Доставка команды передачи обслуживания

Иллюстрации

Показать все

Изобретение относится к средствам передачи информации в беспроводной сети. Технический результат заключается в улучшении связи между UE и другим предпочтительным узлом обслуживания eNode В. Дельта-конфигурация передается на UE, запрашивающее передачу обслуживания, причем дельта-конфигурация указывает изменения, которые необходимы для текущей конфигурации UE для выполнения передачи обслуживания. Передача обслуживания инициируется посредством отчета об измерении, передаваемого на исходный eNode В, обслуживающий в текущий момент, от UE. Отчет об измерении может содержать одно или более из текущих условий радиосвязи, текущей конфигурации UE или предпочтительного конечного eNode В, если передача обслуживания является передачей обслуживания между eNode В. В передаче обслуживания между eNB текущая конфигурация UE пересылается на предпочтительный конечный eNode В исходным eNode В. Конечный eNode В генерирует дельта-конфигурацию и передает ее на исходный eNode В в прозрачном контейнере, которая затем пересылается на UE. 11 н. и 47 з.п. ф-лы, 15 ил.

Реферат

Ссылки на родственную заявку

Данная заявка притязает на приоритет предварительной патентной заявки США № 60/945070, поданной 19 июня 2007 г. и озаглавленной “A METHOD AND APPARATUS DELIVERY OF HANDOVER COMMAND”, которая в полном объеме включена сюда в порядке ссылки.

Уровень техники

Системы беспроводной связи широко применяются для обеспечения различных типов связи, например, для передачи речи, данных, видео и т.д. Эти системы могут представлять собой системы множественного доступа, способные поддерживать связь с множественными терминалами доступа за счет обобществления доступных системных ресурсов (например, полосы и передаваемой мощности). Примеры таких систем множественного доступа включают в себя системы множественного доступа с кодовым разделением (CDMA), системы множественного доступа с временным разделением (TDMA), системы множественного доступа с частотным разделением (FDMA), системы Long Term Evolution (LTE) 3GPP и системы множественного доступа с ортогональным частотным разделением (OFDMA). Обычно система беспроводной связи содержит несколько базовых станций, причем каждая базовая станция осуществляет связь с мобильной станцией с использованием прямой линии связи, и каждая мобильная станция (или терминал доступа) осуществляет связь с базовой(ыми) станцией(ями) с использованием обратной линии связи.

В общем случае, система беспроводной связи множественного доступа может одновременно поддерживать связь для множественных беспроводных терминалов. Каждый терминал осуществляет связь с одной или несколькими базовыми станциями посредством передач по прямой и обратной линиям связи. Прямая (или нисходящая) линия связи это линия связи от базовых станций к терминалам, и обратная (или восходящая) линия связи - это линия связи от терминалов к базовым станциям. Эта линия связи может быть установлена в системе с одним входом и одним выходом (SISO), многими входами и одним выходом (MISO) или многими входами и многими выходами (MIMO).

В системах MIMO применяются множественные (N T) передающие антенны и множественные (N R) приемные антенны для передачи данных. Канал MIMO, образованный N T передающими и N R приемными антеннами, можно разложить на N S независимых каналов, которые можно именовать пространственными каналами, где . Каждый из N S независимых каналов соответствует отдельному пространственному измерению. Система MIMO может обеспечивать повышенную производительность (например, повышенную эффективность использования спектра, повышенную пропускную способность и/или повышенную надежность), в случае использования дополнительных пространственных измерений, созданных множественными передающими и приемными антеннами.

Система MIMO поддерживает системы дуплексной связи с временным разделением (TDD) и дуплексной связи с частотным разделением (FDD). В системе TDD передачи по прямой и обратной линиям связи занимают один и тот же частотный диапазон, поэтому принцип обратимости позволяет устанавливать канал прямой линии связи из канала обратной линии связи. Это позволяет eNB (Evolved Node B) получать коэффициент усиления за счет формирования диаграммы направленности передачи на прямой линии связи при наличии на eNB множественных антенн.

UE необходим eNB, обслуживающий соту, в которой оно в данный момент находится, для облегчения связи. Однако, когда UE перемещается из своего текущего положения, оно может входить в зону покрытия, связанную с другим eNB, который, возможно, будет лучше обслуживать UE. Для этого UE требуется осуществить передачу обслуживания от текущего обслуживающего eNB к новому eNB. Однако сигнализацию между UE и eNB необходимо оптимизировать для обеспечения надежной связи.

Сущность изобретения

Ниже, в упрощенном виде, представлена сущность заявленного изобретения для обеспечения понимания, в основном, некоторых аспектов заявленного изобретения. Эта сущность не является обширным обзором заявленного изобретения. Она не призвана ни идентифицировать ключевые или критические элементы заявленного изобретения, ни ограничивать объем заявленного изобретения. Ее единственной целью является представление некоторых концепций заявленного изобретения в упрощенной форме в качестве прелюдии к более подробному описанию, которое приведено ниже.

В соответствии с этим аспектом раскрыт способ выполнения передачи обслуживания в системе беспроводной связи. Обслуживающий eNB принимает отчет об измерении, содержащий текущую конфигурацию, связанную с UE. В ответ он передает дельта-конфигурацию, содержащую одно или несколько изменений, вносимых в текущую конфигурацию UE, для облегчения передачи обслуживания. Если передача обслуживания является передачей обслуживания между eNB (усовершенствованными Узлами В) от исходного eNB к другому конечному eNB, отчет об измерении передается от UE на исходный eNB и содержит информацию, касающуюся предпочтительного конечного eNB. Исходный eNB пересылает текущую конфигурацию UE на предпочтительный конечный eNB. В ответ, конечный eNB генерирует дельта-конфигурацию с изменениями и передает ее на исходный eNB в прозрачном контейнере. Исходный eNB пересылает прозрачный контейнер на UE, не получая информации, содержащейся в контейнере. Еще один аспект предусматривает, что передача обслуживания является передачей обслуживания внутри eNB. В этом случае, сообщение передачи обслуживания, передаваемое на UE для облегчения передачи обслуживания, содержит выбор между локальной конфигурацией и прозрачным контейнером.

Еще один аспект предусматривает определение, из отчета об измерении, можно ли пересылать на UE критическую и/или некритическую информацию, связанную с передачей обслуживания. В соответствии с этим аспектом, исходный eNB определяет, можно ли передавать на UE критическую и/или некритическую информацию и, на основании, по меньшей мере, определения, он принимает от конечного eNB соответствующую информацию, которая затем пересылается на UE. На основании одного или нескольких условий радиосвязи, связанных с UE, извлеченных из отчета об измерении или от исходного eNB, на UE можно пересылать только критическую информацию. В этом случае либо исходный eNB информирует конечный eNB о пересылке только критической информации, либо UE передает информацию, которую он принял от исходного eNB, на конечный eNB по завершении передачи обслуживания.

Еще один аспект предусматривает устройство для облегчения передачи обслуживания в системе связи. Устройство содержит приемник, который принимает, по меньшей мере, отчет об измерении, содержащий информацию, касающуюся текущей конфигурации UE, которому нужна передача обслуживания. Процессор, также входящий в состав устройства, генерирует, по меньшей мере, одно сообщение передачи обслуживания, содержащее дельта-конфигурацию для UE, причем дельта-конфигурация указывает одно или несколько изменений, необходимых в текущей конфигурации UE для облегчения передачи обслуживания, и предоставляет сообщение передатчику, который передает его на UE.

Еще один аспект предусматривает компьютерный программный продукт, содержащий компьютерно-считываемый носитель информации, содержащий: код, предписывающий, по меньшей мере, компьютеру принимать отчет об измерении, содержащий текущую конфигурацию, связанную с UE; код, предписывающий, по меньшей мере, компьютеру принимать дельта-конфигурацию, содержащую одно или несколько изменений, вносимых в текущую конфигурацию UE; и код, предписывающий, по меньшей мере, компьютеру передавать дельта-конфигурацию на UE для облегчения передачи обслуживания UE. Код облегчает прием отчета об измерении, содержащего текущую конфигурацию UE, от UE. В ответ, код дополнительно облегчает передачу дельта-конфигурации, содержащей одно или несколько изменений, вносимых в текущую конфигурацию UE, на UE, что позволяет UE совершать передачу обслуживания. При передаче обслуживания между eNB, инструкции дополнительно облегчают пересылку на UE прозрачного контейнера, содержащего дельта-конфигурацию, без необходимости декодировать содержимое контейнера.

Еще один аспект предусматривает систему для облегчения передачи обслуживания. Система содержит средство для приема одного или нескольких отчетов об измерении от одного или нескольких UE, где указана текущая конфигурация, связанная с UE. Она также содержит средство для анализа отчетов об измерении для идентификации, по меньшей мере, одного UE, запрашивающего передачу обслуживания. Сообщение, содержащее, по меньшей мере, дельта-конфигурацию, которая указывает одно или несколько изменений текущей конфигурации UE, передается на UE средством для передачи, также входящим в состав системы.

В другом аспекте раскрыт способ выполнения передачи обслуживания между eNB в системе беспроводной связи. Способ содержит этапы, на которых принимают запрос на передачу обслуживания, причем запрос содержит информацию, касающуюся текущей конфигурации, связанной с UE, запрашивающим передачу обслуживания. Способ также содержит этапы, на которых определяют дельта-конфигурацию, указывающую одно или несколько изменений текущей конфигурации, которые необходимы для облегчения передачи обслуживания и передают дельта-конфигурацию в прозрачном контейнере.

В еще одном аспекте раскрыто устройство для облегчения передачи обслуживания в системе связи. Устройство содержит приемник, который принимает информацию, касающуюся текущей конфигурации UE, запрашивающего передачу обслуживания. Процессор, также входящий в состав устройства, определяет, по меньшей мере, дельта-конфигурацию для UE, причем дельта-конфигурация указывает одно или несколько изменений, необходимых в текущей конфигурации UE, для облегчения передачи обслуживания. Передатчик принимает дельта-конфигурацию и передает дельта-конфигурацию в прозрачном контейнере.

Еще один аспект предусматривает компьютерный программный продукт, содержащий компьютерно-считываемый носитель информации, содержащий: код, предписывающий, по меньшей мере, компьютеру принимать запрос на передачу обслуживания, причем запрос содержит информацию, касающуюся текущей конфигурации, связанной с UE, запрашивающим передачу обслуживания; код, предписывающий, по меньшей мере, компьютеру определять дельта-конфигурацию, указывающую одно или несколько изменений текущей конфигурации, которые необходимы для облегчения передачи обслуживания; и код, предписывающий, по меньшей мере, компьютеру передавать дельта-конфигурацию в прозрачном контейнере.

В другом аспекте раскрыт способ выполнения передачи обслуживания в системе беспроводной связи. Способ содержит этапы, на которых передают отчет об измерении, содержащий текущую конфигурацию UE, принимают дельта-конфигурацию, содержащую одно или несколько изменений, вносимых в текущую конфигурацию, и реализуют дельта-конфигурацию для облегчения передачи обслуживания. Если передача обслуживания является передачей обслуживания между eNB (усовершенствованными Узлами В) от исходного eNB к предпочтительному конечному eNB, предпочтительный конечный eNB указывают исходному eNB в отчете об измерении помимо информации, касающейся условий радиосвязи, связанных с UE. В ответ дельта-конфигурацию принимают в прозрачном контейнере от исходного eNB на UE. Дополнительно, способ содержит этап, на котором принимают критическую и/или некритическую информацию от исходного eNB на основании, по меньшей мере, условий радиосвязи, передаваемых в отчете об измерении. Он также содержит этап, на котором передают на конечный eNB сообщение, содержащее информацию, касающуюся информации, принятой от исходного eNB, по завершении передачи обслуживания.

В соответствии с еще одним аспектом раскрыто устройство для облегчения передачи обслуживания в системе беспроводной связи. Устройство содержит процессор, который генерирует, по меньшей мере, отчет об измерении, содержащий информацию, касающуюся текущей конфигурации и условий радиосвязи, связанных с UE. Передатчик, также входящий в состав устройства, передает отчет об измерении. Устройство также включает в себя приемник, который принимает сообщение, содержащее дельта-конфигурацию, причем дельта-конфигурация указывает изменения текущей конфигурации, которые необходимы для облегчения передачи обслуживания.

В еще одном аспекте, изобретение предусматривает компьютерный программный продукт, содержащий компьютерно-считываемый носитель информации, содержащий: код, предписывающий, по меньшей мере, компьютеру передавать отчет об измерении, содержащий текущую конфигурацию UE; код, предписывающий, по меньшей мере, компьютеру принимать дельта-конфигурацию, содержащую одно или несколько изменений, вносимых в текущую конфигурацию; и код, предписывающий, по меньшей мере, компьютеру реализовать дельта-конфигурацию для облегчения передачи обслуживания.

В соответствии с этим аспектом раскрыта система для облегчения передачи обслуживания. Система содержит средство для генерации отчета об измерении, содержащего текущую конфигурацию и условия радиосвязи, связанные с UE. Средство для передачи, также входящее в состав системы, передает отчет об измерении. Система также содержит средство для приема сообщения передачи обслуживания, содержащего дельта-конфигурацию, которая указывает одно или несколько изменений текущей конфигурации, которые необходимы для облегчения передачи обслуживания.

В нижеследующем описании и прилагаемых чертежах подробно изложены некоторые иллюстративные аспекты заявленного изобретения. Однако эти аспекты представляют лишь некоторые возможные подходы к применению раскрытых здесь принципов заявленного изобретения, и заявленное изобретение призвано охватывать все подобные аспекты и их эквиваленты. Другие преимущества и признаки новизны следуют из нижеследующего подробного описания заявленного изобретения, приведенного совместно с чертежами.

Краткое описание чертежей

Фиг. 1 - система беспроводной связи множественного доступа согласно одному варианту осуществления.

Фиг. 2 - блок-схема варианта осуществления eNB и терминала доступа (или UE) в системе MIMO.

Фиг. 3 - система беспроводной связи множественного доступа в соответствии с различными описанными здесь аспектами.

Фиг. 4 - процедура передачи обслуживания, выполняемая в соответствии с аспектом.

Фиг. 5 - более подробное описание работы системы, выполняющей процедуру передачи обслуживания между eNB.

Фиг. 6 - варианты осуществления сообщения RRC в соответствии с различными описанными здесь аспектами.

Фиг. 7 - способ выполнения передачи обслуживания между eNB в соответствии с аспектом.

Фиг. 8A - способ передачи критической и/или некритической информации от конечного eNB на UE в передаче обслуживания между eNB в соответствии с аспектом.

Фиг. 8B - другой аспект передачи критической/некритической информации на UE исходным eNB в процедуре передачи обслуживания между eNB.

Фиг. 9 - логическая блок-схема способа выполнения передачи обслуживания в соответствии с аспектом.

Фиг. 10 - логическая блок-схема способа приема информации в соответствии с аспектом.

Фиг. 11 - обобщенная блок-схема различных компонентов устройства в соответствии с различными аспектами.

Фиг. 12 - другая обобщенная блок-схема различных компонентов устройства в соответствии с различными описанными здесь аспектами.

Фиг. 13 - блок-схема иллюстративной системы, которая позволяет передачу обслуживания в соответствии с аспектами, раскрытыми в описании изобретения.

Фиг. 14 - блок-схема иллюстративной системы, которая допускает передачу обслуживания между eNB в соответствии с аспектом, описанным в описании изобретения.

Описание изобретения

Заявленное изобретение описано ниже со ссылкой на чертежи, снабженные сквозной системой обозначений. В нижеследующем описании, в целях объяснения, многочисленные конкретные детали изложены для обеспечения полного понимания заявленного изобретения. Однако можно видеть, что заявленное изобретение можно осуществлять на практике без этих конкретных деталей. В других примерах, общеизвестные конструкции и устройства показаны в форме блок-схемы для облегчения описания заявленного изобретения.

Различные варианты осуществления описаны ниже со ссылкой на чертежи, снабженные сквозной системой обозначений. В нижеследующем описании, в целях объяснения, многочисленные конкретные детали изложены для обеспечения полного понимания одного или нескольких аспектов Однако можно видеть, что такой(ие) вариант(ы) осуществления можно осуществлять на практике без этих конкретных деталей. В других примерах, общеизвестные конструкции и устройства показаны в форме блок-схемы для облегчения описания одного или нескольких вариантов осуществления. Используемые в этой заявке термины “компонент”, “модуль”, “система” и т.п. относятся к компьютерной сущности, представляющей собой либо оборудование, либо сочетание оборудования и программного обеспечения, либо программное обеспечение, либо выполняющееся программное обеспечение. Например, компонент может представлять собой, но без ограничения, процесс, выполняющийся на процессоре, процессор, объект, исполнимый модуль, поток выполнения, программу и/или компьютер. В порядке иллюстрации, компонентом может быть как приложение, выполняющееся на вычислительном устройстве, так и вычислительное устройство. Один или несколько компонентов могут располагаться в процессе и/или потоке выполнения, и компонент может быть локализован на одном компьютере и/или распределен между двумя или более компьютерами. Кроме того, эти компоненты могут выполняться с различных компьютерно-считываемых носителей, на которых хранятся различные структуры данных. Компоненты могут осуществлять связь посредством локальных и/или удаленных процессов, например, согласно сигналу, имеющему один или несколько пакетов данных (например, данных от одного компонента, взаимодействующего с другим компонентом в локальной системе, распределенной системе и/или по сети, например, интернету, с другими системами посредством сигнала).

Различные варианты осуществления будут представлены в отношении систем, которые могут включать в себя ряд устройств, компонентов, модулей и т.п. Очевидно, что различные системы могут включать в себя дополнительные устройства, компоненты, модули и т.д. и/или могут не включать в себя все устройства, компоненты, модули и т.д., представленные на фигурах. Также можно использовать сочетание этих подходов.

Слово “иллюстративный” используется здесь в смысле «служащий примером, вариантом или иллюстрацией». Любой вариант осуществления или любую конструкцию, описанный/ую здесь как “иллюстративный/ую”, не обязательно рассматривать как предпочтительный/ую или имеющий/ую преимущество над другими вариантами осуществления или конструкциями. Используемое здесь слово "прослушивание" означает, что устройство-получатель (eNB или UE) принимает и обрабатывает данные, принятые на данном канале.

Различные аспекты могут предусматривать схемы и/или техники вывода в связи с переводом ресурсов связи. Используемый здесь термин “выводить” или “вывод” относится, в общем случае, к процессу рассуждения о состояниях системы, среды и/или пользователя или их вывода на основании совокупности наблюдений, сделанных на основе событий и/или данных. Вывод можно применять для идентификации конкретного контекста или действия или, например, для генерации распределения вероятности по состояниям. Вывод может носить вероятностный характер, т.е. опираться на вычисление распределения вероятности по нужным состояниям на основании изучения данных и событий, или на основании теоретических рассуждений, построение на основе вероятностного вывода, и учет действий по отображению наиболее ожидаемой службы, в контексте неопределенности целей и намерений пользователя. Вывод также может относиться к методам, применяемым для составления событий более высокого уровня из множества событий и/или данных. Такой вывод приводит к построению новых событий или действий из множества наблюдаемых событий и/или сохраненных данных событий, в зависимости от того, коррелируют ли события в тесной временной близости и от того, приходят ли события и данные из одного или нескольких источников событий и данных.

Кроме того, различные аспекты описаны здесь в связи с абонентской станцией. Абонентскую станцию также можно называть системой, абонентским блоком, мобильной станцией, мобильником, удаленной станцией, точкой доступа, eNB, удаленным терминалом, терминалом доступа, пользовательским терминалом, пользовательским агентом, пользовательским устройством, мобильным устройством, портативным устройством связи или пользовательским оборудованием (UE). Абонентская станция может представлять собой сотовый телефон, беспроводной телефон, телефон протокола инициирования сеанса [Session Initiation Protocol] (SIP), станцию беспроводного местного доступа (WLL), карманный персональный компьютер (КПК), карманное устройство, имеющее возможность беспроводного соединения, или другое устройство обработки, подключенное к беспроводному модему.

Кроме того, различные описанные здесь аспекты или признаки можно реализовать как способ, устройство или изделие производства с использованием стандартных методов программирования и/или проектирования. Используемый здесь термин "изделие производства" призван охватывать компьютерную программу, доступную с любого компьютерно-считываемого устройства, несущей или носителя. Например, компьютерно-считываемый носитель может включать в себя, но без ограничения, магнитное запоминающее устройство (например, жесткий диск, флоппи-диск, магнитные полоски и т.д.), оптический диск (например, компакт-диск (CD), цифровой универсальный диск (DVD) и т.д.), смарт-карты и устройства флэш-памяти (например, ЭППЗУ, карту, линейку, флэш-ключ и т.д.). Дополнительно, различные описанные здесь носители данных могут представлять одно или несколько устройств и/или другие машинно-считываемые носители для хранения информации. Термин “машинно-считываемый носитель” может включать в себя, без ограничения, беспроводные каналы и различные другие носители, способные хранить, содержать и/или переносить инструкции и/или данные.

Описанные здесь техники можно использовать для различных сетей беспроводной связи, например, сетей множественного доступа с кодовым разделением (CDMA), сетей множественного доступа с временным разделением (TDMA), сетей множественного доступа с частотным разделением (FDMA), сетей ортогонального FDMA (OFDMA), сетей FDMA с одной несущей (SC-FDMA) и т.д. Термины “сети” и “системы” часто используются взаимозаменяемо. Сеть CDMA может реализовать технологию радиосвязи, например, Universal Terrestrial Radio Access (UTRA), cdma2000, и т.д. UTRA включает в себя Wideband-CDMA (W-CDMA) и Low Chip Rate (LCR). cdma2000 охватывает стандарты IS-2000, IS-95 и IS-856. Сеть TDMA может реализовать технологию радиосвязи, например, Global System for Mobile Communications (GSM). Сеть OFDMA может реализовать технологию радиосвязи, например, Evolved UTRA (E-UTRA), IEEE 802.11, IEEE 802.16, IEEE 802.20, Flash-OFDM® и т.д. UTRA, E-UTRA и GSM составляют часть универсальной системы мобильной связи (Universal Mobile Telecommunication System) (UMTS). Long Term Evolution (LTE) является предстоящим выпуском UMTS, который использует E-UTRA. UTRA, E-UTRA, GSM, UMTS и LTE описаны в документах организации под названием “3rd Generation Partnership Project” (3GPP). cdma2000 описан в документах организации под названием “3rd Generation Partnership Project 2” (3GPP2). Эти различные технологии и стандарты радиосвязи известны в технике. Для ясности, некоторые аспекты техник описаны ниже применительно к LTE, и в нижеследующем описании, по большей части, используется терминология LTE.

Система множественного доступа с частотным разделением на одной несущей (SC-FDMA) использует модуляцию одной несущей и выравнивание в частотном измерении. SC-FDMA имеет сходную производительность и, по существу, такую же общую сложность, как система OFDMA. Сигнал SC-FDMA имеет более низкое отношение пиковой мощности к средней (PAPR) ввиду его структуры одной несущей. SC-FDMA можно использовать, например, на восходящей линии связи, где более низкое PAPR благоприятно для мобильного терминала в отношении экономии передаваемой мощности. Соответственно, SC-FDMA можно реализовать как схему множественного доступа на восходящей линии связи в 3GPP Long Term Evolution (LTE) или Evolved UTRA.

На фиг. 1 показана система беспроводной связи множественного доступа согласно одному варианту осуществления. eNB 100 включает в себя множественные группы антенн, причем первая группа включает в себя антенны 104 и 106, другая включает в себя антенны 108 и 110, и дополнительная группа включает в себя антенны 112 и 114. Хотя на фиг. 1 показано только две антенны для каждой группы антенн, очевидно, что для каждой группы можно использовать больше или меньше антенн. UE (пользовательское оборудование) или AT (терминал доступа) 116 осуществляет связь с антеннами 112 и 114, где антенны 112 и 114 передают информацию на UE 116 по прямой линии связи 120 и принимают информацию от UE 116 по обратной линии связи 118. UE 122 осуществляет связь с антеннами 106 и 108, где антенны 106 и 108 передают информацию на UE 122 по прямой линии связи 126 и принимают информацию от UE 122 по обратной линии связи 124. В системе FDD, линии связи 118, 120, 124 и 126 могут использовать разные частоты для связи. Например, прямая линия связи 120 может использовать частоту, отличную от используемой обратной линией связи 118. Каждую группу антенн и/или область, в которой они обеспечивают связь, можно именовать сектором точки доступа или eNB. В одном варианте осуществления, группы антенн могут быть предназначены для связи с UE в секторе зоны покрытия eNB 100.

При осуществлении связи по прямым линиям связи 120 и 126, передающие антенны eNode B 100 используют формирование диаграммы направленности для повышения отношения сигнал/шум прямых линий связи для разных UE 116 и 124. Кроме того, в случае, когда eNB использует формирование диаграммы направленности для передачи на UE, произвольно распределенные по его зоне покрытия, UE в соседних сотах могут испытывать меньшие помехи, чем в случае, когда eNB передает через одну антенну на все свои UE.

eNB может быть фиксированной станцией, используемой для связи с терминалами, и также может именоваться точкой доступа, Node B, усовершенствованным Node B (eNB) или каким-либо другим термином. Терминал доступа (AT) также может именоваться пользовательским оборудованием (UE), устройством беспроводной связи, терминалом или каким-либо другим термином.

На фиг. 2 показана блок-схема варианта осуществления eNB 210 и терминала доступа (AT) или пользовательского оборудования (UE) 250 в системе MIMO 200. На eNB 210, данные трафика для нескольких потоков данных поступают от источника данных 212 на процессор 214 данных передачи (TX).

Согласно варианту осуществления, каждый поток данных передается через соответствующую передающую антенну. Процессор 214 данных TX форматирует, кодирует и перемежает поток данных трафика для каждого потока данных на основании конкретной схемы кодирования, выбранной для каждого соответствующего потока данных для обеспечения кодированных данных.

Кодированные данные для каждого потока данных можно мультиплексировать с пилотными данными с использованием техник OFDM. Пилотные данные обычно представляют собой известный шаблон данных, который обрабатывается известным образом и который можно использовать на приемной системе для оценки характеристики канала. Мультиплексированные пилот-сигнал и кодированные данные для каждого потока данных можно модулировать (например, отображать в символы) на основании конкретной схемы модуляции (например, BPSK, QSPK, M-PSK или M-QAM), выбранной для каждого соответствующего потока данных, для обеспечения символов модуляции. Скорость передачи данных, кодирование и модуляцию для каждого потока данных можно определить согласно инструкциям, обеспечиваемым процессором 230.

Затем символы модуляции для всех потоков данных поступают на процессор 220 MIMO TX, который может дополнительно обрабатывать символы модуляции (например, для OFDM). Затем процессор 220 MIMO TX выдает N T потоков символов модуляции на N T приемопередатчиков (TMTR) 222a - 222t. В некоторых вариантах осуществления, процессор 220 MIMO TX применяет весовые коэффициенты формирования пучка к символам потоков данных и к антенне, с которой передается символ.

Каждый приемопередатчик 222 принимает и обрабатывает соответствующий поток символов для обеспечения одного или нескольких аналоговых сигналов, и дополнительно преобразовывает (например, усиливает, фильтрует и повышает частоту) аналоговые сигналы для обеспечения модулированного сигнала, пригодного для передачи по каналу MIMO. N T модулированных сигналов от приемопередатчиков 222a - 222t затем передаются с N T антенн 224a - 224t, соответственно.

На UE 250, переданные модулированные сигналы принимаются N R антеннами 252a - 252r, и принятый сигнал от каждой антенны 252 поступает на соответствующий приемопередатчик (RCVR) 254a - 254r. Каждый приемопередатчик 254 преобразовывает (например, фильтрует, усиливает и понижает частоту) соответствующий принятый сигнал, цифрует преобразованный сигнал для обеспечения выборок и затем обрабатывает выборки для обеспечения соответствующего “принятого” потока символов.

Затем процессор 260 данных RX принимает и обрабатывает N R принятых потоков символов от N R приемопередатчиков 254 на основании конкретного метода обработки приемопередатчика для обеспечения N T “детектированных” потоков символов. Принятые символы или другая информация могут храниться в соответствующей памяти 272. Затем процессор 260 данных RX демодулирует, деперемежает и декодирует каждый детектированный поток символов для восстановления данных трафика для соответствующего потока данных. Обработка, выполняемая процессором 260 данных RX, дополнительна обработке, выполняемой процессором 220 MIMO TX и процессором 214 данных TX на eNB 210.

Процессор 270 периодически определяет, какую матрицу предварительного кодирования использовать (рассмотрена ниже). Процессор 270 формирует сообщение обратной линии связи, содержащее индексную часть и часть значения ранга матрицы.

Сообщение обратной линии связи может содержать различные типы информации, относящейся к линии связи и/или принятому потоку данных. Например, передачи обратной линии связи могут содержать периодические отчеты об измерении от UE 250 на обслуживающий eNB 210. Эти отчеты об измерении могут содержать одно или несколько условий радиосвязи, связанных с UE, или, если нужна передача обслуживания, информацию, касающуюся предпочтительного конечного eNB, или передачи обратной линии связи можно использовать для сигнализации, была ли принята на UE критическая и/или некритическая информация в соответствии с различными вышеописанными аспектами. Информация, принятая по обратной линии связи, может храниться в соответствующей памяти 232. Затем сообщение обратной линии связи обрабатывается процессором 238 данных TX, который также принимает данные трафика для ряда потоков данных из источника данных 236, модулируется модулятором 280, преобразуется приемопередатчиками 254a - 254r и передается обратно на передающую систему 210.

На eNB 210, модулированные сигналы от приемной системы 250 принимаются антеннами 224, преобразуются приемопередатчиками 222, демодулируются демодулятором 240 и преобразуются процессором 242 данных RX для выделения сообщения обратной линии связи, переданного системой приемопередатчика 250. Затем процессор 230 определяет, какую матрицу предварительного кодирования использовать, для определения весовых коэффициентов формирования пучка, затем обрабатывает выделенное сообщение.

Согласно аспекту, логические каналы подразделяются на каналы управления и каналы трафика. Логические каналы управления включают в себя Broadcast Control Channel (широковещательный канал управления) (BCCH), который является каналом DL (нисходящей линии связи) для вещания информации управления системы; Paging Control Channel (Пейджинговый канал управления) (PCCH), который является каналом DL, переносящим пейджинговую информацию; Multicast Control Channel (многоадресный канал управления) (MCCH), который является каналом DL от одной точки к нескольким точкам, используемый для передачи информации планирования и управления Multimedia Broadcast and Multicast Service (мультимедийных широковещательных и многоадресных услуг) (MBMS) для одного или нескольких MTCH. В общем случае, после установления соединения RRC, этот канал используется только UE, которые принимают MBMS. Dedicated Control Channel (выделенный канал управления) (DCCH) является двусторонним каналом двухточечной связи, который передает выделенную информацию управления и используется UE, имеющими соединение RRC. Согласно аспекту, логические каналы трафика могут включать в себя Dedicated Traffic Channel (выделенный канал трафика) (DTCH), который является двусторонним каналом двухточечной связи, выделенным одному UE, для переноса пользовательской информации. Кроме того, Multicast Traffic Channel (многоадресный канал трафика) (MTCH) для канала DL от одной точки к нескольким точкам для передачи данных трафика.

Согласно аспекту, транспортные каналы подразделяются на DL и UL. Транспортные каналы DL включают в себя Broadcast Channel (широковещательный канал) (BCH), Downlink Shared Data Channel (канал данных общего пользования нисходящей линии связи) (DL-SDCH) и Paging Channel (пейджинговый канал) (PCH), PCH для поддержки энергосбережения UE (сеть указывает цикл DRX для UE), вещаемый по всей соте и отображаемый в физические ресурсы, которые можно использовать для других каналов управления/трафика. Транспортные каналы UL включают в себя Random Access Channel (канал произвольного доступа) (RACH), Request Channel (канал запроса) (REQCH), Uplink Shared Data Channel (канал данных общего пользования восходящей линии связи (UL-SDCH) и совокупность PHY (физических) каналов. Физические каналы включают в себя набор каналов DL и каналов UL.

Физические каналы и сигналы DL содержат:

Опорный сигнал (RS)

Первичный и вторичный сигналы синхронизации (PSS/SSS)

Физический канал общего пользования нисходящей линии связи (PDSCH)

Физический канал управления нисходящей линии связи (PDCCH)

Физический многоадресный канал (PMCH)

Физический канал указателя HARQ (PHICH)

Физический канал указателя формата управления (PCFICH)

Физические каналы UL содержат:

Физический канал произвольного доступа (PRACH)

Физический канал управления восходящей линии связи (PUCCH)

Указатель качества канала (CQI)

Указатель матрицы предварительного кодирования(PMI)

Указатель ранга (RI)

Запрос диспетчеризации (SR)

ACK/NAK восходящей линии связи

Физический канал общего пользования восходящей линии связи (PUSCH)

Опорный сигнал зондирования (SRS)

Согласно аспекту, обеспечена структура каналов, которая сохраняет низкие свойства PAR (в любой данный момент времени канал является непрерывным или равномерно распределенным по частоте) одной несущей волны.

В целях настоящего документа применяются следующие аббревиатуры:

AM Режим квитирования
AMD Данные режима квитирования
ARQ Автоматический запрос повторной передачи
BCCH Широковещательный канал управления
BCH Широковещательный канал
C- Управляющий-
CCCH Общий канал управления
CCH Канал управления
CCTrCH Кодированный композитный транспортный канал
CP Циклический префикс
CRC Циклическая проверка с избыточностью
CTCH Общий канал трафика
DCCH Выделенный канал управления
DCH Выделенный канал
DL Нисходящая линия связи
DSCH Канал общего пользования нисходящей линии связи
DTCH Выделенный канал трафика
FACH Канал доступа прямой линии связи
FDD Дуплексный режим с частотным разделением
L1 Уровень 1 (физический уровень)
L2 Уровень 2 (канальный уровень)
L3 Уровень 3 (сетевой уровень)
LI Указатель длины
LSB Младший бит
MAC Управление доступом к среде
MBMS Multimedia Broadcast Multicast Service
MCCH Канал управления MBMS от одной точки к нескольким точкам
MRW Подвижное окно приема
MSB Старший бит