Устройство измерения кровяного давления, носитель записи, который записывает программу выведения значений кровяного давления, и способ выведения значений кровяного давления

Иллюстрации

Показать все

Изобретение относится к устройству для измерения кровяного давления. Заявленное устройство содержит манжету для оборачивания вокруг заданного физического места обследуемого человека, датчик детектирования давления в манжете и датчик детектирования сигнала артериального объема, а также блок регулировки давления внутри манжеты, блок управления запуском блока регулирования и блок управления выведением значений. Блок управления выведением значений управляет выведением значений, когда давление в манжете уменьшается или увеличивается скачками на заданную разность давлений посредством блока управления запуском. Блок управления выведением значений включает первый блок извлечения для извлечения огибающей объемной пульсовой волны на основе сигнала артериального объема, дифференциальный блок для дифференцирования огибающей относительно давления в манжете, второй блок извлечения для извлечения максимального значения дифференциального значения огибающей, а также блок определения кровяного давления путем корректировки давления в манжете, используемого для дифференциала максимального значения. Применение данного изобретения позволит обеспечить точное определение кровяного давления. 4 з.п. ф-лы, 15 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к устройству измерения кровяного давления, носителю записи, который записывает программу выведения значений кровяного давления, и к способу выведения значений кровяного давления и, в частности, к устройству измерения кровяного давления, способному детектировать артериальный объем и давление в манжете, носителю записи, который записывает программу выведения значений кровяного давления для выведения значений кровяного давления на основе артериального объема и давления в манжете, и к способу выведения значений кровяного давления.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

Кровяное давление является одним из барометров для анализа болезней органов кровообращения, и выполнение анализа риска на основе кровяного давления является эффективным для профилактики сердечно-сосудистых болезней, таких как инсульт, сердечная недостаточность и инфаркт миокарда. Среди них, высокое утреннее кровяное давление, при котором кровяное давление растет ранним утром, связано с кардиальными болезнями, инсультом и т.п. Дополнительно, для высокого утреннего кровяного давления было обнаружено, что симптом быстрого повышения кровяного давления в течение одного-полутора часов после пробуждения, который называют утренним выбросом, имеет причинно-следственную связь с инсультом.

Таким образом, были предложены различные сфигмоманометры, способные автоматически измерять систолическое кровяное давление и диастолическое кровяное давление.

Например, на рынке представлены электронные сфигмоманометры для измерения кровяного давления осциллометрическим способом (осцилляторным способом). В таких электронных сфигмоманометрах во время процесса, при котором давление внутри нарукавной повязки (манжеты), обернутой вокруг места измерения (давление в манжете), повышается, чтобы стать выше, чем систолическое кровяное давление, и затем давление в манжете постепенно снижается, изменение объема артерии, сопровождающее пульсацию кровяного давления, детектируется датчиком давления как колебание давления в манжете (например, рассмотренная заявка на патент Японии № H3-81375 (патентный документ 1)). Давление в манжете, соответствующее моменту времени, когда детектируется максимальное амплитудное значение пульсовой волны, определяется как среднее кровяное давление. В соответствии с осцилляторным способом, систолическое кровяное давление и диастолическое кровяное давление вычисляются, применяя заданный алгоритм к давлению в манжете и амплитуде пульсовой волны.

Кроме того, был также предложен способ измерения кровяного давления объемным осцилляторным способом ("Indirect Measurement of Arterial Pressure Using Volume Pulsation in the Human Finger", автор Kenichi Yamakoshi, The Japanese jounal of medical instrumentation, опубликовано 1 ноября 1983 г., том 53, № 11, отдельный том, стр.24-28 (непатентный документ 1)). Конкретно, в манжете обеспечивается датчик объемной пульсовой волны и в процессе, при котором давление в манжете увеличивается (или уменьшается), компонент (ΔV) объемной пульсовой волны измеряется и детектируется точка максимума амплитуды и точка исчезновения (или точка появления). Давления в манжете, относящиеся к соответствующим детектируемым точкам, вычисляются как среднее кровяное давление и систолическое кровяное давление. В соответствии с объемным осцилляторным способом, диастолическое кровяное давление вычисляется, применяя среднее кровяное давление и систолическое кровяное давление в заданном уравнении для вычисления.

Патентный документ 1: публикация рассмотренной заявки на патент Японии № H3-81375.

Непатентный документ 1: "Indirect Measurement of Arterial Pressure Using Volume Pulsation in the Human Finger", автор Kenichi Yamakoshi, The Japanese jounal of medical instrumentation, опубликована 1 ноября 1983 г., том 53, № 11, отдельный том, стр. 24-28.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Задачи, решаемые изобретением

Однако, возвращаясь обратно к механизму создания амплитуды пульсовой волны в осцилляторном способе, не было выяснено ничего, кроме того факта, что давление в манжете в момент, когда амплитуда пульсовой волны становится максимальной во время уменьшения (или увеличения) давления в манжете, является средним кровяным давлением.

Кроме того, с помощью объемного осцилляторного способа также могут быть определены только систолическое кровяное давление и среднее кровяное давление, а диастолическое кровяное давление не может быть точно определено.

Чтобы решить описанные выше проблемы, сделано настоящее изобретение и его задача состоит в обеспечении устройства измерения кровяного давления, способного точно выводить значение кровяного давления (систолическое кровяное давление и диастолическое кровяное давление), на основе давления в манжете и механизма создания амплитуды пульсовой волны, носителя записи, который записывает программу выведения значений кровяного давления, и способа выведения значений кровяного давления.

СРЕДСТВО ДЛЯ РЕШЕНИЯ ПРОБЛЕМ

Устройство измерения кровяного давления согласно аспекту настоящего изобретения содержит манжету, оборачиваемую вокруг заданного физического места обследуемого человека; датчик давления для детектирования давления в манжете, представляющего давление внутри манжеты; датчик объема, предусмотренный в манжете, для детектирования сигнала артериального объема, указывающего объем артерии обследуемого человека; и блок управления выведением значений для выполнения управления выведением значений, чтобы выводить значения кровяного давления обследуемого человека на основе давления в манжете и сигнала артериального объема, причем блок управления выведением значений содержит первый блок извлечения для извлечения огибающей объемной пульсовой волны на основе сигнала артериального объема; дифференциальный блок для дифференцирования огибающей относительно давления в манжете; второй блок извлечения для извлечения максимального значения дифференциального значения огибающей и блок определения для определения кровяного давления на основе давления в манжете, используемого для дифференциала максимального значения.

Предпочтительно, дополнительно содержатся блок регулирования для регулировки давления внутри манжеты и блок управления запуском для управления запуском блока регулирования. Блок управления выведением значений выполняет управление выведением значений, когда давление в манжете уменьшается или увеличивается с постоянной скоростью с помощью блока управления запуском.

Предпочтительно, огибающая содержит огибающую точек минимума объема вместе с точками минимума артериального объема соответствующих компонент пульсовой волны, содержащихся в объемной пульсовой волне, дифференциальный блок дифференцирует огибающую точек минимума объема, второй блок извлечения извлекает максимальное значение дифференциального значения огибающей точек минимума объема, и блок определения определяет в качестве диастолического кровяного давления давление в манжете, используемое для дифференциала максимального значения.

Предпочтительно, огибающая содержит огибающую точек максимума объема вместе с точками максимума артериального объема соответствующих компонент пульсовой волны, содержащихся в объемной пульсовой волне, дифференциальный блок дифференцирует огибающую точек максимума объема, второй блок извлечения извлекает максимальное значение дифференциального значения огибающей точек максимума объема, и блок определения определяет в качестве систолического кровяного давления давление в манжете, используемое для дифференциала максимального значения.

Предпочтительно, дополнительно содержатся блок регулирования для регулировки давления внутри манжеты и блок управления запуском для управления запуском блока регулирования. Блок управления выведением значений выполняет управление выведением значений, когда давление в манжете управляется так, чтобы оно уменьшалось или увеличивалось скачками на заданную разность давлений посредством блока управления запуском, и блок определения определяет кровяное давление, корректируя давление в манжете, используемое для дифференциала максимального значения.

Предпочтительно, огибающая содержит огибающую точек минимума объема вместе с точками минимума артериального объема соответствующих компонент пульсовой волны, содержащихся в объемной пульсовой волне, дифференциальный блок дифференцирует огибающую точек минимума огибающей, второй блок извлечения извлекает максимальное значение дифференциального значения огибающей точек минимума объема и дифференциальные значения до и после максимального значения, и блок определения определяет диастолическое кровяное давление, корректируя давление в манжете, используемое для дифференциала максимального значения на основе максимального значения, дифференциальных значений до и после максимального значения и разности давлений.

Предпочтительно, огибающая содержит огибающую точек максимума объема вместе с точками максимума артериального объема соответствующих компонент пульсовой волны, содержащихся в объемной пульсовой волне, дифференциальный блок дифференцирует огибающую точек максимума объема, второй блок извлечения извлекает максимальное значение дифференциального значения огибающей точек максимума объема и дифференциальные значения до и после максимального значения, и блок определения определяет систолическое кровяное давление, корректируя давление в манжете, используемое для дифференциала максимального значения на основе максимального значения, дифференциальных значений до и после максимального значения и разности давлений.

Предпочтительно, датчик объема включает в себя светоизлучающий элемент для излучения света к артерии и светопринимающий элемент для приема прошедшего через артерию или отраженного от артерии света, излучаемого светоизлучающим элементом.

Предпочтительно, датчик объема содержит множество электродов для детектирования импеданса места, содержащего артерию.

Носитель записи, согласно другому аспекту настоящего изобретения, записывает программу выведения значений кровяного давления. Программа выведения значений кровяного давления вызывает исполнение устройством обработки информации этапов, на которых извлекают огибающую объемной пульсовой волны на основе данных артериального объема; дифференцируют огибающую относительно давления в манжете на основе данных давления в манжете; извлекают максимальное значение дифференциального значения огибающей и определяют кровяное давление на основе давления в манжете, используемого для дифференциала максимального значения.

Способ выведения значений кровяного давления согласно еще одному другому аспекту настоящего изобретения выполняется в устройстве обработки информации, включающем в себя блок хранения, который хранит данные артериального объема и данные давления в манжете в хронологическом порядке, и процессор арифметических операций, причем способ содержит этапы, на которых извлекают огибающую объемной пульсовой волны на основе данных артериального объема с помощью процессора арифметических операций; дифференцируют огибающую относительно давления в манжете на основе данных давления в манжете с помощью процессора арифметических операций; извлекают максимальное значение дифференциального значения огибающей с помощью процессора арифметических операций и определяют кровяное давление на основе давления в манжете, используемого для дифференциала максимального значения, с помощью процессора арифметических операций.

ТЕХНИЧЕСКИЙ РЕЗУЛЬТАТ ИЗОБРЕТЕНИЯ

В соответствии с настоящим изобретением, кровяное давление может быть точно получено на основе давления в манжете и механизма создания амплитуды пульсовой волны.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1 - общий вид в перспективе устройства измерения кровяного давления согласно варианту осуществления настоящего изобретения.

Фиг.2 - блок-схема, представляющая конфигурацию аппаратного обеспечения устройства измерения кровяного давления согласно варианту осуществления настоящего изобретения.

Фиг.3 - функциональная блок-схема, представляющая функциональную конфигурацию устройства измерения кровяного давления согласно варианту осуществления настоящего изобретения.

Фиг.4 - график, показывающий объемную пульсовую волну и дифференциальные кривые во время увеличения давления.

Фиг.5 - блок-схема последовательности операций способа, показывающая обработку результатов измерения кровяного давления, которая выполняется устройством измерения кровяного давления в варианте осуществления настоящего изобретения.

Фиг.6 - блок-схема последовательности операций способа, показывающая обработку выведения значения диастолического кровяного давления в варианте осуществления настоящего изобретения.

Фиг.7 - блок-схема последовательности операций способа, показывающая обработку выведения значения систолического кровяного давления в варианте осуществления настоящего изобретения.

Фиг.8 - схематический вид, показывающий пример изображения на экране, отображаемого на этапе S126, показанном на Фиг.5.

Фиг.9 - схематический вид, показывающий пример структуры данных для данных результатов измерений.

Фиг.10 - блок-схема последовательности операций способа, показывающая обработку результатов измерения кровяного давления в модификации 1 варианта осуществления настоящего изобретения.

Фиг.11 - функциональная блок-схема, показывающая функциональную конфигурацию сфигмоманометра для модификации 3 варианта осуществления настоящего изобретения.

Фиг.12(a) - схема, показывающая пример структуры данных для данных результатов измерений, записанных на носителе записи, для модификации 3 варианта осуществления настоящего изобретения, и Фиг.12(b) - схема, показывающая структуру данных поля информации о кровяном давлении, содержащейся в данных результатов измерений.

Фиг.13 - блок-схема, показывающая пример конфигурации аппаратного обеспечения устройства обработки информации, способного выполнять процесс выведения значений кровяного давления для модификации 3 варианта осуществления настоящего изобретения.

Фиг.14 - функциональная блок-схема, показывающая функциональную конфигурацию устройства обработки информации для модификации 3 варианта осуществления настоящего изобретения.

Фиг.15 - график, показывающий динамические свойства артерии.

ОПИСАНИЕ УСЛОВНЫХ ОБОЗНАЧЕНИЙ

1 Сфигмоманометр

10 Основная часть корпуса

20 Манжета

21 Пневматическая камера

30 Пневматическая система

31 Воздухопровод

32 Датчик давления

33 Схема осцилляции

40 Блок отображения

41 Операционный блок

41A Выключатель электропитания

41B Выключатель измерения

41C Выключатель остановки

41D Выключатель запоминающего устройства

42 Блок запоминающего устройства

43 Флэш-память

44 Источник электропитания

45 Блок синхронизации

46 Интерфейсный блок

51 Насос

52 Клапан

53 Схема запуска насоса

54 Схема запуска клапана

70 Датчик артериального объема

71 Светоизлучающий элемент

72 Светопринимающий элемент

73 Схема запуска светоизлучающих элементов

74 Схема детектирования артериального объема

80 Данные результатов измерений

101 Блок управления запуском

102 Процессор детектирования сигнала объема

103 Блок получения давления в манжете

104 Блок управления выведением значений

106, 106A Процессор запоминающего устройства

108, 1108 Блок управления отображением

113, 1113 Блок извлечения огибающей

114, 1114 Дифференциальный процессор

115, 1115 Блок извлечения максимального значения

116, 1116 Блок определения кровяного давления

132 Носитель записи

200 Устройство обработки информации

210 Корпус устройства обработки информации

212 Запоминающее устройство

213 Жесткий диск

214 Устройство привода дискет (FD)

215 Устройство привода CD-ROM

216 Интерфейсный блок

220 Монитор

230 Клавиатура

240 Мышь

НАИЛУЧШИЙ СПОСОБ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Вариант осуществления настоящего изобретения подробно описывается со ссылкой на чертежи. Одинаковые или соответствующие части на чертежах обозначаются одними и теми же символами и их описания повторяться не будут.

[Вариант осуществления]

<Внешний вид и конфигурация>

Сначала описываются внешний вид и конфигурация устройства 1 измерения кровяного давления (в дальнейшем упоминаемого просто как "сфигмоманометр") согласно варианту осуществления настоящего изобретения.

Со ссылкой на Фиг.1, сфигмоманометр 1 содержит основную часть 10 корпуса и манжету 20, оборачиваемую вокруг запястья обследуемого человека. Основная часть 10 корпуса установлена на манжете 20. На поверхности основного корпуса 10 установлены блок 40 отображения, изготовленный, например, на жидких кристаллах или тому подобном, и операционный блок 41 для приема инструкции от пользователя (обследуемого человека). Операционный блок 41 содержит множество выключателей.

В настоящем варианте осуществления манжета 20 описывается при предположении, что ее носят на запястье обследуемого человека. Однако место, где может носиться манжета 20 (место измерения), не ограничивается запястьем, и это может быть, например, плечо.

Что касается сфигмоманометра 1 согласно настоящему варианту осуществления, форма, в которой основная часть 10 корпуса устанавливается на манжете 20, как показано на Фиг.1, описывается как пример. Однако, как и в плечевом сфигмоманометре, альтернативно может использоваться форма, в которой основная часть 10 корпуса и манжета 20 соединяются воздухопроводом (воздухопровод 31 на Фиг.2).

При использовании принципа измерения кровяного давления традиционно используемым осцилляторным способом систолическое кровяное давление и диастолическое кровяное давление не могут быть определены точно, как описано выше. Поэтому к настоящему времени были разработаны различные алгоритмы. Однако, поскольку ни один из этих алгоритмов не основан на механизме создания амплитуды пульсовой волны в осцилляторном способе, у некоторых обследуемых людей могут возникать погрешности измерения.

Кроме того, при осцилляторном способе информация (изменение объема), которая создается посредством передачи изменения объема артерии к манжете через биологическое тело, детектируется как колебание давления в манжете. В целом, даже когда к манжете передается одно и то же изменение объема, уровень колебания давления в манжете под действием изменения объема манжеты может детектироваться по-разному, в зависимости от свойств внешней ткани и пневматической камеры, формирующей манжету. Конкретно, уровень колебания давления в манжете может детектироваться по-разному, в зависимости от таких факторов, как давление в манжете, способ оборачивания манжеты и объем пневматической камеры, зависящий от длины окружности места измерения. Кроме того, поскольку изменение объема артерии передается к манжете через биологическое тело, передача артериального объема различается в зависимости от биологических характеристик места измерения (объем мышцы и целлюлит и такие элементы, как сухожилие и кость). Эти факторы способствуют увеличению погрешности измерения.

С учетом сказанного, сфигмоманометр 1 согласно настоящему варианту осуществления определяет (измеряет) значения кровяного давления на основе динамических свойств артерии, которая является механизмом создания амплитуды пульсовой волны.

На Фиг.15 представлен график, показывающий динамические свойства артерии. В графике на Фиг.15 горизонтальная ось указывает разность между внутренним и внешним давлениями, Ptr, а вертикальная ось указывает артериальное напряжение V, чтобы показать зависимость между разностью между внутренним и внешним давлениями, Ptr, и артериальным объемом V. Разность между внутренним и внешним давлениями, Ptr, указывает разность между артериальным внутренним давлением Pa и давлением Pc в манжете, приложенным к манжете с внешней стороны биологического тела.

Как показано на этом графике, динамические свойства артерии, в целом, демонстрируют сильную нелинейность, и когда разность между внутренним и внешним давлениями Ptr равна 0, то, если стенка артерии находится в ненагруженном состоянии, это означает, что податливость артерии становится максимальной и изменение объема, соответствующее флюктуации пульсового давления, становится максимальным.

Из вышесказанного должно быть понятно, что когда артериальный объем детектируется в процессе увеличения или уменьшения давления в манжете и артериальный объем дифференцируется относительно давления в манжете, давление в манжете, при котором получено максимальное значение, совпадает с внутренним артериальным давлением.

Сфигмоманометр 1 согласно настоящему варианту осуществления использует тот факт, что в точке, в которой стенка артерии переходит в ненагруженное состояние, значение результата дифференцирования становится максимальным, позволяя определить систолическое кровяное давление и диастолическое кровяное давление.

Со ссылкой на Фиг.2, манжета 20 сфигмоманометра 1 содержит пневматическую камеру 21 и датчик 70 артериального объема. Датчик 70 артериального объема имеет светоизлучающие элементы 71 и светопринимающие элементы 72. Светоизлучающие элементы 71 излучают свет к артерии и светопринимающие элементы 72 принимают свет (проходящий свет), излученный светоизлучающими элементами 71 и прошедший через артерию, или свет (отраженный свет), отраженный артерией. Светоизлучающие элементы 71 и светопринимающие элементы 72 располагаются с заданными интервалами внутри пневматической камеры 21.

Датчик 70 артериального объема необходим только для детектирования объема артерии и может детектировать объем артерии по импедансу. В этом случае, вместо светоизлучающих элементов 71 и светопринимающих элементов 72 вводится множество электродов, чтобы детектировать импеданс места, включающего в себя артерию.

Пневматическая камера 21 соединяется с пневматической системой 30 через воздухопровод 31.

В дополнение к вышесказанному, основная часть 10 корпуса содержит блок 40 отображения и операционный блок 41, пневматическую систему 30, центральный процессор (CPU) 100, чтобы интенсивно управлять соответствующими блоками и выполнять различные арифметические операции, блок 42 запоминающего устройства для хранения программ, которые вызывают выполнение CPU 100 заданных операций, и различных типов данных, энергонезависимое запоминающее устройство 43 (например, флэш-память) для хранения измеренных значений кровяного давления, источник 44 электропитания для обеспечения электропитания центрального процессора 100, блок 45 синхронизации, выполняющий операции синхронизации, и интерфейсный блок 46 для считывания и записи программ и данных со съемного носителя 132 записи и на него.

Операционный блок 41 имеет выключатель 41A электропитания, принимающий ввод инструкции на включение и выключение электропитания, выключатель 41B измерений для приема инструкции начала измерения, выключатель 41C остановки для приема инструкции остановки измерения и выключатель 41D запоминающего устройства для приема инструкции считывания информации, такой как кровяное давление, записанной на флэш-памяти 43.

Пневматическая система 30 содержит датчик 32 давления для детектирования давления (давление в манжете) внутри пневматической камеры 21, насос 51 для подачи воздуха в пневматическую камеру 21, чтобы увеличивать давление в манжете, и клапан 52, открывающийся или закрывающийся для выпуска воздуха из пневматической камеры 21 или наполнения воздухом пневматической камеры 21.

Основная часть 10 корпуса дополнительно содержит схему 73 запуска светоизлучающих элементов, схему 74 детектирования артериального объема и схему 33 осцилляции, схему 53 запуска насоса и схему 54 запуска клапана, соединенные с описанной выше пневматической системой 30.

Схема 73 запуска светоизлучающих элементов вызывает излучение света светоизлучающими элементами 71 в заданные моменты времени в соответствии с сигналом инструкции от центрального процессора 100. Схема 74 детектирования артериального объема преобразует выходной сигнал из светопринимающих элементов 72 в значение напряжения, чтобы таким образом воспринимать артериальный объем.

Датчиком 32 давления является, например, датчик давления емкостного типа, в котором значение объема изменяется в соответствии с давлением в манжете. Схема 33 осцилляции выводит сигнал с частотой осцилляции в соответствии со значением объема датчика 32 давления на центральный процессор 100. Центральный процессор 100 воспринимает давление, преобразуя в давление сигнал, полученный от схемы 33 осцилляции. Схема 53 запуска насоса управляет запуском насоса 51 на основе сигнала управления, подаваемого от центрального процессора CPU 100. Схема 54 запуска клапана выполняет управление открыванием и закрыванием клапана 52 на основе сигнала управления, подаваемого от центрального процессора 100.

Хотя манжета 20 включает в себя пневматическую камеру 21, текучая среда, подаваемая в манжету 20, не ограничивается воздухом, а могут использоваться, например, жидкость или гель. Альтернативно, не ограничиваясь текучей средой, могут использоваться однородные частицы, такие как микрошарики.

Со ссылкой на Фиг.3, CPU 100 для обеспечения его функций содержит блок 101 управления запуском, процессор 102 детектирования сигнала объема, блок 103 получения давления в манжете, блок 104 управления выведением значений, выполняющий управление выведением значений кровяного давления обследуемого человека, процессор 106 запоминающего устройства и блок 108 управления отображением. На Фиг.3 показано только аппаратное обеспечение, непосредственно связывающее сигналы и данные с этими функциональными блоками.

Блок 101 управления запуском передает сигналы управления на схему 53 запуска насоса и на схему 54 запуска клапана для регулирования давления в манжете. Конкретно, управление выполняется так, чтобы увеличивать давление в манжете до заданного значения и постепенно уменьшать давление в манжете. В настоящем варианте осуществления, в процессе уменьшения с постоянной скоростью давления в манжете обработка выведения значений кровяного давления выполняется блоком 104 управления выведением значений. Обработка выведения значений кровяного давления может альтернативно выполняться в процессе постепенного увеличения давления в манжете.

Блок 104 управления выведением значений имеет блок 113 извлечения огибающей, дифференциальный процессор 114, блок 115 извлечения максимального значения и блок 116 определения кровяного давления.

Процессор 102 детектирования сигнала объема передает сигнал управления на схему 73 запуска светоизлучающих элементов для того, чтобы запускать светоизлучающие элементы 71 в заданные моменты времени параллельно уменьшению давления в манжете блоком 101 управления запуском. Кроме того, процессор 102 детектирования сигнала объема непрерывно детектирует сигнал артериального объема, поступающий от схемы 74 детектирования артериального объема, и получает объемную пульсовую волну. Объем артерии изменяется под действием пульсации кровяного давления. В настоящем варианте осуществления “объемная пульсовая волна” является кривой, указывающей изменение артериального объема, которое появляется в соответствии с давлением в манжете, и обозначается, например, как сигнал PG на Фиг.4.

Объемная пульсовая волна, детектируемая процессором 102 детектирования сигнала объема, выводится на блок 113 извлечения огибающей.

Блок 103 получения давления в манжете преобразует в давление сигнал, полученный от схемы 33 осцилляции, чтобы непрерывно получать давление параллельно управлению, осуществляемому блоком 101 управления запуском. Полученное давление в манжете выводится на дифференциальный процессор 114. Давление в манжете также выводится на блок 101 управления запуском.

Чтобы описать функционирование блока 104 управления выведением значений, далее обратимся к Фиг.4.

На Фиг.4 представлен график, показывающий объемную пульсовую волну и дифференциальные кривые (будут описаны позже) во время увеличения давления.

Блок 113 извлечения огибающей извлекает огибающие объемной пульсовой волны, детектируемой процессором 102 детектирования сигнала объема. Более конкретно, извлекаются огибающая точек минимума объема вместе с точками минимума артериального объема соответствующих компонент пульсовой волны, образующих объемную пульсовую волну, и огибающая точек максимума объема вместе с точками максимума артериального объема соответствующих компонент пульсовой волны. Каждый из "компонентов пульсовой волны" здесь соответствует изменению артериального объема в каждом биении пульсаций.

В настоящем варианте осуществления для детектирования артериального объема используется свойство, согласно которому излучение в ближней инфракрасной области, попадающее в биологическое тело, поглощается гемоглобином в артерии. Когда объем артерии большой, количество гемоглобина является большим и, таким образом, количество принятого света мало. Напротив, когда объем артерии мал, количество гемоглобина мало и, таким образом, количество принятого света является большим.

Поэтому линия (огибающая точек минимума объема) PGDIA, соединяющая точки максимума компонент пульсовой волны объемной пульсовой волны (то есть точки, где артериальный объем является минимальным), указывает артериальный объем во время диастолического кровяного давления, и напротив, линия (огибающая точек максимума объема) PGSYS, соединяющая точки минимума (точки, где артериальный объем максимален), указывает артериальный объем во время систолического кровяного давления.

Информация извлеченных огибающих выводится на дифференциальный процессор 114.

Дифференциальный процессор 114 дифференцирует огибающие, извлеченные блоком 113 извлечения огибающей, относительно давлений в манжете, полученных блоком 103 получения давления в манжете. Конкретно, дифференциальный процессор 114 дифференцирует огибающую PGDIA точек минимума объема и огибающую PGSYS точек максимума объема относительно давления в манжете, чтобы таким образом вычислить соответствующие дифференциальные значения. В последующем описании дифференциальное значение первой огибающей также упоминается как первое дифференциальное значение, а дифференциальное значение второй огибающей также упоминается как второе дифференциальное значение. На Фиг.4 форма волны, полученная посредством соединения первых дифференциальных значений, указывается как dPGDIA/dPc. Форма волны, полученная соединением вторых дифференциальных значений, указывается как dPGSYS/dPc. В настоящем варианте осуществления эти формы волны упоминаются как дифференциальные кривые.

Вычисленные первые и вторые дифференциальные значения выводятся на блок 115 извлечения максимального значения.

Блок 115 извлечения максимального значения извлекает максимальные значения дифференциальных значений огибающих, то есть максимальные значения дифференциальных кривых (пики). Конкретно, со ссылкой на Фиг.4, блок 115 извлечения максимального значения извлекает дифференциальные максимальные значения MAX1 и MAX2 для первого дифференциального значения и второго дифференциального значения, соответственно. Информация соответствующих извлеченных дифференциальных максимальных значений подается на блок 116 определения кровяного давления.

Блок 116 определения кровяного давления определяет кровяное давление на основе давлений в манжете, соответствующих дифференциальным максимальным значениям (то есть давлениям в манжете, используемым для дифференцирования дифференциальных максимальных значений). Здесь далее каждое из описанных выше давлений в манжете также упоминается как "конкретное давление в манжете".

Со ссылкой на Фиг.4, конкретно, блок 116 определения кровяного давления определяет давление в манжете, соответствующее максимальному значению MAX1 первого дифференциального значения, как диастолическое кровяное давление DIA. Кроме того, он определяет давление в манжете, соответствующее максимальному значению MAX2 второго дифференциального значения, как систолическое кровяное давление SYS. Информация об определенных кровяных давлениях выводится на процессор 106 запоминающего устройства и на блок 108 управления отображением.

Процессор 106 запоминающего устройства хранит значения кровяного давления (диастолическое кровяное давление и систолическое кровяное давление), определенные блоком 116 определения кровяного давления, на флэш-памяти 43, связанными с датой и временем измерения. Это позволяет при каждом измерении записывать на флэш-память 43 данные измерений, для которых данные кровяного давления и данные даты и времени связаны друг с другом.

Блок 108 управления отображением выполняет управление отображением на блоке 40 отображения значений кровяного давления (диастолического давления и систолического давления), определенных блоком 116 определения кровяного давления. Это позволяет видеть значения кровяного давления для обследуемого человека на блоке 40 отображения.

Операции соответствующих функциональных блоков, включенных в CPU 100, могут быть реализованы путем исполнения программного обеспечения, хранящегося в блоке 42 запоминающего устройства, или, по меньшей мере, один из этих функциональных блоков может быть реализован как аппаратное обеспечение.

Альтернативно, по меньшей мере, один из блоков, описанных как аппаратное обеспечение (схемы), может быть реализован посредством CPU 100, выполняющим программное обеспечение, хранящееся в блоке 42 запоминающего устройства.

<Порядок действия>

Далее описывается принцип работы сфигмоманометра 1 в настоящем варианте осуществления.

На Фиг.5 представлена блок-схема последовательности операций способа, показывающая обработку результатов измерения кровяного давления, исполняемая сфигмоманометром в варианте осуществления настоящего изобретения. Обработка, показанная на блок-схеме последовательности операций способа с Фиг.5, заранее хранится в блоке 42 запоминающего устройства как программа и центральный процессор 100 считывает и выполняет эту программу, чтобы таким образом осуществить функцию обработки результатов измерений кровяного давления.

Со ссылкой на Фиг.5, центральный процессор 100 сначала определяет, был ли нажат выключатель 41A электропитания (этап S102). Центральный процессор 100 находится в дежурном режиме до тех пор, пока не будет нажат выключатель 41A электропитания (NO на этапе S102). Если центральный процессор 100 определяет, что выключатель 41A электропитания был нажат (YES на этапе S102), процесс обработки переходит к этапу S104.

На этапе S104 центральный процессор 100 выполняет процесс инициализации. Конкретно, инициализируется заданная область блока 42 запоминающего устройства, выпускается воздух из пневматической камеры 21 и выполняется коррекция датчика 32 давления.

Затем центральный процессор 100 определяет, был ли нажат выключатель 41B измерения (этап S106). Центральный процессор 100 находится в дежурном режиме до тех пор, пока не нажат выключатель 41B измерения (NO на этапе S106). Если центральный процессор 100 определяет, что выключатель 41B измерения был нажат (YES на этапе S106), процесс обработки переходит к этапу S108.

На этапе S108 блок 101 управления запуском выполняет процесс обработки управления схемой 53 запуска насоса и схемой 54 запуска клапана, чтобы увеличить давление в манжете до заданного значения. Конкретно, клапан 52 закрывается, чтобы постепенно увеличивать давление в манжете до заданного значения с помощью насоса 51. Здесь, заданным значением является значение давления, установленное заранее. Однако, вместо этого, это может быть информация пульсовой волны, детектируемая во время увеличения давления, или значение давления, определенное на основе вычисленных значений кровяного давления и количества биений. Альтернативно, давление может непрерывно увеличиваться, в то время как пользователь (обследуемый человек) продолж