Усовершенствованный катетер с всенаправленным оптическим наконечником с изолированными оптическими путями
Иллюстрации
Показать всеГруппа изобретений относится к медицине и медицинской технике, а именно к катетерам для абляции тканей с всенаправленным оптическим наконечником, и способу изготовления таких наконечников. Катетер содержит корпус и концевой электрод, дистальный относительно корпуса катетера, со стенкой оболочки и полостью. Стенка оболочки содержит, по меньшей мере, осветительное отверстие и сборное отверстие. С осветительным отверстием сообщается первый волоконно-оптический кабель. С полостью - второй волоконно-оптический кабель. Свет, испускаемый из первого волоконно-оптического кабеля, выходит из концевого электрода для подхода к ткани через осветительное отверстие, определяющее первый путь, и возвращается в концевой электрод от ткани в полость через сборное отверстие, определяющее второй путь. Первый и второй пути оптически изолированы один от другого в концевом электроде. Другим вариантом выполнения катетера является наличие на концевом электроде со стенкой оболочки нескольких осветительных и сборных отверстий и соответствующего количества волоконно-оптических кабелей. Для изготовления всенаправленного концевого электрода с изолированными оптическими путями обеспечивают стенку оболочки с полостью. Далее формируют, по меньшей мере, одно сборное отверстие в стенку оболочки, формируют, по меньшей мере, одно осветительное отверстие в стенке оболочки. Обеспечивают светоиспускающий волоконно-оптический кабель, выполненный с возможностью испускания света в осветительное отверстие; и обеспечивают приемный волоконно-оптический кабель, выполненный с возможностью приема света, собранного в полости. Между светоиспускающим волоконно-оптическим кабелем и полостью обеспечивают оптический барьер. 3 н. и 33 з.п. ф-лы, 13 ил.
Реферат
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Изобретение относится к катетерам для абляции и, в частности к катетерам для абляции с оптическим контролем тканей.
УРОВЕНЬ ТЕХНИКИ
При минимально инвазивных медицинских процедурах некоторых типов отсутствует в реальном времени информация, касающаяся состояния места лечения внутри тела. Такое отсутствие информации не дает врачу выполнять процедуру, при использовании катетера. Примером подобных процедур является лечение опухоли и заболевания печени и простаты. Еще одним примером подобной процедуры является хирургическая абляция, применяемая для лечения фибрилляции предсердий. Данное состояние сердца обуславливает генерацию в ткани эндокарда аномальных электрических сигналов, известных как аритмия сердца и приводящих к нерегулярным сокращениям сердца.
Наиболее частой причиной аритмий сердца является аномальный путь распространения электрических сигналов через ткань сердца. В общем, большинство аритмий лечат абляцией предполагаемых центров такого расстройства электрического возбуждения и, тем самым, превращения данных центров в неактивные. В таком случае, успешное лечение зависит от местоположения абляции внутри сердца, а также от самого повреждения. Например, при лечении фибрилляции предсердий, катетер для абляции направляют в правое или левое предсердие, где его используют для создания абляционных повреждений в сердце. Данные повреждения предназначены для прекращения нерегулярности сокращений сердца путем создания непроводящих барьеров между областями предсердий, которой останавливают распространение через сердце аномальной электрической активности.
Повреждение следует создавать так, чтобы электрическая проводимость прекращалась в локализованной (трансмуральной) области, однако, следует соблюдать осторожность, чтобы не допускать абляции соседних тканей. Кроме того, процесс абляции может также вызывать нежелательное обугливание ткани и локализованную коагуляцию и может испарять воду в крови и ткани, что приводит к выбросам пара.
В настоящее время повреждения оценивают после процедуры абляции путем позиционирования катетера, предназначенного для картирования распределения биопотенциалов, в сердце, где данный катетер применяют для измерения электрической активности в предсердиях. Это дает врачу возможность оценивать вновь сформированные повреждения и определять, будут ли они выполнять функцию запирания проводимости. Если определяют, что повреждения сформированы ненадлежащим образом, то можно создать дополнительные повреждения, чтобы дополнительно сформировать линию блокирования распространения аномальных токов. Следует понимать, что оценка после абляции нежелательна, поскольку коррекция требует дополнительных медицинских процедур.
Следовательно, желательно было бы оценивать повреждение по мере его формирования в ткани.
Известный способ оценки повреждений во время их формирования состоит в измерении полного электрического сопротивления. Биохимические различия между подвергшейся абляции и нормальной тканью могут приводить к появлению различий полного электрического сопротивления между типами тканей. Хотя полное сопротивление обычно контролируют в процессе электрофизиологической терапии, оно не напрямую зависит от образования повреждения. Измерение полного сопротивления просто обеспечивает данные о местоположении повреждения ткани, но не дает качественных данных для оценки эффективности повреждения.
Другой способ заключается в измерении электрической проводимости между двумя точками ткани. Данный процесс, известный, как сопровождение повреждений, может также определять эффективность абляционной терапии. Однако данный метод измеряет результат или отсутствие результата от каждого повреждения и не дает информации в реальном времени об образовании повреждения.
Следовательно, существует потребность в катетере, который может измерять образование повреждения в реальном времени, если не контролировать ткань в общем, и выполнен с возможностью применения под большинством углов к ткани. Кроме того, когда такое измерение и обнаружение выполняют методом оптической спектроскопии, существует потребность в катетере, который может обеспечивать раздельные оптические пути для подсветки ткани и сбора обратно света от ткани. Кроме того, катетер должен иметь простую и эффективную конструкцию, которая допускает несложное изготовление и сокращение производственных трудозатрат и издержек.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится к катетеру, который позволяет выполнять световые измерения в реальном времени, например, но без ограничения, коэффициент диффузного отражения, флуоресценцию и т.д. от биологических материалов, например, ткани (включая кровь), во время выполнения радиочастотной (RF) абляции. Предлагается конструкция наконечника катетера, которая поддерживает раздельные пути подсветки и сбора света внутри концевого электрода, чтобы свет выходил из наконечника катетера и взаимодействовал с представляющей интерес тканью (например, тканью сердца или кровью), если не проходил сквозь нее, перед возвратом обратно в наконечник катетера. Данная конструкция выгодно устраняет насыщение оптического детектора и обеспечивает диффузию подсвечивающего света в представляющую интерес среду.
Свет, собранный обратно катетером от ткани, сообщает параметры ткани, которые можно оценить с использованием оптической спектроскопии. Данные параметры включают в себя, без ограничения, образование повреждения, глубину проникновения повреждения и площадь поперечного сечения повреждения, обугливание во время абляции, распознавание обугливания во время абляции, установление отличия обугленной от необугленной ткани, образование коагулята вокруг места абляции, установление отличия коагулированной от некоагулированной крови, установление отличия подвергшейся абляции ткани от здоровой ткани, дистанцию от ткани, оценку жизнеспособности, состояния и болезненного состояния ткани и распознавание образования пара в ткани для предотвращения выброса пара.
В соответствии с настоящим изобретением, катетер в одном варианте осуществления содержит корпус катетера и концевой электрод со стенкой оболочки и полостью, при этом, стенка оболочки содержит, по меньшей мере, осветительное отверстие и сборное отверстие. Катетер содержит также первый волоконно-оптический кабель, сообщающийся с осветительным отверстием, и второй волоконно-оптический кабель, сообщающийся с полостью, при этом, свет, испускаемый из первого волоконно-оптического кабеля, выходит из концевого электрода для подхода ткани через осветительное отверстие, определяющее первый путь, и возвращается в концевой электрод от ткани в полость через сборное отверстие, определяющее второй путь. В предпочтительном варианте первый и второй пути в концевом электроде оптически изолированы один от другого.
В более развернутом варианте осуществления катетер содержит корпус катетера и концевой электрод, выполненный с возможностью абляции ткани. Концевой электрод содержит стенку оболочки и полость. Стенка оболочки содержит несколько осветительных отверстий, в которые впускают свет из светоиспускающих волоконно-оптических кабелей для подсветки представляющей интерес ткани. Осветительные отверстия являются полусферическими и имеют параболическое сечение и могут быть заполнены материалом с оптическими рассеивающими характеристиками, например, эпоксидной смолой или пластиком с рассеивающим наполнителем, чтобы способствовать равномерному распределению света из отверстий. Стенка оболочки содержит также несколько сборных отверстий, через которые свет, собираемый обратно от ткани, собирается в полости. И, по меньшей мере, один приемный волоконно-оптический кабель обеспечен для приема света, собранного в полости. В месте, в котором светоиспускающие волоконно-оптические кабели пересекают полость, на кабелях обеспечено покрытие, чтобы не допускать пропускания света из кабелей или в кабели для сохранения раздельных оптических путей оптически изолированными в концевом электроде.
В качестве всенаправленного осветителя и коллектора, концевой электрод в одном варианте осуществления содержит первую секцию, которая, в общем, перпендикулярна продольной оси концевого электрода, вторую секцию, которая расположена под углом от приблизительно 0 до 90 градусов к продольной оси, и третью секцию, которая расположена, в общем, параллельно продольной оси. Сборные и осветительные отверстия могут быть сформированы в любой из первой, второй и/или третьей секций. В одном варианте осуществления сборные отверстия сформированы в первой и третьей секциях, и осветительные отверстия сформированы во второй секции.
Концевой электрод содержит также выравнивающую пробку, которая герметизирует полость. Пробка содержит каналы для продолжающихся через них светоиспускающих и приемных волоконно-оптических кабелей, чтобы стабилизировать волоконно-оптические кабели и свести к минимуму напряжения, которые могут оборвать волоконно-оптические кабели.
Настоящее изобретение относится также к способу изготовления выполняющего абляцию концевого электрода, который выполняет также функции всенаправленного осветителя и коллектора. Способ содержит этапы, заключающиеся в том, что обеспечивают стенку оболочки с полостью, формируют, по меньшей мере, одно сборное отверстие в стенке оболочки, формируют, по меньшей мере, одно осветительное отверстие в стенке оболочки, обеспечивают светоиспускающий волоконно-оптический кабель, выполненный с возможностью испускания света в осветительное отверстие, обеспечивают приемный волоконно-оптический кабель, выполненный с возможностью приема света, собранного в полости, и обеспечивают оптический барьер между светоиспускающим волоконно-оптическим кабелем и полостью.
Способ может дополнительно содержать этапы, состоящие в том, что обеспечивают осветительное полусферическое отверстие с параболическим сечением и заполняют осветительное отверстие материалом, обладающим оптическими рассеивающими свойствами, например, эпоксидной смолой или пластиком с рассеивающим наполнителем, чтобы способствовать равномерному распределению света из отверстий. Способ может также дополнительно содержать этапы, состоящие в том, что формируют пробку для герметизации полости, при этом, пробка сформирована с каналами для сквозного продолжения волоконно-оптических кабелей, и жестко закрепляют участки волоконно-оптических кабелей к пробке в каналах.
Настоящий катетер и способ предназначены для использования света в сочетании с орошением и технологией RF (радиочастотной) абляции. В предпочтительном варианте свет, применяемый для контроля и оценки ткани (или повреждения, сформированного в ткани), в общем, не подвергается изменениям от действия части электромагнитного излучения, применяемого для абляции. Кроме того, частоты в диапазоне, применяемом для контроля и оценки, также распространяются сквозь кровь с минимальным ослаблением. Волоконная оптика применяется и устанавливается в катетере таким образом, который исключает контакт с тканью, что позволяет увеличить срок службы катетера и свести к минимуму повреждения, наносимые истиранием волоконной оптике. Кроме того, выравнивающая пробка в концевом электроде закрепляет волоконно-оптические кабели с минимальным изгибом или деформацией, но с расширенной угловой зоной обзора, что может свести к минимуму обрывы волоконной оптики во время сборки и применения, а также ослабить нелинейные оптические эффекты, обусловленные ориентацией волоконной оптики. Кроме того, применение волоконной оптики для испускания и приема света дает, в общем, температурно-нейтральный способ, который привносит незначительное, если вообще измеримое, количество теплоты в окружающую кровь или ткань.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Данные и другие особенности и преимущества настоящего изобретения станут более понятны из нижеследующего подробного описания, изложенного в связи с прилагаемыми чертежами, на которых:
Фиг.1 - вид сбоку варианта осуществления катетера в соответствии с настоящим изобретением.
Фиг.2А - вид сбоку в разрезе варианта осуществления корпуса катетера в соответствии с изобретением, содержащего соединение между корпусом катетера и промежуточной секцией, при этом, разрез взят по первому диаметру.
Фиг.2В - вид сбоку в разрезе варианта осуществления корпуса катетера в соответствии с изобретением, содержащего соединение между корпусом катетера и промежуточной секцией, при этом, разрез взят по второму диаметру, в общем, перпендикулярному к первому диаметру, показанному на Фиг.2А.
Фиг.3А - вид сбоку в разрезе варианта осуществления корпуса катетера в соответствии с изобретением, содержащего соединение между промежуточной секцией и концевой секцией, при этом, разрез взят по первому диаметру.
Фиг.3В - вид сбоку в разрезе варианта осуществления корпуса катетера в соответствии с изобретением, содержащего соединение между промежуточной секцией и концевой секцией, при этом, разрез взят по второму диаметру, в общем, перпендикулярному к первому диаметру, показанному на Фиг.3А.
Фиг.4А - вид сбоку в разрезе варианта осуществления корпуса катетера в соответствии с изобретением, содержащего соединение между пластиковой оправой и концевым электродом, при этом, разрез взят по первому диаметру.
Фиг.4В - вид сбоку в разрезе варианта осуществления корпуса катетера в соответствии с изобретением, содержащего соединение между пластиковой оправой и концевым электродом, при этом, разрез взят по второму диаметру, в общем, перпендикулярному к первому диаметру, показанному на Фиг.4А;
Фиг.5 - поперечное сечение варианта осуществления промежуточной секции, взятое по линии 5-5, показанной на Фиг.3А.
Фиг.6 - вид в перспективе варианта осуществления концевого электрода.
Фиг.7 - поперечное сечение концевого электрода, взятое по линии 7-7, показанной на Фиг.4А.
Фиг.8 - поперечное сечение концевого электрода, взятое по линии 8-8, показанной на Фиг.4А.
Фиг.9 - поперечное сечение концевого электрода, взятое по линии 9-9, показанной на Фиг.4А.
Фиг.10 - поперечное сечение концевого электрода, взятое по линии 10-10, показанной на Фиг.4А.
Фиг.11А - вид сбоку другого варианта осуществления концевой секции, где продольная ось, в общем, перпендикулярна поверхности ткани.
Фиг.11В - вид сбоку другого варианта осуществления концевой секции, где продольная ось расположена, в общем, под углом от нуля до 90 градусов к поверхности ткани.
Фиг.11С - вид сбоку другого варианта осуществления концевой секции, где продольная ось расположена, в общем, параллельно плоскости ткани.
Фиг.12 - поперечное сечение пробки в концевом электроде, взятое по линии 12-12, показанной на Фиг.4А.
Фиг.12А - местное сечение варианта осуществления дистального конца токопроводящего проводника, закрепленного в пробке концевого электрода.
Фиг.12В - местное сечение варианта осуществления дистальных концов термопары, закрепленных в пробке концевого электрода.
Фиг.12С - местное сечение варианта осуществления дистального конца натяжного тросика, закрепленного в пробке концевого электрода.
Фиг.13 - схематический чертеж, представляющий компоненты варианта осуществления оптической системы обработки информации для применения с катетером в соответствии с настоящим изобретением.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Катетер 10 в соответствии с настоящим изобретением выполнен с возможностью облегчения оценки в реальном времени с помощью оптической системы характеристик подвергшейся абляции ткани, включая, но без ограничения, образование повреждения, глубину проникновения повреждения, площадь поперечного сечения повреждения, обугливание во время абляции, распознавание обугливания во время абляции, установление отличия обугленной от не обугленной ткани, образование коагулята вокруг места абляции, установление отличия коагулированной от не коагулированной крови, установление отличия подвергшейся абляции ткани от здоровой ткани, дистанция от ткани и распознавание образования пара в ткани для предотвращения выброса пара. Данные оценки выполняют измерением интенсивности света, по меньшей мере, одной длины волны, который собирается обратно в катетере в результате испускания света из наконечника катетера на подвергаемую абляции ткань. В катетере обеспечены волоконно-оптические кабели для передачи света к наконечнику катетера и от нее.
Как показано на Фиг.1-13, катетер 10 в соответствии с настоящим изобретением содержит удлиненный корпус 12 катетера, имеющий проксимальный и дистальный концы, изгибаемую (одно- или двунаправленно) промежуточную секцию 14 на дистальном конце корпуса 12 катетера, концевую секцию 36 на дистальном конце промежуточной секции и рукоятку 16 управления на проксимальном конце корпуса 12 катетера.
Как дополнительно показано на Фиг.2А и 2В, корпус 12 катетера содержит удлиненную трубчатую конструкцию, имеющую один осевой или центральный просвет 18. Корпус 12 катетера является гибким, т.е. допускающим изгиб, но, по существу, несжимаемым по его длине. Корпус 12 катетера может иметь любую подходящую конструкцию и может быть изготовлен из любого подходящего материала. Конструкция содержит внешнюю стенку 22, изготовленную из экструдированного пластика. Внешняя стенка 22 может содержать заделанную плетеную сетку из нержавеющей стали или чего-то подобного для усиления жесткости при кручении корпуса 12 катетера, и поэтому, когда поворачивают рукоятку 16 управления, корпус 12 катетера, промежуточная секция 14 и концевая секция 36 катетера 10 поворачиваются соответственно.
Через один просвет 18 корпуса 12 катетера продолжаются компоненты, например, провода, трубки и/или кабели. Однопросветный корпус катетера может быть предпочтительнее многопросветного корпуса, так как выяснилось, что однопросветный корпус допускает улучшенное управление наконечником при повороте катетера. Единственный просвет позволяет различным компонентам свободно двигаться внутри корпуса катетера. Если бы упомянутые провода, трубка и кабели были заключены внутри нескольких полостей, то они стремились бы накапливать энергию при повороте рукоятки, что порождало бы стремление корпуса катетера к повороту обратно, когда, например, рукоятку отпускают, или, при изгибе по кривой, к перевороту, причем, и то и другое является нежелательным для рабочих характеристик.
Внешний диаметр корпуса 12 катетера не имеет решающего значения, но предпочтительно, не больше, чем приблизительно 8 французских пунктов, в более предпочтительном варианте, 7 французских пунктов. Аналогично, толщина внешней стенки 22 не имеет решающего значения, но является достаточно тонкой, чтобы центральный просвет 18 мог вмещать вышеупомянутые компоненты. Внутренняя поверхность внешней стенки 22 может быть выложена укрепляющей трубкой 20, которая может быть выполнена из любого подходящего материала, например, полиимида или нейлона. Укрепляющая трубка 20, вместе с плетеной внешней стенкой 22, обеспечивает повышенную крутильную устойчивость, при одновременном сведении к минимуму толщины стенки катетера, что максимально увеличивает диаметр центрального просвета 18. Внешний диаметр укрепляющей трубки 20 является приблизительно таким, как или немного меньше, чем внутренний диаметр внешней стенки 22. Для укрепляющей трубки 20 предпочтительной может быть полиимидная трубка, так как она может иметь очень тонкую стенку, обеспечивающую, при этом, очень высокую жесткость. Тем самым диаметр центрального просвета 18 максимально увеличивается без снижения прочности и жесткости.
Катетер может иметь внешнюю стенку 22 с внешним диаметром от приблизительно 0,090 дюйма до приблизительно 0,098 дюйма и внутренним диаметром от приблизительно 0,061 дюйма до приблизительно 0,078 дюйма и полиимидную укрепляющую трубку 20 с внешним диаметром от приблизительно 0,060 дюйма до приблизительно 0,077 дюйма и внутренним диаметром от приблизительно 0,051 дюйма до приблизительно 0,069 дюйма.
Как показано также на Фиг.5, промежуточная секция 14, расположенная дистально от корпуса 12 катетера, содержит укороченную секцию трубного блока 19, имеющего несколько просветов. Трубный блок 19 выполнен из подходящего нетоксичного материала, который предпочтительно является более гибким, чем корпус 12 катетера. Подходящий материал для трубного блока 19 является оплетенным или неоплетенным полиуретаном. Внешний диаметр промежуточной секции 14, аналогично внешнему диаметру корпуса 12 катетера, предпочтительно не больше, чем приблизительно 8 французских пунктов, в более предпочтительном варианте, 7 французских пунктов. Размеры и число просветов не имеют решающего значения. В одном варианте осуществления промежуточная секция 14 имеет внешний диаметр приблизительно 7 французских пунктов (0,092 дюйма). Трубный блок 19 содержит несколько просветов, например, первый просвет 30, второй просвет 32, третий просвет 34 и четвертый просвет 35. В представленном варианте осуществления все просветы 30, 32 и 35 имеют приблизительно одинаковый диаметр около 0,22 дюйма, тогда как просвет 34 имеет больший диаметр около 0,44 дюйма.
Как показано в вариантах осуществления, представленных на Фиг.2А и 2В, корпус 12 катетера, который может быть прикреплен к промежуточной секции 14, содержит внешний кольцевой вырез 24, выполненный на проксимальном конце трубного блока 19, который вмещает внутреннюю поверхность внешней стенки 22 корпуса 12 катетера. Промежуточная секция 14 и корпус 12 катетера скреплены клеем или чем-то подобным. Перед скреплением промежуточной секции 14 и корпуса 12 катетера, укрепляющая трубка 20 вставлена в корпус 12 катетера. Дистальный. конец укрепляющей трубки 20 жестко закреплен вблизи дистального конца корпуса 12 катетера путем создания клеевого соединения 23 полиуретановым клеем или чем-то подобным. Между дистальным концом корпуса 12 катетера и дистальным концом укрепляющей трубки 20 предпочтительно обеспечено небольшое расстояние, например, около 3 мм, чтобы на корпусе 12 катетера оставалось место для вмещения выреза 24 промежуточной секции 14. Если сжатая спираль не применяется, то усилие прилагается к проксимальному концу укрепляющей трубки 20, и, когда укрепляющая трубка 20 находится под действием силы сжатия, между укрепляющей трубкой 20 и внешней стенкой 22 формируется первое клеевое соединение (не показанное) быстросохнущим клеем, например, цианакриловым. Затем, между проксимальными концами укрепляющей трубки 20 и внешней стенкой 22 формируется второе клеевое соединение 26 с помощью более медленно сохнущего, но более прочного клея, например, полиуретанового.
При желании, можно установить проставку внутри корпуса катетера, между дистальным концом укрепляющей трубки и проксимальным концом концевой секции. Проставка обеспечивает переходное изменение гибкости в месте соединения корпуса катетера и промежуточной секции, что обеспечивает возможность плавного изгиба данного соединения без образования складок или переломов. Катетер с подобной проставкой описан в заявке на патент США №08/924,616, «Steerable Direct Myocardial Revascularization Catheter», описание которой целиком включено в настоящее описание путем отсылки.
Из дистального конца промежуточной секции 14 продолжается концевая секция 36, которая содержит концевой электрод 27 и пластиковую оправу 21, как показано на Фиг.4А и 4В. Пластиковая оправа 21, как показано на Фиг.3А и 3В, соединяет концевой электрод 27 и трубный блок 19 и обеспечивает оправу и/или переходное пространство для компонентов, которые продолжаются в или сквозь ее просвет, как поясняется ниже. Пластиковая оправа 21 предпочтительно выполнена из простого полиэфироэфирокетона (PEEK) и может иметь длину около 1 см. Проксимальный конец оправы вмещает поверхность 17 с внешним кольцевым вырезом трубного блока 19 промежуточной секции 14. Промежуточная секция 14 и пластиковая оправа 21 скреплены клеем или чем-то подобным. Компоненты, например, провода, кабели и трубки, которые продолжаются между промежуточной секцией 14 и концевым электродом 27, помогают удерживать концевой электрод в заданном положении.
В соответствии с настоящим изобретением, концевой электрод 27 выполнен с возможностью функционирования как всенаправленный осветитель и коллектор для сбора обратно света, который испускается из наконечника катетера на подвергаемую абляции ткань. Как показано на Фиг.4А и 4В, концевой электрод содержит стенку оболочки 38 и пробку 44. Стенка оболочки 38 выполнена с дистальным куполообразным концом 31 и открытым проксимальным участком 33, сообщающимся с полостью 29. В представленном варианте осуществления стенка оболочки 38 имеет, в общем, равномерную толщину, за исключением дистального куполообразного конца 31, который имеет большую толщину и окружает дистальную куполообразную полость 73, продолжающуюся из краевой области 37 полости 29. Дистальный куполообразный конец 31 стенки оболочки является атравматичным и выполнен с возможностью контакта с тканью. Открытый проксимальный конец 33 выполнен с возможностью вмещения пробки 44, которая, кроме прочих функций, уплотняет полость 29.
Стенка оболочки 38 и пробка 44 сформированы из любого подходящего материала, который является непрозрачным и/или отражательным, а также термо- и электропроводящим, что обеспечивает возможность радиочастотной абляции с использованием RF-генератора. Подобные подходящие материалы включают в себя, без ограничения, платиноиридиевый, платиновый, золотой сплав или палладиевый сплав.
Концевой электрод 27 содержит разные секции по его продольной оси 99 для сообщения наконечнику всенаправленных свойств при оптическом контроле тканей. Как показано на Фиг.4А, 4В и 6, предусмотрены дистальная секция 100, средняя секция 102 и проксимальная секция 104. Стенка оболочки 38 дистальной секции 100, в общем, перпендикулярна оси 99. Стенка оболочки средней секции 102 составляет, в общем, угол, изменяющийся от нуля до 90 градусов, предпочтительно, приблизительно от 30 до 60 градусов и, в более предпочтительном варианте, приблизительно 45 градусов к оси 99. Стенка оболочки проксимального участка 104, в общем, параллельна оси 99. Данные секции, которые наклонены под разными углами и имеют, в общем, плавные и атравматичные переходы между ними, дают возможность концевому электроду 27 выполнять функцию осветителя и коллектора при разных углах между концевой секцией 36 и тканью, как показано на Фиг.11А-11С.
Стенка оболочки 38 содержит множество окон или отверстий различных размеров, включая осветительные отверстия и сборные отверстия для выхода и возвращения света из/в концевой электрод 27. Как дополнительно поясняется ниже, концевой электрод 27 обеспечивает оптически разделенные пути распространения света, предназначенного для подсветки ткани, и для света, который принимается через сборные отверстия. Каждая секция 100, 102, 104 концевого электрода может содержать любое число осветительных и/или сборных отверстий, по желанию или соответственно обстоятельствам, хотя данное число частично зависит от размера концевого электрода и размера и числа волоконно-оптических кабелей, заключенных в нем. В изображенном варианте осуществления дистальная секция 100 содержит сборное отверстие 87 на дистальном конце концевого электрода по продольной оси 99 (Фиг.7). Средняя секция 102 содержит три осветительных отверстия 89, которые разнесены между собой на равные углы, приблизительно, 120 градусов, радиально относительно оси (Фиг.8). Проксимальная секция 104 содержит еще три сборных отверстия 87, которые разнесены между собой на равные углы, приблизительно, 120 градусов, радиально относительно оси (Фиг.9). Три сборных отверстия 87 радиально смещены на, приблизительно, 20 градусов от трех осветительных отверстий 89 в средней секции 102. Хотя в проксимальной секции 104, еще более проксимально относительно трех сборных отверстий 87 имеются три дополнительных сборных отверстия 87'' (Фиг.10), которые разнесены между собой на равные углы, приблизительно, 120 градусов, относительно оси. Три данных сборных отверстия 87'' радиально смещены на, приблизительно, 40 градусов от более дистальных сборных отверстий 87 в проксимальной секции 104.
Для эффективной подсветки представляющей интерес ткани каждое из осветительных отверстий 89 имеет, в общем, криволинейное сечение. В варианте осуществления, показанном на Фиг.8, имеется полусферическая верхняя часть 93, сечение которой, в целом, можно описать как параболическое. Полусферическая верхняя часть эффективно отражает свет из отверстия 89 для более равномерного распределения света из дистального куполообразного конца 31 концевого электрода 27.
Как показано на Фиг.4А и 4В, свет доставляется к осветительным отверстиям 89, по меньшей мере, одним светоиспускающим волоконно-оптическим кабелем 43Е, дистальный конец которого вмещается в канал 97, продольно продолжающийся от краевой секции 37 полости 29. Конфигурация каналов дополнительно изолирует свет от кабелей 43Е от полости 29 и наоборот. Осветительные отверстия 89 могут быть заполнены материалом 150 с оптическими рассеивающими свойствами, например, эпоксидной смолой или пластиком с рассеивающим наполнителем, чтобы способствовать равномерному распределению света из отверстий 89. Соответственно, свет испускается по всем направлениям на представляющую интерес ткань из дистального конца концевого электрода с минимальными потерями на поглощение внутри куполообразной конструкции наконечника и материала 150, используемого для рассеивания света.
Свет, возвращающийся в концевой электрод от ткани, через сборные отверстия 87 собирается и отражается всюду в полости 29. Дистальная куполообразная полость 33, соединяющая отверстие 87' и полость 29, выполнена с возможностью оптимизации количества света, принимаемого в полость 29 через сборное отверстие 87'. По меньшей мере, один приемный волоконно-оптический кабель 43R продолжается в полость для сбора света. Следует отметить, что, поскольку каждый из светоиспускающих волоконно-оптических кабелей 43Е пересекает полость 29 для достижения канала 97, каждый кабель 43Е содержит покрытие 47 для его оптической изоляции от полости и наоборот. Покрытие может быть непрозрачным, но отражающим защитным материалом, например, алюминием, золотом и т.п., так что свет не может проникать сквозь боковую стенку волокна 43Е либо в полость 29, либо из полости. Покрытие может продолжаться по длине волокон 43Е через катетер.
Волоконно-оптические кабели 43Е и 43R вмещаются в катетер и защищены им от рукоятки 16 до концевой секции 36. Как показано на Фиг.2В и 5, они продолжаются через центральный просвет 18 катетера 12, третий просвет 34 промежуточной секции 14, пластиковую оправу 21 и в концевой электрод 27.
В описанном варианте осуществления присутствуют три осветительных кабеля 43Е и один приемный кабель 43R. Кабели 43Е выполняют функцию светоизлучателей посредством распространения по ним света в концевой электрод 27 от удаленного источника света. Кабель 43R выполняет функцию светоприемника посредством сбора света из полости 29 в концевом электроде 27. Специалисту со средним уровнем компетентности в данной области должно быть понятно, что оптические волноводы и волоконно-оптические кабели выполняют общую функцию переноса оптической энергии от одного конца к другому, хотя данные функции не являются исключительными.
Пробка 44, сформированная из материала, аналогичного или сравнимого с материалом стенки оболочки 38, имеет, в общем, удлиненную цилиндрическую конфигурацию с заданной длиной и, в общем, круглое сечение, которое согласовано с сечением открытого проксимального конца 33 концевого электрода 27. Дистальный участок пробки 44 запрессован или закреплен пайкой в открытом проксимальном конце 33 для герметизации полости 29, тогда как проксимальный участок пробки 44 продолжается в проксимальном направлении из концевого электрода 27 для присоединения к оправе 21.
В соответствии с настоящим изобретением, в пробке 44 обеспечены глухие отверстия и каналы, чтобы компоненты, продолжающиеся из промежуточной секции 14, можно было закреплять в пробке или проводить через нее в полость 29. В варианте осуществления, изображенном на Фиг.4А, 4В и 12, в проксимальной поверхности пробки сформированы глухие отверстия 102, 104 и 106, в которых закреплены дистальные концы, соответственно, токоведущего проводника 40, проводов термопары 41 и 45 и датчика 72 местоположения. Имеются также каналы 108, 112, 114 и 116, через которые продолжаются волоконно-оптические кабели 43Е и 43R, и канал 110, через который продолжается оросительная трубка 48 в полость 29 концевого электрода. Каналы 108, 112 и 114 для трех волоконно-оптических кабелей 43Е, в общем, совмещены с каналами 97, ведущими к осветительным отверстиям 89 в стенке оболочки 38 концевого электрода. Участки компонентов, продолжающиеся через каналы в пробке 44, надежно закреплены в каналах к пробке 44 клеем, адгезивным материалом или чем-то подобным. По существу, каналы и пробка помогают совместить, стабилизировать и закрепить различные компоненты, продолжающиеся через пробку 44. В частности, каналы помогают свести к минимуму нагрузку на кабели 43Е и 43R при их переходе между промежуточной секцией 14 и концевым электродом 27.
В соответствии с настоящим изобретением, подсветка ткани 111 и сбор света обратно от ткани выполняется всенаправленным концевым электродом 27, независимо от того, располагается ли катетер 10, в общем, перпендикулярно ткани (Фиг.11А), под углом от приблизительно нуля до девяноста градусов (Фиг.11В), или, в общем, параллельно ткани (Фиг.11C). Специалисту со средним уровнем компетентности в данной области техники должно быть очевидно, что количество и конфигурацию секций 100, 102 и 104 и сборных и осветительных отверстий 87, 87' и 87'' и 89 можно изменять соответственно обстоятельствам или по желанию. Величину и размеры каждой секции также можно изменять соответственно обстоятельствам или по желанию, как и форму отверстий, которые могут быть круглыми, овальными, квадратными, многоугольными, плоскими (щелевыми) или любым сочетанием перечисленных форм.
В процессе применения катетер 10 испускает около своего концевого электрода 27 свет, доставляемый волоконно-оптическими кабелями 43Е к их дистальным концам, которые испускают свет в осветительные отверстия 89, где полусферическая верхняя часть 93 эффективно отражает свет из отверстия 89 для более равномерного распределения света из дистального куполообразного конца 31 концевого электрода 27. Когда в ткани 111 образуется повреждение 113 в результате абляции, выполняемой концевым электродом 27 катетера 10 (или другого катетера), то характеристики данного повреждения изменяются, как очевидно специалисту со средним уровнем компетентности в данной области техники. В частности, когда повреждение подсвечивают светом, свет рассеивается и/или отражается обратно к концевому электроду 27, при этом, данный свет, в результате взаимодействия с повреждением или иного воздействия на него со стороны повреждения, переносит качественную и количественную информацию о повреждении 113, когда он собирается обратно полостью 29 через сборные отверстия 87, 87', 87'' концевого электрода. Свет, перехватываемый обратно от ткани, собирается в полости 29 концевого электрода. Приемный волоконно-оптический кабель 43R принимает собранный обратно свет, который переносит качественную и количественную информацию и передается в оптическую систему обработки информации, как более подробно описано ниже.
В соответствии с настоящим изобретением, концевой электрод 27 обеспечивает раздельные оптические пути для света, который подсвечивает ткань, и света, собираемого обратно от ткани, которые оптически изолированы друг от друга стенкой оболочки 38, каналами 97 и/или покрытием 47 на светоиспускающих волоконно-оптических кабелях 43Е. Оптический путь от концевого электрода к ткани начинается со света, который впускается в осветительные отверстия 89 по волоконно-оптическим кабелям 43Е, который отражается полусферической верхней частью 93 и диффузно рассеивается наполнителем 150 по множеству углов и направлений перед выходом из осв