Устройство для измерения фильтрационных потенциалов и определения характеристик подземного пласта

Иллюстрации

Показать все

Изобретение относится к области геофизики и может быть использовано при определении проницаемости пласта на различных глубинах. Характеристики подземных пластов определяют, используя группу электродов, с помощью которых можно измерять фильтрационные потенциалы в пласте, и интерпретируя данные, полученные с помощью электродов. Электроды размещают на фиксированных местах около законченного ствола скважины. Измеряемые фильтрационные потенциалы создают путем бурения с репрессионным давлением, разрезания глинистой корки в стволе скважины, закачивания кислоты или любым другим способом, который вызывает движение флюида. Полученные данные интерпретируют для определения местоположений трещин, определения проницаемости пласта, оценивания пластового давления, контроля потерь промывочной жидкости, обнаружения аномального давления и т.д. В частности, переходный процесс изменения напряжения, соответствующего фильтрационному потенциалу, имеющий профиль с двойным пиком, означает наличие трещины в пласте. Технический результат: повышение точности определения характеристик пласта. 21 з.п. ф-лы, 33 ил.

Реферат

Уровень техники изобретения

1. Область техники, к которой относится изобретение

В общем настоящее изобретение относится к нефтегазовой промышленности. Более конкретно, настоящее изобретение относится к устройствам и способам для измерения фильтрационных потенциалов, являющихся результатом переходных процессов изменения давления в подземном пласте, пересекаемом стволом скважины. Настоящее изобретение также относится к способам осуществления исследований, касающихся определения характеристик подземного пласта, по результатам измерений фильтрационного потенциала. Одной такой характеристикой является проницаемость пласта на различных глубинах, но изобретение не ограничено этим.

2. Уровень техники

Предыстория возможности осуществления измерений фильтрационных потенциалов в пластах, пересекаемых стволом скважины, является долгой. В патенте США №2433746, 1947, Doll предположил, что сильная вибрация скважинного устройства в стволе скважины может вызывать осцилляции давления и перемещение флюида относительно пласта, что, в свою очередь, может приводить к возрастанию доступных для измерения фильтрационных потенциалов, обусловленных эффектом электрокинетических потенциалов. В патенте США №2814017, 1957, Doll предложил способы исследования проницаемостей подземных пластов путем измерения разностей фаз между периодическими волнами давления, проходящими через пласты, и потенциалов, создаваемых при колебательном перемещении пластового флюида, вызванном этими волнами давления. С другой стороны, было предложено использовать периодически изменяющийся электрический ток для создания колебательного перемещения пластового флюида, приводящего, в свою очередь, к формированию в пласте периодических волн давления. В результате осуществления измерения сдвига фаз между создающими и создаваемыми физическими величинами будет получаться непосредственный показатель относительной проницаемости пласта.

В патенте США №3599085 (Semmelink A.) под названием “Apparatus for well logging by measuring and comparing potentials caused by sonic excitation”, 1971, было предложено прикладывать к поверхности пласта низкочастотную акустическую энергию с тем, чтобы создавать мощные электрокинетические импульсы или импульсы течения в непосредственной близости от акустического генератора. В соответствии с раскрытием этого патента электрокинетические импульсы, являющиеся результатом сдавливания (т.е. состязания вязкости и инерции) пласта, и импульсы фильтрационного потенциала вызывают периодические перемещения пластового флюида относительно породы пласта. Перемещение флюида создает обнаруживаемые электрокинетические потенциалы на той же самой частоте, которую имеет приложенная акустическая энергия, и имеющие в любом заданном месте величины, прямо пропорциональные скорости движения флюида и обратно пропорциональные квадрату расстояния от геометрического места точек импульсов фильтрационного потенциала. Поскольку, как было обнаружено, скорость флюида снижается относительно первоначального значения с увеличением расстояния, проходимого через пласт, с темпом, отчасти зависящим от проницаемости породы пласта, то было сделано предположение, что величина электрокинетического потенциала на любом заданном расстоянии от импульса дает относительный показатель проницаемости пласта. Получив отношение величин (амплитуд синусоид) электрокинетического потенциала в местах, отстоящих от акустического генератора, по которому можно найти эффективную глубину проникновения электрокинетического потенциала, в свою очередь, можно определить действительную проницаемость.

В патенте США №4427944, 1984, Chandler предложил скважинный прибор стационарного типа и способ для определения проницаемости пласта. Скважинный прибор включает в себя прижимной каротажный зонд, который приводят в зацепление с поверхностью пласта в нужном месте и который включает в себя средство для нагнетания флюида в пласт и электроды для измерения переходных процессов изменения электрокинетических фильтрационных потенциалов и времени отклика на нагнетание флюида. Нагнетание флюида является эффективным для возбуждения в пласте импульсов давления, которые вызывают в пласте переходное течение. Chandler предложил измерять характеристическое время отклика переходных фильтрационных потенциалов, создаваемых в пласте таким течением, чтобы получать точную информацию относительно проницаемости пласта.

В патенте США №5503001, 1996, Wong предложил способ и устройство для измерения фильтрационного потенциала конечной частоты и электроосмотического напряжения, наведенных вследствие приложения осцилляций давления с конечной частотой и переменного тока. Предложенное устройство включает в себя электромеханический преобразователь, который на конечной частоте создает осцилляции перепада давлений между двумя точками, и множество электродов, с помощью которых обнаруживаются перепад давлений и сигнал фильтрационного потенциала между теми же самыми двумя точками вблизи источника прикладываемого давления и на той же самой частоте путем использования синхронного усилителя или цифрового анализатора частотной характеристики. Wong считает, что, поскольку посредством устройства измерения осуществляется измерение перепада давлений на конечных частотах между двумя точками пористой среды вблизи источника прикладываемого давления (или тока), то этим существенно уменьшается влияние фоновых помех, создаваемых гидростатическим давлением, обусловленным глубиной залегания измеряемого пласта.

Несмотря на долгую предысторию и многочисленные идеи из предшествующего уровня техники, заявитель считает, что на самом деле до полевых измерений, выполненных в подтверждение настоящего изобретения, скважинные измерения переходных процессов изменения фильтрационного потенциала на реальных нефтяных месторождениях никогда не проводились. Имеются несколько причин отсутствия фактической реализации предложенных вариантов осуществления из предшествующего уровня техники. Wong считает, что ни измерение фильтрационного потенциала, ни измерение электроосмотического потенциала само по себе не дает надежного показателя проницаемости пласта, особенно пласта с низкой проницаемостью. Wong утверждает, что попытки измерения сигнала фильтрационного потенциала с помощью электродов, находящихся на расстояниях друг от друга, превышающих одну длину волны, являются ошибочными, поскольку осцилляции давления распространяются как акустическая волна, и перепад давлений будет зависеть от величины и фазы волны, а сигнал фильтрационного потенциала будет очень слабым, так как значительная часть энергии потеряется на вязкое рассеяние на всем протяжении этого расстояния. Кроме того, Wong утверждает, что приложение к пласту постоянного тока и измерение переходного напряжения во временной области не дадут эффекта в пластах с низкой проницаемостью, поскольку при более длительном времени отклика и очень низком сигнале фильтрационного потенциала на поверхности раздела электродов в динамике во времени будут превалировать дрейфы напряжения. Поэтому, несмотря на теоретические возможности, сформулированные в предшествующем уровне техники, общепринятая точка зрения специалистов в данной области техники (на которых Wong ориентируется) заключается в том, что практические измерения фильтрационного потенциала не могут быть осуществлены вследствие низких уровней сигналов, высоких уровней шумов, плохого пространственного разрешения и недостаточной долговременной стабильности. Несомненно, трудно получать данные о переходном процессе изменения давления с высоким пространственным разрешением, поскольку ствол скважины является по существу изобарической областью. С помощью датчиков давления, помещаемых внутрь ствола скважины, нельзя получать подробную информацию о переходных процессах изменения давления внутри пласта, если пласт является неоднородным. Чтобы сделать это, необходимо разделять ствол скважины на гидравлически изолированные зоны, что является трудной и требующей больших затрат задачей. Кроме того, должно быть понятно, что некоторые предложенные приборы из предшествующего уровня техники, даже если они и функционируют так, как задумано, находят чрезвычайно узкое применение. Например, прибор, который предложил Chandler, будет работать в пробуренных стволах скважин только до обсаживания, и при этом необходима остановка прибора на некоторое время на каждом месте, где должны быть осуществлены измерения. Поэтому прибор, который предложил Chandler, не может быть использован в качестве устройства для измерения в процессе бурения или каротажа в процессе бурения, неприменим в законченных скважинах для осуществления измерений в процессе добычи и даже не может быть использован на подвижной гирлянде каротажных устройств.

Сущность изобретения

Поэтому задача изобретения заключается в создании способов и устройств для измерений фильтрационного потенциала в подземном пласте.

Еще одна задача изобретения заключается в создании способов и устройств для измерения фильтрационных потенциалов в пласте в процессе бурения ствола скважины.

Дополнительная задача изобретения заключается в создании способов и устройств для измерения фильтрационных потенциалов в пласте около устройства, постоянно установленного в стволе скважины.

Задача изобретения также заключается в создании способов и устройств для измерения фильтрационных потенциалов в пласте с помощью перемещаемого скважинного прибора.

Дополнительная задача изобретения заключается в создании способов определения характеристик пласта путем использования результатов измерений фильтрационных потенциалов.

Еще одна задача изобретения заключается в создании способов определения характеристик трещин в пласте путем использования результатов измерений фильтрационных потенциалов.

Дополнительная задача изобретения заключается в создании способов определения одного или нескольких из проницаемости пласта, проницаемости приствольной части пласта с нарушенной проницаемостью, эффективной проницаемости трещины и горизонтальной и вертикальной проницаемостей пласта путем использования результатов измерений фильтрационных потенциалов.

В соответствии с этими задачами, которые будут подробно обсуждены ниже, предложены различные способы и устройства для измерения фильтрационного потенциала в подземном пласте. Первый вариант осуществления изобретения относится к измерению фильтрационного потенциала в процессе бурения ствола скважины. В настоящей заявке измерение в процессе бурения и каротаж в процессе бурения будут считаться равнозначными. Второй вариант осуществления изобретения относится к измерению фильтрационного потенциала с помощью скважинного прибора, который выполнен с возможностью осуществления измерений при перемещении по стволу скважины. Третий вариант осуществления изобретения относится к измерению фильтрационного потенциала с помощью устройства, которое постоянно установлено (например, зацементировано) вокруг ствола скважины. Все варианты осуществления изобретения могут быть использованы для обнаружения характеристик пласта. В частности, поскольку измерение фильтрационного потенциала непосредственно связано с движением флюидов, то результаты измерений фильтрационных потенциалов могут быть использованы для отслеживания движения флюидов в пласте. В свою очередь, эта информация может быть использована для нахождения проницаемости пласта в различных слоях породы вокруг ствола скважины и/или для обнаружения трещин в пласте и определения их характеристик.

Дополнительные задачи и преимущества изобретения станут понятными специалистам в данной области техники при обращении к подробному описанию в сочетании с сопровождающими чертежами.

Краткое описание чертежей

На чертежах:

Фиг.1 - схематический вид законченной горизонтальной скважины, имеющей электроды, размещенные около нее, для измерения фильтрационных потенциалов;

Фиг.2 - схематический вид электродов, установленных на изолированных соединительных секциях, при заканчивании скважины из Фиг.1 с использованием песочных фильтров;

Фиг.3 - график переходных процессов изменения давления, измеренных для двух зон из зон, показанных на Фиг.1;

Фиг.4 - график, иллюстрирующий в зависимости от времени переходные процессы изменения давления и фильтрационные потенциалы для скважины из Фиг.1;

Фиг.5 - график, иллюстрирующий фильтрационные потенциалы, измеренные с помощью электродов в зоне 2 из Фиг.1;

Фиг.6 - график, иллюстрирующий фильтрационные потенциалы, измеренные с помощью электродов в зоне 3 из Фиг.1;

Фиг.7 - график, иллюстрирующий дрейфы напряжений на электродах в зоне 1 из Фиг.1;

Фиг.8 - график, иллюстрирующий фильтрационные потенциалы, измеренные с помощью электродов в зоне 1 из Фиг.1;

Фиг.9 - схематический вид скважины из Фиг.1, иллюстрирующий качественные определения характеристик, осуществленные по информации, полученной с помощью электродов, расположенных около скважины;

Фиг.9а - схематическое представление прямой модели неоднородного пласта;

Фиг.9b - график фильтрационных потенциалов, полученных с помощью прямой модели из Фиг.9а;

Фиг.9с - схематическое представление прямой модели пласта с трещиной;

Фиг.9d - график фильтрационных потенциалов, полученных с помощью прямой модели из Фиг.9с;

Фиг.10 - схематический вид законченной вертикальной скважины, имеющей электроды, размещенные около нее, для измерения фильтрационных потенциалов;

Фиг.11 - схематическая иллюстрация способа, в соответствии с которым электроды были установлены в законченной скважине из Фиг.10;

Фиг.12 - график давления на устье скважины, приложенного к скважине из Фиг.10, в течение нескольких суток;

Фиг.13 - график, иллюстрирующий давление на устье скважины из Фиг.12 и фильтрационные потенциалы, измеренные группой электродов на месте расположения коллектора, показанного на Фиг.10;

Фиг.14 - увеличенный вариант участка из Фиг.13;

Фиг.15 - график, иллюстрирующий давление на устье скважины из Фиг.12 и фильтрационные потенциалы, измеренные группой электродов выше места расположения коллектора;

Фиг.16 - увеличенный вариант участка из Фиг.15;

Фиг.17 - график, иллюстрирующий давление на устье скважины из Фиг.12 и фильтрационные потенциалы, измеренные группой электродов ниже места расположения коллектора;

Фиг.18 - схематический вид скважины из Фиг.10, иллюстрирующий качественные определения характеристик, осуществленные по информации, полученной с помощью электродов, расположенных около скважины;

Фиг.18а - схематическое представление прямой модели трещины для вертикальной продуктивной скважины;

Фиг.18b - график фильтрационных потенциалов, полученных с помощью прямой модели из Фиг.18а;

Фиг.19 - увеличенный вариант участка из Фиг.17, который использован для показа стабильности электродов;

Фиг.20 - схематический вид законченной скважины с необсаженным стволом и с электродами, расположенными около изолирующей зоны, окружающей лифтовую колонну;

Фиг.21 - схематический вид законченной скважины с обсаженным стволом и с электродами, включенными в обсадную колонну;

Фиг.22 - схематический вид прибора для каротажа в процессе бурения с электродами для измерения фильтрационных потенциалов, расположенными на нем;

Фиг.23 - схематический вид спускаемого на кабеле прибора, имеющего электроды для измерения фильтрационных потенциалов, расположенные на нем;

Фиг.23а - схематическое представление прямой модели спускаемого на кабеле прибора, который выполнен с возможностью прорезания глинистой корки ствола скважины;

Фиг.23b - график фильтрационных потенциалов, полученных с помощью прямой модели из Фиг.23а, для не затронутой проникновением зоны;

Фиг.23с - график фильтрационных потенциалов, полученных с помощью прямой модели из Фиг.23а, для зоны проникновения фильтрата;

Фиг.23d - график, полученный с помощью прямой модели из Фиг.23а, чувствительности фильтрационного потенциала к глубине проникновения; и

Фиг.23е - график, иллюстрирующий инверсию синтетических данных для проницаемости и наилучшее соответствие для пяти параметров модели.

Подробное описание предпочтительных вариантов осуществления

До обращения к чертежам целесообразно рассмотреть некоторые теоретические соображения, относящиеся к физике изобретения. В коллекторных породах существует тонкий заряженный двойной слой на границе раздела между скелетом горной породы и водой в порах. Поверхность скелета заряжена отрицательно, а вода заряжена положительно. Когда вода перемещается под действием градиента ∇p давления, вместе с течением воды создается электрический ток i e. Электрический ток пропорционален течению воды, которое пропорционально градиенту давления

i e =L∇p, (1)

где L - постоянная связи, которая является свойством породы.

Переходные процессы изменения давления возникают в пласте при многих различных работах, которые производятся в период эксплуатации скважины, таких, как бурение, закачивание бурового раствора с проникновением его в пласт, цементирование, закачивание в пласт воды и кислоты, гидравлический разрыв пласта и добыча нефти и газа. Испытание при переходном процессе изменения давления представляет собой общепризнанный способ определения таких свойств коллектора, как проницаемость, размер коллектора и гидродинамическая связь между различными зонами и между различными скважинами. Кроме того, как изложено ниже, для определения этих свойств могут быть использованы переходные процессы изменения фильтрационного потенциала, связанные с переходными процессами изменения давления.

Моделирование пластового давления p может быть осуществлено с помощью моделей многофазного потока. Моделирование фильтрационного потенциала целесообразно начать с уравнения диффузии однофазного потока

(2)

где k - проницаемость, µ - вязкость, ϕ - пористость и с - сжимаемость флюида.

Фильтрационный потенциал V может быть вычислен на основании полученного моделированием поля давления p путем решения уравнения Пуассона

-∇·σ∇V=∇·L∇p, (3)

где σ - удельная электропроводность.

Из уравнения (2) следует, что время Δt распространения на расстояние Δx в пласте переходного процесса изменения давления и связанного с ним переходного процесса изменения фильтрационного потенциала, возникающего на поверхности ствола скважины, имеет вид

(4)

В ранний момент времени переходные процессы изменения давления и фильтрационного потенциала являются чувствительными в основном к свойствам коллектора вблизи ствола скважины, а в поздний момент времени переходные процессы являются чувствительными к свойствам коллектора как вблизи ствола скважины, так и на расстоянии от ствола скважины. Свойства коллектора на различных расстояниях от ствола скважины могут быть определены путем упорядоченной во времени интерпретации измеренных переходных процессов. Интерпретация переходных процессов изменения давления таким упорядоченным во времени способом является общепринятой в данной области техники. Например, переходные процессы изменения давления в ранний момент времени используют для определения нарушения проницаемости или «скин-эффекта», а переходные процессы изменения давления в поздний момент времени используют для определения границ коллектора.

Эти применения очень сильно ограничиваются, если имеются результаты измерений только установившихся значений фильтрационных потенциалов. Для установившегося состояния уравнение (2) становится следующим

(5)

В таком случае перепад Δp давлений на глубинном интервале Δx пропорционален

(6)

Падение ΔV фильтрационного потенциала в зависимости от Δp имеет вид

(7)

при этом оно пропорционально

(8)

На основании установившегося фильтрационного потенциала можно получать информацию только о среднем значении свойства коллектора, и при этом он является значимым на интервалах с большими значениями (Lµ)/(σk). Считается, что при наличии глинистой корки установившийся фильтрационный потенциал находится под преобладающим влиянием глинистой корки и нечувствителен к свойствам коллектора. Проницаемость глинистой корки является очень низкой, и установившийся перепад давлений существует в основном на глинистой корке.

Хотя в принципе можно определять свойства коллектора на всех расстояниях от ствола скважины (т.е. по радиальным направлениям от ствола скважины) путем упорядоченной во времени интерпретации переходных процессов, на практике решающим вопросом является возможность осуществления измерений с достаточным качеством: точностью, пространственным разрешением и стабильностью в течение продолжительного периода времени. Трудно получать данные о переходном процессе изменения давления с высоким пространственным разрешением, поскольку ствол скважины является по существу изобарической областью. Если пласт является неоднородным, то с помощью датчика давления, помещенного внутрь ствола скважины, нельзя получать подробную информацию о переходных процессах изменения давления внутри пласта. Для осуществления этого необходимо сегментировать ствол скважины на гидравлически изолированные зоны, что является трудной задачей, требующей больших затрат при ее выполнении. С другой стороны, ствол скважины не является эквипотенциальной поверхностью для протекания электрического тока. Поэтому переходные процессы изменения фильтрационного потенциала могут быть измерены с помощью группы электродов, помещенных внутрь ствола скважины и электрически обособленных (то есть изолированных) друг от друга, и при этом может быть получена информация, эквивалентная информации во время испытания при переходном процессе изменения давления в гидравлически изолированной зоне, поскольку фильтрационный потенциал определяется градиентом давления. На самом деле, путем использования группы изолированных электродов для измерения фильтрационного потенциала можно измерять фильтрационный потенциал с более высоким пространственным разрешением, чем в случае испытания при переходном процессе изменения давления в гидравлически изолированной зоне.

С учетом теоретического толкования, приведенного выше, согласно одному аспекту изобретения для измерения переходных процессов изменения фильтрационного потенциала изолированные электроды размещают в стволе скважины или в скважине, или около них. Как будет рассмотрено более подробно ниже, согласно различным вариантам осуществления изобретения электроды могут быть размещены на изолированных секциях бурильной трубы при осуществлении измерений в процессе бурения или каротажа в процессе бурения или на корпусе прибора, который перемещают по стволу скважины при кабельном каротаже. В случаях применений после заканчивания скважины электроды могут быть размещены на изолированном зонде, помещенном в необсаженный ствол при заканчивании скважины с необсаженным стволом, или на центраторах (или в качестве частей их) при заканчивании скважины с использованием песочных фильтров, или в изолированном окружении обсадной трубы при заканчивании скважины цементированием. При заканчивании скважины с необсаженным стволом и с электрически изолированными секциями обсадной трубы металлические обсадные трубы могут использоваться как электроды. Независимо от того, каким образом размещают электроды, разности напряжений постоянного тока, указывающие на фильтрационные потенциалы, измеряют между опорным электродом и другими электродами группы. Начальные значения разностей напряжений между опорным электродом и другими электродами, которые обычно обусловлены различиями в химии поверхности электродов, вычитают из всех последующих данных, чтобы получать переходные процессы изменения давления.

Согласно еще одному аспекту изобретения переходные процессы изменения фильтрационного потенциала создают любым из многих способов. Согласно одному варианту осуществления изобретения, связанному с бурением ствола скважины, перепад давлений между пластом и стволом скважины приводит к проникновению бурового раствора в пласт, к переходным процессам изменения давления и переходным процессам изменения фильтрационного потенциала. Согласно еще одному варианту осуществления изобретения, связанному с кабельным каротажем ствола скважины, переходные процессы изменения фильтрационного потенциала создают путем снабжения каротажного прибора одним или несколькими лезвиями, закрепляемыми на одном или нескольких отводных рычагах, которыми во время каротажа прорезают щели в глинистой корке. Вследствие большого репрессионного перепада давлений между пластом и стволом скважины при прорезании глинистой корки флюид будет протекать через щель, и возникающий переходный процесс изменения давления может быть измерен. Согласно еще одному варианту осуществления изобретения, применяемому при заканчивании и после заканчивания скважины, переходные процессы изменения фильтрационного потенциала создают путем закачивания раствора для заканчивания скважины, цемента, гравия, кислот, расклинивающего пропелланта, путем проведения испытания с нагнетанием воды, испытания на приток и т.д. В действительности любое изменение дебита добычи также будет создавать переходные процессы изменения фильтрационного потенциала. При условии, что существует поток электропроводных флюидов, связанных с переходными процессами изменения давления, будет возникать переходный процесс изменения фильтрационного потенциала, и он может быть измерен путем использования размещенных электродов.

Согласно еще одному аспекту изобретения данные, относящиеся к переходным процессам изменения фильтрационного потенциала, полученные с помощью электродов, интерпретируют для извлечения полезной информации. Специалистам в данной области техники должно быть понятно, что интерпретация данных о переходных процессах изменения давления (в противоположность данным о переходных процессах изменения фильтрационного потенциала) с целью получения свойств коллектора, таких, как проницаемость, является общепринятым способом. В пластах с высокой проницаемостью переходные процессы изменения давления протекают быстро во времени, тогда как в пластах с низкой проницаемостью переходные процессы изменения давления протекают медленно. Переходные процессы изменения фильтрационного потенциала, создаваемые переходными процессами изменения давления, зависят от проницаемости пласта точно так же, как и переходные процессы изменения давления.

Как должно быть понятно специалистам в данной области техники, имеются средства для аналитического и численного моделирования переходных процессов изменения давления. Параметры коллектора, представляющие интерес, могут быть определены путем варьирования параметров в модели до тех пор, пока вычисленное давление не будет согласовано с измеренными данными. Формально, пусть R будет обозначать набор параметров коллектора, подлежащих определению, а f p(R) пусть будет обозначать переходный процесс изменения давления, полученный моделированием. Расхождение между переходными процессами изменения давления, полученными моделированием и путем измерения, имеет вид

E p (R)=||f p (R)-p|| (9)

Расхождение минимизируют при R=R 0, чтобы получить обращенные значения параметров коллектора.

Количественная интерпретация данных о фильтрационном потенциале с целью определения параметров коллектора, таких, как проницаемость пласта, может быть осуществлена тем же самым способом, что и интерпретация данных о переходном процессе изменения давления. Пусть s обозначает набор измеренных переходных процессов. Набор может состоять только из переходных процессов изменения фильтрационного потенциала V или он может состоять как из переходных процессов изменения фильтрационного потенциала, так и из переходных процессов изменения давления. Пусть f s(R,L) обозначает полученные моделированием переходные процессы, которые зависят от дополнительного набора параметров: от постоянных L связи в уравнении (3). (Удельная электропроводность σ в уравнении (3) обычно известна из данных каротажа удельного электрического сопротивления.) Расхождение между полученными моделированием и измеренными переходными процессами изменения давления находят в соответствии с

E s(R,L)=||f s(R,L)-s|| (10)

Расхождение минимизируют при R=R 0 и L=L 0, чтобы получить обращенные значения параметров коллектора.

Специалистам в данной области техники должно быть понятно, что уравнение (3) Пуассона является линейным относительно постоянных L связи, поскольку обратная связь фильтрационного потенциала с основными уравнениями для давления при электроосмосе является пренебрежимо малой. Поэтому инверсия постоянных связи представляет собой непосредственную линейную инверсию. На самом деле, минимизацию уравнения (10) осуществляют в два этапа. Первый этап заключается в фиксации R и изменении L и нахождении субоптимального минимума расхождения путем решения линейной задачи для R. Решение дает L как функцию R. В таком случае субоптимальный минимум является функцией только R

E s1(R)≡E s(R,L(R)) (11)

Второй этап заключается в нелинейном поиске минимума уравнения (11), содержащего такое же число неизвестных, что и уравнение (9). Поэтому дополнительной задачей оценивания постоянных связи не вносится дополнительная вычислительная сложность или математическая неопределенность в задачу инверсии.

Согласно еще одному аспекту изобретения измеренные переходные процессы изменения фильтрационного потенциала, связанные с движением флюида в пласте, могут быть использованы в числе прочего для: отслеживания перемещения следа цементного раствора во время цементирования и тем самым обнаружения возможных проблем, связанных с цементированием; отслеживания суспензий, переносящих гравий, и тем самым контроля гравийной набивки; отслеживания перемещения кислоты во время закачивания кислоты в пласт, поскольку при закачивании кислоты создаются переходные процессы изменения фильтрационного потенциала; контроля гидравлического разрыва пластов в реальном времени; количественного оценивания работ по гидравлическому разрыву; отслеживания перемещения воды, происходящего вследствие закачивания воды; повышения эффективности испытания при переходном процессе изменения давления; и контроля изменений параметров коллектора на протяжении больших периодов времени, в том числе водонасыщенности, относительной проницаемости и обводненности.

При использовании различных аспектов изобретения, описанных ранее, были проведены промысловые испытания на горизонтальной эксплуатационной скважине, часть которой схематически показана на Фиг.1. Горизонтальная эксплуатационная скважина 100 из Фиг.1 была закончена в пласте 105 с использованием песочных фильтров 114 (см. Фиг.2) и сегментирована на три зоны затрубными пакерами 111а, 111b, 111c. Зона, ближайшая к устью горизонтальной скважины, обозначена как зона 1, средняя зона как зона 2 и зона, ближайшая к забою, как зона 3. Каждая зона снабжена клапанным узлом 113a, 113b, 113c соответственно, встроенным на протяжении фильтра 114, с двумя датчиками давления 115-1 и 115-2, связанными с каждым клапанным устройством 113 (см. Фиг.2). Электроды 118 были размещены так, как рассмотрено ниже.

Теперь обратимся к Фиг.2, где показано размещение электродов 118 согласно изобретению. Как видно из Фиг.2, скважина 100 закончена с использованием секций 114 песочных фильтров, которые с целью образования колонны для заканчивания соединены друг с другом посредством изолированных соединительных секций 116. Должно быть понятно, что секции экранов не могут быть электрически изолированы от пласта 105 или от флюида в затрубном пространстве (не показанного). Соединительные секции 116 являются электрически изолированными. В середине каждой соединительной секции установлен центратор 118. Из-за массы колонны 114, 116 для заканчивания центраторы 118 всегда находятся в хорошем контакте с пластом 105. Поэтому в соответствии с изобретением предпочтительно, чтобы центраторы 118, используемые как электроды, были снабжены высокоимпедансными цепями измерения напряжения и соединены с наземной электроникой кабелем (не показанным). Соответствующая конструкция центраторов описана в Международной заявке WO 02/053871.

Специалистам в данной области техники должно быть понятно, что колонна для заканчивания, изготовленная из металла, создает цепь короткого замыкания для электрических токов. Секции 114 экранов, использованные для заканчивания скважины 100, были длиной пятнадцать футов, а соединительные секции 116 были длиной пять футов. Поскольку изолированные соединительные секции 116 колонны для заканчивания имеют защитное покрытие только на небольшом участке вблизи электродов 118, большая часть электрических токов может протекать через незащищенные секции 114 фильтров, приводя к снижению уровня сигнала. Однако, как показано ниже, все же существуют сигналы значительных уровней, которые могут быть измерены. Следует отметить, что для количественной интерпретации достаточно учесть ток утечки при прямом моделировании.

Как показано на Фиг.1, на каждую зону было предусмотрено семь электродов при общем количестве электродов, составляющем двадцать один (обозначенных 118-1, 118-2, …, 118-21). При секции фильтра длиной пятнадцать футов и соединительной секции длиной пять футов расстояние между соседними электродами в каждой зоне составляло приблизительно двадцать футов. Расстояние между ближайшими двумя электродами в разных зонах было немного больше одной сотни футов.

Из данных испытания на герметичность, собранных посредством манометров на обеих сторонах колонны для заканчивания, следует, что зона 1 гидравлически изолирована от зоны 2 и зоны 3. Это видно из Фиг.3, поскольку давление 125а в зоне 1 значительно выше давлений 125b, 125c в зоне 2 и зоне 3, что свидетельствует об изоляции. Поэтому для напряжений электродов в зоне 1 (от 118-1 до 118-7) опорный электрод выбирался в зоне 2 или зоне 3, а для напряжений электродов в зоне 2 и зоне 3 опорный электрод выбирался в зоне 1.

Чтобы создать переходный процесс изменения фильтрационного потенциала, три электрических клапана 113a, 113b, 113c и штанговый насос (не показанный) на поверхности пласта использовались для регулирования потока флюида. Флюид из затрубного пространства каждой зоны втекал в трубу через отверстие клапана. Манометром 115-1 на трубной стороне отверстия измерялось трубное давление, а манометром 115-2 на стороне затрубного пространства измерялось давление в кольцевой области между пластом и фильтром. Переходные процессы изменения давления создавались в пласте 105 путем включения и отключения насоса и открывания и закрывания клапанов 113, и они измерялись манометрами 115-2 на стороне затрубного пространства.

Для каждой из трех зон давление в затрубном пространстве было равно пластовому давлению. Как видно из Фиг.3, давления 12