали рекомбинантный бакуловирус, в котором кДНК из НА вируса гриппа была встроена в промотор CAG, a также в этом документе раскрыто, что активностью обладает не только рекомбинантный бакуловирус, но и бакуловирус дикого типа.
Таким образом, в последние годы были сконструированы различные рекомбинантные бакуловирусы и было исследовано получение с их использованием фармацевтических веществ для млекопитающих при применении рекомбинантного бакуловируса в качестве активного ингредиента.
В связанной с данной области являются желаемыми рекомбинантный бакуловирусный вектор с новой структурой и получение фармацевтического препарата, в частности препарата вакцины, с использованием рекомбинантного бакуловируса в качестве активного ингредиента, где препарат эффективен против инфекционных заболеваний, таких как малярия и грипп, или против таких заболеваний, как рак.
Патентный документ 1: японский патент №3366328, "Бакуловирусная система экспрессии с многочисленными промоторами и продукты с дефектными частицами".
Патентный документ 2: WO 98/011243, "Не относящийся к млекопитающим ДНК-вирус с модифицированным белком оболочки".
Патентный документ 3: JP №2002-235236-А, "Способы получения белков".
Патентный документ 4: JP №2003-284557-А, "Новый бакуловирусный вектор для трансфекции и рекомбинантный бакуловирус для экспрессии чужеродного гена".
Патентный документ 5: WO 02/062381, "Вакцина из бакуловирусного вектора".
Патентный документ 6: WO 04/029259, "Бакуловирусный вектор, способ получения бакуловирусного вектора и способ введения гена".
Патентный документ 7: JP №2005-15346-А, "Противовирусное средство, содержащее бакуловирус".
ОПИСАНИЕ ИЗОБРЕТЕНИЯ
ПРОБЛЕМЫ, ПОДЛЕЖАЩИЕ РЕШЕНИЮ С ИСПОЛЬЗОВАНИЕМ ИЗОБРЕТЕНИЯ
Цель настоящего изобретения состоит в обеспечении нового рекомбинантного вектора для переноса, рекомбинантного бакуловируса, получаемого гомологичной рекомбинацией рекомбинантного вектора для переноса и бакуловирусной ДНК, а также в обеспечении способов их получения.
Другая цель настоящего изобретения состоит в обеспечении фармацевтического вещества, в частности препарата вакцины, с использованием рекомбинантного бакуловируса в качестве активного ингредиента.
СПОСОБЫ РЕШЕНИЯ ПРОБЛЕМ
Авторами настоящего изобретения был открыт обладающий новой структурой вектор для переноса, способный к экспрессии белка с желаемой иммуногенностью или слитого белка, состоящего из неполноценного белка или белка, обладающего иммуногенностью, и цитокина, в клетках насекомых и клетках позвоночных (в частности, млекопитающих, птиц и рыб), отличных от клеток насекомых, а также был открыт рекомбинантный бакуловирус, получаемый гомологичной рекомбинацией вектора для переноса и бакуловирусной ДНК. В результате обеспечения рекомбинантного бакуловируса было тщательно исследовано фармацевтическое вещество, содержащее рекомбинантный бакуловирус в качестве активного ингредиента, которое оказывает эффективные профилактические и/или терапевтические эффекты в отношении инфекционных заболеваний. В результате авторами изобретения было сделано новое открытие, что рекомбинантный бакуловирус оказывает эффект как желаемое фармацевтическое средство.
Кроме того, согласно настоящему изобретению были подтверждены обладающий новой структурой рекомбинантный вектор для переноса, рекомбинантный бакуловирус, получаемый гомологичной рекомбинацией вектора для переноса и бакуловирусной ДНК, и способы их получения, а также было подтверждено, что рекомбинантный бакуловирус сам по себе был эффективным в качестве фармацевтического средства, являясь способным к экспрессии белка с желаемой иммуногенностью в клетках-мишенях, и был эффективным в качестве профилактического фармацевтического средства против инфекционных заболеваний, таких как малярия и грипп, и на этом настоящее изобретение было завершено.
Настоящее изобретение относится к изобретению, представленному в следующих ниже [1]-[31].
[1] Способ получения вектора для переноса, содержащего структуру, в которую встроены сдвоенный промотор и слитый ген, характеризующуюся тем, что слитый ген, который содержит, по меньшей мере, один ген, кодирующий белок, способный быть компонентом вирусной частицы, и, по меньшей мере, один иммуногенный чужеродный ген связаны в нижестоящем положении относительно сдвоенного промотора, связывающего один промотор позвоночных, способный функционировать в позвоночных, и другой бакуловирусный промотор.
[2] Способ по [1], где промотор позвоночных, способный функционировать в позвоночных, представляет собой промотор млекопитающих, способный функционировать в млекопитающих.
[3] Способ по [1] или [2], характеризующийся тем, что ген, кодирующий, по меньшей мере, один белок, способный быть компонентом вирусной частицы, представляет собой любой из бакуловирусного гена gp64, гена гликопротеина вируса везикулярного стоматита, гена гликопротеина вируса иммунодефицита человека типа I, гена мембранного гликопротеина респираторно-синцитиального вируса человека, гена белка гемагглютинина вируса гриппа типа А, гена белка гемагглютинина вируса гриппа типа В, гена гликопротеина вируса простого герпеса и гена белка S вируса гепатита мыши.
[4] Способ по [1] или [2], где промотор позвоночных, способный функционировать в позвоночных, выбирают из любого из промотора цитомегаловируса, промотора SV40, ретровирусного промотора, промотора металлотионеина, промотора белка теплового шока, промотора CAG, промотора фактора элонгации 1α, промотора актина, промотора убиквитина, промотора альбумина и промотора МНС класса II.
[5] Способ по любому из [1]-[4], где бакуловирусный промотор выбирают из промотора полиэдрина, промотора р10, промотора IE1, промотора IE2, промотора р35, промотора р39 и промотора gp64.
[6] Способ по любому из [1]-[5], где иммуногенный чужеродный ген выбирают из любого из антигена малярии, антигена гриппа, антигена М.tuberculosis, антигена вируса SARS, антигена вируса лихорадки Западного Нила, антигена вируса лихорадки денге, антигена ВИЧ, антигена HCV, антигена лейшмании, антигена трипаносомы, антигена лейкоцитозоона по отдельности или слитого антигена, состоящего, по меньшей мере, из одного антигена, выбранного из этой группы генов антигенов, и цитокина.
[7] Способ по любому из [1]-[6], где вектор для переноса представляет собой любой из pDual-Hsp65-gp64, pDual-PbCSP-gp64, pDual-H1N1/HA1-gp64, pDual-PbTRAMP-gp64, pDual-PbAMA1D123-gp64, pDual-PbMSP119-gp64, pDual-PfCSP-gp64, pDual-PfAMA1-gp64, pDual-Pfs25-gp64, pDual-H5N1/HA1-gp64, pDual-SARS/S-gp64, pCP-H1N1/HA1-gp64, pCAP-H1N1/HA1-gp64, pCU-H1N1/HA1-gp64, pDual-H1N1/M2-gp64, pDual-H1N1/NAe-gp64, pDual-M2e-gp64, pCP-HA1/NC99-gp64, pCP-H1N1/HA0-gp64, pCP-H1N1/HA2-gp64 и pCP-H1N1/HA1-vp39.
[8] Способ получения рекомбинантного бакуловируса, включающий стадию получения вектора для переноса, содержащего структуру, в которую встроены сдвоенный промотор и слитый ген, характеризующуюся тем, что слитый ген, который содержит, по меньшей мере, один ген, кодирующий белок, способный быть компонентом вирусной частицы, и, по меньшей мере, один иммуногенный чужеродный ген связаны в нижестоящем положении относительно сдвоенного промотора, связывающего один промотор позвоночных, способный функционировать в позвоночных, и другой бакуловирусный промотор; стадию совместной трансфекции вектора для переноса и бакуловирусной ДНК в клетку-хозяина насекомого; и стадию выделения рекомбинантного бакуловируса.
[9] Способ по [8], характеризующийся тем, что ген, кодирующий, по меньшей мере, один белок, способный быть компонентом вирусной частицы, представляет собой любой из бакуловирусного гена gp64, гена гликопротеина вируса везикулярного стоматита, гена гликопротеина вируса иммунодефицита человека типа I, гена мембранного гликопротеина респираторно-синцитиального вируса человека, гена белка гемагглютинина вируса гриппа типа А, гена белка гемагглютинина вируса гриппа типа В, гена гликопротеина вируса простого герпеса и гена белка S вируса гепатита мыши.
[10] Способ по [9], где промотор позвоночных, способный функционировать в позвоночных, выбирают из любого из промотора цитомегаловируса, промотора SV40, ретровирусного промотора, промотора металлотионеина, промотора белка теплового шока, промотора CAG, промотора фактора элонгации 1α, промотора актина, промотора убиквитина, промотора альбумина и промотора МНС класса II.
[11] Способ по любому из [8]-[10], где бакуловирусный промотор выбирают из промотора полиэдрина, промотора р10, промотора IE1, промотора р35, промотора р39 и промотора gp64.
[12] Способ по любому из [8]-[11], где иммуногенный чужеродный ген выбирают из любого из антигена малярии, антигена гриппа, антигена М.tuberculosis, антигена вируса SARS, антигена вируса лихорадки Западного Нила, антигена вируса лихорадки денге, антигена ВИЧ, антигена HCV, антигена лейшмании, антигена трипаносомы, антигена лейкоцитозоона по отдельности или слитого антигена, состоящего из одного антигена, выбранного из этой группы генов антигенов, и цитокина.
[13] Способ по любому из [8]-[12], где рекомбинантный бакуловирус представляет собой любой из AcNPV-Dual-Hsp65, AcNPV-Dual-PbCSP, AcNPV-Dual-H1N1/HA1, AcNPV-Dual-PbTRAMP, AcNPV-Dual-PbAMA1D123, AcNPV-Dual-PbMSP119, AcNPV-Dual-PfCSP, AcNPV-Dual-PfAMA1, AcNPV-Dual-Pfs25, AcNPV-Dual-H5N1/HA1, AcNPV-Dual-SARS/S, AcNPV-H1N1/HA1, AcNPV-CAP-H1N1/HA1, AcNPV-CU-H1N1/HA1, AcNPV-Dual-H1N1/NP, AcNPV-Dual-H1N1/M2, AcNPV-Dual-H1N1/NAe, AcNPV-Dual-M2e, AcNPV-CP-HA1/NC99, AcNPV-CP-H1N1/HA0, AcNPV-CP-H1N1/HA2, AcNPV-CP-H1N1/HA1-vp39 и AcNPV-CP-H1N1/NP-vp39.
[14] Вектор для переноса, содержащий структуру, в которую встроены слитый ген, содержащий, по меньшей мере, один ген, кодирующий белок, способный быть компонентом вирусной частицы, и, по меньшей мере, один иммуногенный чужеродный ген, связанные в нижестоящем положении относительно сдвоенного промотора, связывающего один промотор позвоночных, способный функционировать в позвоночных, и другой бакуловирусный промотор.
[15] Вектор для переноса по [14], характеризующийся тем, что ген, кодирующий, по меньшей мере, один белок, способный быть компонентом вирусной частицы, представляет собой любой из бакуловирусного гена gp64, гена гликопротеина вируса везикулярного стоматита, гена гликопротеина вируса иммунодефицита человека типа I, гена мембранного гликопротеина респираторно-синцитиального вируса человека, гена белка гемагглютинина вируса гриппа типа А, гена белка гемагглютинина вируса гриппа типа В, гена гликопротеина вируса простого герпеса и гена белка S вируса гепатита мыши.
[16] Вектор для переноса по [14], где промотор позвоночных, способный функционировать в позвоночных, выбирают из любого из промотора цитомегаловируса, промотора SV40, ретровирусного промотора, промотора металлотионеина, промотора белка теплового шока, промотора CAG, промотора фактора элонгации 1α, промотора актина, промотора убиквитина, промотора альбумина и промотора МНС класса II.
[17] Вектор для переноса по любому из [14]-[16], где бакуловирусный промотор выбирают из промотора полиэдрина, промотора р10, промотора IE1, промотора IE2, промотора р35, промотора р39 и промотора gp64.
[18] Вектор для переноса по любому из [14]-[17], где иммуногенный чужеродный ген выбирают из любого из антигена малярии, антигена гриппа, антигена М.tuberculosis, антигена вируса SARS, антигена вируса лихорадки Западного Нила, антигена вируса лихорадки денге, антигена ВИЧ, антигена HCV, антигена лейшмании, антигена трипаносомы, антигена лейкоцитозоона по отдельности или слитого антигена, состоящего из одного антигена, выбранного из этой группы генов антигенов, и цитокина.
[30] Вакцина против инфицирования вирусом гриппа по [29], где средство вводят внутримышечно, интраназально или ингаляцией.
ЭФФЕКТ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится к новому рекомбинантному вектору для переноса, рекомбинантному бакуловирусу, получаемому гомологичной рекомбинацией рекомбинантного вектора для переноса и бакуловирусной ДНК, а также к способам их получения. Фармацевтические вещества, содержащие в качестве активного ингредиента рекомбинантный бакуловирус согласно настоящему изобретению, являются эффективными в качестве терапевтических или профилактических лекарственных средств против инфекционных заболеваний, таких как малярия, грипп, туберкулез и гепатит, вариантов рака и аутоиммунных заболеваний или в качестве медицинского средства на клеточном уровне, а также в качестве препаратов вакцин.
КРАТКОЕ ОПИСАНИЕ РИСУНКОВ
На фиг.1 представлен профилактический эффект (титр инфекционности вируса) рекомбинантного бакуловируса AcNPV-Dual-H1N1/HA1 в отношении инфицирования вирусом гриппа;
На фиг.2 представлен профилактический эффект (период выживания) рекомбинантного бакуловируса AcNPV-Dual-H1N1/HA1 в отношении инфицирования вирусом гриппа;
На фиг.3 представлен анализ Вестерн-блоттингом экспрессии слитого продукта в клетке насекомого, инфицированной с использованием рекомбинантного бакуловируса, полученного из вектора для переноса, посредством гена НА вируса гриппа (H1N1/HA1), гена Hsp65 M.tuberculosis (Hsp65) или гена CSP малярийного паразита (PbCSP).
Дорожка 1: AcNPV-WT
Дорожка 2: AcNPV-Dual-H1N1/HA1
Дорожка 3: AcNPV-WT
Дорожка 4: AcNPV-Dual-Hsp65
Дорожка 5: AcNPV-WT
Дорожка 6: AcNPV-Dual-PbCSP;
На фиг.4 представлено изображение окрашивания с флуоресцентной меткой, где рекомбинантный бакуловирус, полученный из рекомбинантного вектора для переноса, экспрессировал в клетках позвоночных слитый продукт гена HSP65 туберкулеза и гена gp64.
(A): клетки HepG2, трансдуцированные посредством AcNPV-Dual-Hsp65;
(B): клетки HepG2, трансдуцированные посредством AcNPV-WT.
На фиг.5 представлено изображение, на котором в результате иммунопреципитации показано, что рекомбинантный бакуловирус, полученный из рекомбинантного вектора для переноса в относящихся к млекопитающим клетках животных, экспрессировал слитый белок который кодируется геном антигена НА вируса гриппа и геном gp64. Иммунопреципитация клеток HepG2, в которые были введены рекомбинантные бакуловирусы. Клетки HepG2 были трансдуцированы с использованием AcNPV-WT (дорожка 1), полного AcNPV-CMV-H1N1/HA (дорожка 2) или AcNPV-Dual-H1N1/HA1 (дорожка 3). Через 3 часа после трансдукции клетки в течение 12 часов метили радиоактивной меткой с использованием [35S]метионина. Проводили иммунопреципитацию клеточных лизатов вместе с сывороткой от мышей, инфицированных вирусом гриппа H1N1.
На фиг.6 представлен анализ посредством Вестерн-блоттинга, где показана экспрессия слитой структуры из гена CSP малярийного паразита и гена gp64 в вирусных частицах рекомбинантного бакуловируса, полученного из рекомбинантного вектора для переноса в клетках насекомых.
Дорожка 1: AcNPV-WT
Дорожка 2: AcNPV-CMV-PbCSP
Дорожка 3: AcNPV-PbCSPsurf
Дорожка 4: AcNPV-Dual-PbCSP.
На фиг.7 представлены результаты RT-PCT, указывающие на то, что содержащий антиген НА1 рекомбинантный бакуловирус, полученный заменой промотора позвоночных, экспрессировал в клетках HeLa слитый продукт НА1 и gp64.
На фиг.8 представлена продукция антитела IgG, специфичного в отношении антигена PbCSP, в сыворотке от мышей, которых инокулировали с использованием рекомбинантного бакуловируса.
На фиг.9 представлено количество продуцирующих IFN-γ клеток, реакционноспособных в отношении эпитопа CTL из PbCSP в клетках селезенки от мышей, которых инокулировали с использованием рекомбинантного бакуловируса.
На фиг.10 представлены профилактические эффекты (титр инфекционности вируса) рекомбинантного бакуловируса AcNPV-Dual-М2е в отношении инфицирования вирусом гриппа.
На фиг.11 представлены профилактические эффекты (титр инфекционности вируса) рекомбинантного бакуловируса AcNPV-CP-HA1/NC99 в отношении инфицирования вирусом гриппа.
На фиг.12 представлена продукция в крови антитела IgG, специфичного в отношении вируса гриппа, которая индуцируется рекомбинантным бакуловирусом AcNPV-Dual-H1N1/HA1, вводимым четырьмя различными способами.
На фиг.13 представлена продукция в жидкости от назального лаважа и жидкости от альвеолярного лаважа антитела IgG и антитела IgA, специфичных в отношении вируса гриппа, где продукция индуцирована рекомбинантным бакуловирусом AcNPV-Dual-H1N1/HA1, вводимым четырьмя различными способами.
На фиг.14 представлены профилактические эффекты (титр инфекционности вируса) вводимого четырьмя различными способами рекомбинантного бакуловируса AcNPV-Dual-H1N1/HA1 в отношении вируса гриппа в полости носа.
На фиг.15 представлены профилактические эффекты (титр инфекционности вируса) вводимого четырьмя различными способами рекомбинантного бакуловируса AcNPV-Dual-H1N1/HA1 в отношении внутрилегочного вируса гриппа.
ЛУЧШИЕ ВАРИАНТЫ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Представленное в настоящей заявке обозначение посредством сокращенных названий аминокислот, пептидов, последовательностей оснований и нуклеиновых кислот удовлетворяет IUPAC-IUB Communication on Biological Nomenclature, Eur. J. Biochem., 138:9(1984), определяемому IUPAC-IUB, "Руководством по созданию описаний, включающих последовательности оснований и аминокислотные последовательности" (патентное бюро) и обычно используемыми указаниями в данной области.
В рамках настоящей заявки молекула ДНК включает не только двухцепочечную ДНК, но также и одноцепочечную ДНК, в том числе составляющие их смысловые цепи и антисмысловые цепи, и не ограничена по своей длине. Таким образом, если не указано иначе, полинуклеотид (молекула ДНК), кодирующий иммуногенный чужеродный ген согласно настоящему изобретению, включает двухцепочечную ДНК, в том числе геномную ДНК, и одноцепочечную ДНК (смысловую цепь), в том числе кДНК, а также одноцепочечную ДНК (антисмысловую цепь) с последовательностью, комплементарной смысловой цепи, а также их синтетические фрагменты ДНК.
В рамках настоящей заявки полинуклеотид или молекула ДНК не заданы функциональным участком и могут включать, по меньшей мере, один из участка подавления экспрессии, кодирующего участка, лидерной последовательности, экзона и интрона.
Также полинуклеотид включает РНК и ДНК. Полипептид состоит из определенной последовательности аминокислот, а полинуклеотид состоит из определенной последовательности ДНК, включая их фрагменты, гомологи, производные и мутантные формы.
Мутантные формы полинуклеотида, например мутантная ДНК, включают природные аллельные мутанты, не встречающиеся в природе мутанты и мутанты с делецией, заменой, добавлением и вставкой. При этом эти мутанты кодируют полипептид, обладающий практически той же самой функцией, что и функция полипептида, кодируемого до мутации.
Согласно настоящему изобретению вектор для переноса относится к плазмиде для получения рекомбинантного бакуловируса, содержащего структуру, в которой слитый ген, связывающий, по меньшей мере, один ген, кодирующий белок, способный быть компонентом вирусной частицы, с, по меньшей мере, одним иммуногенным чужеродным геном, был встроен в нижестоящем положении относительно сдвоенного промотора, где связаны один промотор позвоночных (промотор млекопитающих, промотор птиц, промотор рыб) и другой бакуловирусный промотор.
Предпочтительно, в одном из предпочтительных вариантов осуществления изобретения иммуногенный чужеродный ген расположен ниже сдвоенного промотора и выше гена, кодирующего белок, который способен быть компонентом вирусной частицы.
Рекомбинантный бакуловирус согласно настоящему изобретению используют для позвоночных в качестве активного ингредиента фармацевтических веществ или вакцин. В качестве позвоночных примерами млекопитающих, включая человека, могут быть лошади, свиньи, овцы, козы, обезьяны, мыши, собаки и кошки, птицы, такие как цыплята, перепелки, гуси, водоплавающие, голуби, индейки, цесарки и попугаи, а также рыбы, такие как желтохвосты, взрослые желтохвосты, морские караси, сериолы, ставриды, полосатые щуки, полосатый бычок, лососи, нерки, карпы, обыкновенные караси, радужные форели, ручьевые форели и форели амаго.
В одном из вариантов осуществления настоящее изобретение относится к вектору для переноса, содержащему новую структуру, в которой слитый ген, содержащий ген, который кодирует вирусный мембранный белок, экспрессируемый в клетке насекомого, и содержащий один иммуногенный чужеродный ген, был встроен под контролем сдвоенного промотора, в котором один промотор позвоночных связан с другим бакуловирусным промотором. Посредством совместной трансфекции этого вектора для переноса вместе с бакуловирусной ДНК в клетку насекомого для индукции гомологичной рекомбинации можно получать рекомбинантный бакуловирус, в который был встроен находящийся под контролем бакуловирусного промотора слитый ген, экспрессирующийся в клетке насекомого и способный продуцировать слитый белок, который может быть компонентом активно реплицирующейся вирусной частицы.
Согласно настоящему изобретению в случае введения рекомбинантного бакуловируса позвоночному, слитый белок, состоящий из белка, способного быть компонентом активно реплицирующейся вирусной частицы, и иммуногенного белка, предположительно функционирует как компонент вакцины. Вводимый в позвоночных рекомбинантный бакуловирус встраивается в клетку позвоночного, в клетке позвоночных продуцируется слитый антиген с заданным иммуногенным чужеродным антигеном из вирусного генома, и происходит функционирование в качестве вакцины ДНК.
Соответственно, в случае млекопитающего, при введении млекопитающему рекомбинантного бакуловируса согласно настоящему изобретению слитый белок, состоящий из белка, способного быть компонентом вирусной частицы, и иммуногенного белка, презентируется в качестве антигена, слитый белок, состоящий из белка, способного быть компонентом вирусной частицы, и иммуногенного белка, продуцируется в клетке млекопитающего и, предположительно, вследствие своего иммунопотенциального действия функционирует в качестве профилактического или терапевтического средства в отношении инфицирования вирусом, простейшими и бактериями.
Бакуловирусная ДНК, подлежащая совместной трансфекции с вектором для переноса, может представлять собой любую из дикого типа, мутанта и рекомбинантной бакуловирусной ДНК. Подлежащие совместной трансфекции клетки-хозяева включают, например, клетки от насекомого, такого как Spodoptera frugiperda.
Согласно настоящему изобретению иммуногенным чужеродным геном назван ген, кодирующий аминокислотную последовательность антигенного белка, который является иммуногеном в иммунотерапии, включающей лечение вакцинами для профилактики и лечения инфекционных заболеваний, таких как малярия, грипп и туберкулез, аутоиммунных заболеваний и вариантов рака, например, ген, кодирующий аминокислотную последовательность такого белка, как антиген малярии, антиген вируса гриппа и антиген М.tuberculosis.
В рамках настоящей заявки "чужеродный" ген обозначает ген, вводимый извне, что соответствует "чужеродному" гену, даже если тот же самый ген присутствует в клетке.
Согласно настоящему изобретению ген, который кодирует аминокислотную последовательность белка, являющегося указанным выше иммуногеном, не ограничен конкретно геном, который кодирует аминокислотную последовательность антигенного белка при условии, что ген представляет собой ген, кодирующий аминокислотную последовательность антигенного белка, которая обладает иммуногенностью в отношении вещества, вызывающего такие заболевания, как инфекционные заболевания, варианты рака и аутоиммунные заболевания. Примеры таких генов, которые кодируют обладающую иммуногенностью аминокислотную последовательность антигенного белка, включают следующие ниже.
В качестве примеров гена, кодирующего аминокислотную последовательность малярийного антигена, могут быть представлены, например, гены, которые кодируют аминокислотные последовательности таких белков, как поверхностный антиген CSP (белок, покрывающий спорозоит) поверхности спорозоита малярийного паразита, MSP1 (белок поверхности мерозоита 1) из мембранного белка поверхности мерозоита, малярийный антиген S, секретируемый из инфицированных малярией эритроцитов, белок PfEMPI, присутствующий в выпуклом утолщении инфицированных малярией эритроцитов, белок SERA, белок TRAMP и белок АМА1.
В качестве примеров гена, кодирующего аминокислотную последовательность антигена вируса гриппа, могут быть представлены гены, кодирующие аминокислотные последовательности таких белков, как антиген НА (антиген гемагглютинина), антиген NA (антиген нейраминидазы), антиген М2 (антиген белка матрикса) и антиген NP (антиген ядерного белка).
В качестве примеров гена, кодирующего аминокислотную последовательность антигенного белка для туберкулеза, могут быть представлены гены, кодирующие аминокислотные последовательности таких белков, как HSP65 (белок теплового шока 65 кДа), α-антиген (антиген 85А, антиген 85В, антиген 85С), Mtb72f, MDP-1, ESAT-6, МРВ51, Mtb8.8, Mtb9.9, Mtb32, Mtb39 и Mtb11.
В отношении генов позвоночных, например генов млекопитающих, в качестве примеров могут быть представлены гены, кодирующие аминокислотные последовательности антигенных белков при инфекционных заболеваниях у человека, крупного рогатого скота, лошадей, свиней, овец, обезьян, мышей, собак и кошек. В качестве генов птиц для примера могут быть представлены гены антигенов (например, антиген птичьего гриппа S) при инфекционных заболеваниях у цыплят, водоплавающих, голубей, индеек, цесарок и попугаев. В качестве генов рыб рассмотрены гены антигенов при инфекционных заболеваниях у желтохвостов, взрослых желтохвостов, морских карасей, сериол, ставрид, полосатых щук, полосатого бычка, лососей, нерок, карпов, обыкновенных карасей, радужных форелей, ручьевых форелей и форелей амаго.
Патогенные гены, о чьей связи с инфекционными заболеваниями у описанных выше млекопитающих, птиц и рыб было указано, являются легко доступными в учреждениях, где хранились такие общедоступные данные, как банк генов, в котором регистрируют патогенные гены.
Согласно настоящему изобретению в случае иммуногенных чужеродных генов в дополнение к указанным выше иммунным антигенам, присутствующим вне организма человека, в качестве иммуногенных чужеродных генов согласно настоящему изобретению также могут быть рассмотрены, например, гены цитокинов из организма человека, например, ген IL-12, ген IL-6, ген рецептора IL-6, ген IL-2, ген IL-18, ген IFN-γ и ген M-CSF, или слитые гены, получаемые слиянием заданного иммуногенного антигена с указанным выше антигенным белком с использованием способа рекомбинации, при условии, что эти гены вводят извне.
Согласно настоящему изобретению можно обеспечивать вектор для переноса, содержащий такие иммуногенные чужеродные гены, и рекомбинантный бакуловирус, получаемые их гомологичной рекомбинацией, а также обеспечивать фармацевтическую композицию, содержащую в качестве активного ингредиента рекомбинантный бакуловирус с иммуногенным чужеродным геном, и препарат вакцины, содержащий фармацевтическую композицию.
Используемый согласно настоящему изобретению бакуловирус представляет собой патогенный вирус насекомых, вызывающий у насекомых инфекционное заболевание, и он относится к одной из групп (Baculoviridae) ДНК-вирусов с генами в виде кольцевой двухцепочечной ДНК. Из них одна группа вирусов, называемая вирусом ядерного полиэдроза (NPV), приводит к образованию включения, названного полиэдром, в ядре инфицированной клетки на поздней стадии инфекционного заболевания. Даже если подлежащий экспрессии чужеродный ген вставлен на место гена полиэдра, вирус инфицирует, растет и продуцирует в большом количестве желаемый продукт чужеродного гена в отсутствие каких-либо проблем. Таким образом, в последние годы этот способ часто использовали на практике для получения желаемого белка.
В качестве примеров бакуловируса, используемого согласно настоящему изобретению, могут быть представлены вирус ядерного полиэдроза Autographa californica: AcNPV, вирус ядерного полиэдроза Bombyx mori: BmNPV, вирус ядерного полиэдроза Orgyla pseudotsugata: OpNPV и вирус ядерного полиэдроза Lymantria disper: LdNPV.
Бакуловирусная ДНК может представлять собой любую ДНК, для которой возможно осуществление гомологичной рекомбинации с вектором для переноса согласно настоящему изобретению. Конкретно, могут быть вставлены вирусный ген из бакуловирусной ДНК, способный к осуществлению гомологичной рекомбинации с вектором для переноса согласно настоящему изобретению, составляющий 130 т.п.о., что является большой величиной, а также иммуногенный чужеродный ген величиной 15 т.п.о. Сам по себе бакуловирусный ген почти не экспрессируется в клетках позвоночных. Таким образом, практически нет необходимости учитывать его цитотоксичность, и, соответственно, предполагают, что индукция неблагоприятной иммунной реакции отсутствует.
(1) Вектор для переноса и получение вектора для переноса согласно настоящему изобретению
Получение ДНК иммуногенного чужеродного гена
ДНК иммуногенного чужеродного гена, способную к слиянию с вирусным геном, являющимся одним из компонентов бакуловирусного вектора для переноса, можно легко получать и производить с использованием синтеза на основе данных по последовательности нуклеиновой кислоты для полинуклеотида, кодирующего аминокислотную последовательность антигенного белка с заданной иммуногенностью, описанной в настоящей заявке, или с использованием прямого синтеза ДНК (способом химического синтеза ДНК), которая соответствует последовательности нуклеиновой кислоты из кодирующего участка иммуногенного чужеродного гена, на основе данных по последовательности нуклеиновой кислоты для иммуногенного чужеродного гена. Для такого получения можно использовать общепринятые способы генной инженерии (например, см. Molecular Cloning 2d Ed, Cold Spring Harbor Lab. Press (1989); Zoku Seikagaku Jikken Kouza, "Idenshi Kenkyuho I, II, III" под редакцией Японского биохимического общества, 1986).
В качестве примеров способов синтеза ДНК могут быть представлены способы химического синтеза ДНК, такие как фосфотриэфирный способ и фосфатамидитный способ (J. Am. Chem. Soc., 89, 4801(1967); ibid., 91, 3350(1969); Science, 150, 178(1968); Tetrahedron Lett., 22, 1859(1981); ibid., 24, 245(1983)), а также сочетания таких способов. Более конкретно, ДНК можно также химически синтезировать фосфорамидитным способом или триэфирным способом, а также ее можно синтезировать с использованием коммерчески доступного автоматического синтезатора олигонуклеотидов. Двухцепочечный фрагмент можно получать синтезом комплементарной цепи и отжигом комплементарной цепи с химически синтезированной одиночной цепью в соответствующих условиях или добавлением комплементарной цепи с соответствующими последовательностями праймеров к химически синтезированной одиночной цепи с использованием ДНК-полимеразы.
В качестве примера одного из конкретных аспектов ДНК иммуногенного чужеродного гена, получаемой согласно настоящему изобретению, может быть представлена ДНК, состоящая из последовательности ДНК, кодирующей аминокислотную последовательность антигенного белка М.tuberculosis последовательности ДНК, кодирующей аминокислотную последовательность антигенного белка малярии, или последовательности ДНК, кодирующей аминокислотную последовательность антигенного белка вируса гриппа.
Используемая согласно настоящему изобретению ДНК не ограничивается полноразмерной последовательностью ДНК из последовательности ДНК, кодирующей аминокислотную последовательность полипептида из обладающего иммуногенностью антигенного белка, и она может представлять собой последовательность ДНК, кодирующую часть последовательности, при условии, что белок с аминокислотной последовательностью, кодируемой последовательностью ДНК, обладает иммуногенностью.
Используемая согласно настоящему изобретению ДНК может представлять собой последовательность ДНК, которую получают слиянием последовательности ДНК, кодирующей аминокислотную последовательность обладающего антигенными свойствами антигенного белка, с геном цитокина, присутствующим в организме человека, например, геном IL-12, геном IL-1, геном IL-6, геном рецептора IL-6, геном IL-2, геном IL-18, геном IFN-α, геном IFN-β, геном IFN-γ, геном TNF, геном TGF-β, геном GM-CSF и геном М-CSF.
Слитая последовательность ДНК не ограничивается полноразмерным кодирующим участком последовательности ДНК, которая кодирует аминокислотную последовательность полипептида из обладающего антигенными свойствами антиг