Способ изготовления стальной трубы лазерной сваркой

Иллюстрации

Показать все

Способ предназначен для изготовления стальной трубы лазерной сваркой, в котором точно оценивают состояние лазерной сварки и используют эту оценку для изменения условий сварки, так что сваренные лазером стальные трубы могут быть стабильно изготовлены с высокой скоростью. Точку воздействия лазерным лучом, которым со стороны внешней поверхности воздействуют на продольные края, отслеживают со стороны внутренней поверхности открытой трубы. Оценивают условия сварки лазерным лучом и не изменяют, если обнаруживают наличие сквозного проплавления с наружной стороны до внутренней поверхности открытой трубы. Если сквозное проплавление не проникло до внутренней поверхности открытой трубы, условия сварки изменяют так, чтобы сварка осуществлялась со сквозным проплавлением, проникающим от внешней до внутренней поверхности открытой трубы в точке воздействия лазерным лучом. 24 з.п. ф-лы, 6 ил., 6 пр., 12 табл.

Реферат

Область техники, к которой относится изобретение

Изобретение относится к способу изготовления стальной трубы путем сварки продольных краев открытой трубы с помощью лазерного луча (далее называемой сваренной лазером стальной трубой), в частности трубы, подходящей для земляных работ и для транспортировки нефти и природного газа для нефтегазопромысловых и магистральных трубопроводов.

Уровень техники

Стальные трубы, известные как нефтегазопромысловые и магистральные трубы, делятся на две большие категории: сварные стальные трубы (например, стальные трубы, сваренные электрической контактной сваркой, и стальные трубы, полученные формовкой на U- и O-образных гибочных прессах, сварки и экспандирования - процессом UOE) и бесшовные стальные трубы. Из этих типов стальных труб стальные трубы, сваренные электрической контактной сваркой, могут быть изготовлены недорогим способом с использованием горячекатаной полосовой стали (так называемой горячекатаной рулонной стали), выступающей в виде исходного материала. Такие стальные трубы могут быть целесообразны с экономической точки зрения.

Тем не менее, стальные трубы, сваренные электрической контактной сваркой, обычно изготавливаются путем формования стальных полос в цилиндрические открытые трубы с помощью формовочных валков (открытыми трубами здесь и в дальнейшем называются стальные полосы в виде трубы, которые сформованы с помощью множества формовочных валков, и края которых не сварены) и дальнейшего сваривания продольных краев открытых труб (то есть обоих краев цилиндрической стальной полосы) с помощью электрической контактной сварки (также называемой высокочастотной сваркой сопротивлением) с одновременным сжатием продольных краев с помощью сжимающих валков. Таким образом, сваренные электрической контактной сваркой стальные трубы обязательно содержат сварное соединение (так называемый шов), и существует проблема ухудшения ударной вязкости шва при низкой температуре. Таким образом, существует проблема использования нефтегазопромысловых и магистральных труб, изготовленных с использованием электрической контактной сварки, в регионах с холодным климатом. Причина, по которой ухудшается ударная вязкость шва при низкой температуре, заключается в следующем: при сварке продольных краев горячий расплавленный металл вступает в реакцию с кислородом воздуха, в результате чего образуется оксид, который с большой вероятностью остается в шве.

Стальные трубы, сваренные электрической контактной сваркой, имеют еще одну проблему: легирующие элементы часто отделяются в расплавленном металле при сварке продольных краев, и, таким образом, часто ухудшается коррозионная стойкость шва. Следовательно, существует проблема, касающаяся использования нефтегазопромысловых и магистральных труб, полученных из сваренных электрической контактной сваркой стальных труб, в агрессивной коррозионной среде (например, кислой).

В этом случае обращают внимание на сварку лучами лазера (далее называемой лазерной сваркой) как на способ сварки, который не ухудшает низкотемпературной ударной вязкости шва или его коррозионной стойкости. При лазерной сварке размеры источника тепла могут быть малы, а энергия тепла может быть сконцентрирована с высокой плотностью, в результате чего может быть предотвращено образование оксида и отделение легирующих элементов в расплавленном металле. Таким образом, использование лазерной сварки при изготовлении сварных стальных труб может предотвратить ухудшение низкотемпературной ударной вязкости или коррозионной стойкости шва.

Таким образом, процесс изготовления сварных стальных труб представляет собой технологию изготовления стальной трубы с помощью сварки продольных краев открытой трубы при воздействии лазерным лучом (то есть стальные трубы, сваренные лазером).

При лазерной сварке расплавленный металл образуется в очень узкой области. В результате шов сваренной лазером стальной трубы может иметь отверстие, если место контакта продольных краев открытой трубы, в котором сжимающие валки сжимают продольные края (далее - место контакта или место сжатия), смещено вдоль окружности относительно позиции воздействия лазерным лучом. Часть, имеющая такое отверстие, должна рассматриваться как дефект сварки и должна быть удалена, что снижает скорость выпуска сваренных лазером стальных труб.

Для решения указанной задачи были изучены различные способы отслеживания состояния воздействия лазерным лучом при изготовлении стальных труб лазерной сваркой.

Например, в документе JP H10-76383 описан способ оценки состояния лазерной сварки, в котором лазерный луч воздействует на одну сторону стальной полосы, и при этом отслеживают излучение плазмы, появляющееся на другой стороне. Тем не менее, излучение плазмы рассеивается по широкой области, так что с помощью этого способа трудно точно понять состояние лазерной сварки и невозможно точно обнаружить любые сдвиги позиции воздействия лазерным лучом относительно продольных краев.

В документе JP H8-267241 описан способ оценки состояния образования валика сварного шва при сквозном проплавлении, в котором измеряют интенсивность излучения, порожденного лазерной сваркой. Тем не менее, интенсивность излучения значительно изменяется в зависимости от различных факторов, следовательно, для этой технологии трудно точно понять состояние образования валика сварного шва при сквозном проплавлении.

В документе JP 2001-25867 описан способ управления условиями сварки, в котором создается изображение расплавленного металла, образовавшегося при дуговой сварке, при этом полученное изображение используют для анализа формы валиков сварного шва при сквозном проплавлении. Прямое применение этого способа, предназначенного для дуговой сварки, к лазерной сварке не позволяет создавать четкие изображения расплавленного металла. Это объясняется тем, что при лазерной сварке тепловая энергия сконцентрирована с большой плотностью, из-за чего создается повышенная интенсивность светового излучения. В результате при лазерной сварке трудно точно понять форму валиков сварного шва при сквозном проплавлении.

В документе JP 2001-25867 описан способ воздействия на расплавленный металл лазерным лучом через интерференционный фильтр, тем не менее, этот лазерный луч используется для создания изображения расплавленного металла и, следовательно, не вносит вклада в сварку.

Задача изобретения заключается в создании способа изготовления стальной трубы лазерной сваркой, который характеризуется высокой скоростью и стабильностью, и в котором точно оценивается состояние лазерной сварки при изготовлении сваренной лазером стальной трубы, при этом указанная оценка используется для изменения условий сварки.

Раскрытие изобретения

Указанная задача решена в способе изготовления стальной трубы лазерной сваркой, в котором из стальной полосы формуют цилиндрическую открытую трубу и затем открытую трубу сваривают путем воздействия на ее внешнюю поверхность лазерным лучом при одновременном сжатии продольных краев открытой трубы сжимающими валками, при этом способ включает в себя этап, на котором отслеживают со стороны внутренней поверхности открытой трубы точку воздействия лазерного луча, которым облучают продольные края, и этап оценки, на котором при обнаружении сквозного проплавления снаружи до внутренней поверхности открытой трубы условия сварки лазерным лучом не изменяют, а если не обнаруживают сквозного проплавления снаружи до внутренней поверхности открытой трубы, условия сварки лазерным лучом изменяют так, чтобы сварка могла выполняться со сквозным проплавлением, проникающим от внешней поверхности до внутренней поверхности открытой трубы в точке воздействия лазерным лучом. Предпочтительно размер сквозного проплавления, измеренный со стороны внутренней поверхности открытой трубы, больше или равен 0,2 мм в диаметре. Также предпочтительно, чтобы место контакта продольных краев, в котором валки сжимают продольные края, было расположено в расплавленном металле, образовавшемся при воздействии лазерного луча. Иными словами, место контакта продольных краев, в котором валки сжимают продольные края, расположено предпочтительно в сквозном проплавлении.

Предпочтительно используют дополнительный источник тепла для нагревания продольных краев со стороны внешней поверхности, так чтобы эти продольные края могли быть нагреты и расплавлены, а на нагретую часть воздействуют лазерным лучом.

Предпочтительно дополнительным источником тепла является дуга.

Предпочтительно, кроме этапа, на котором отслеживают со стороны внутренней поверхности открытой трубы точку воздействия лазерного луча, которым облучают продольные края, способ дополнительно включает в себя этап измерения с помощью датчиков параметров пучка отраженного светового излучения и свечения плазмы из точки воздействия лазерным лучом, при этом этап оценки осуществляют следующим образом: для состояния сварки, которое отслеживают на основе отдельных измерений, осуществляемых датчиками, при обнаружении сквозного проплавления снаружи до внутренней поверхности открытой трубы, и если малы изменения относительных значений измеренных параметров пучка отраженного светового излучения и свечения плазмы, условия сварки лазерным лучом не изменяют, а если не обнаруживают сквозного проплавления снаружи до внутренней поверхности открытой трубы, если оно нестабильно или повторно закрылось, и если велики изменения относительных значений измеренных параметров пучка отраженного светового излучения и свечения плазмы, условия сварки лазерным лучом изменяют так, чтобы сварка могла выполняться со сквозным проплавлением, проникающим от внешней поверхности до внутренней поверхности открытой трубы в точке воздействия лазерным лучом.

Следует отметить, что упомянутое выше отраженное световое излучение также называется световым излучением обратной связи.

Предпочтительно, чтобы размер сквозного проплавления, измеренный со стороны внутренней поверхности открытой трубы, был не меньше 0,2 мм в диаметре.

Предпочтительно место контакта продольных краев, в котором валки сжимают продольные края, расположено в расплавленном металле, образовавшемся при воздействии лазерного луча.

Предпочтительно место контакта продольных краев, в котором валки сжимают продольные края, расположено в сквозном проплавлении.

Предпочтительно излучатель лазерного луча и дополнительный источник тепла действуют совместно.

Предпочтительно излучатель лазерного луча и дополнительный источник тепла действуют совместно, при этом дополнительный источник тепла нагревает продольные края до воздействия лазерным лучом.

Предпочтительно излучатель лазерного луча представляет собой волоконный лазер, мощность которого превышает 15 кВт, при этом длина фокусировки лазера больше или равна 200 мм.

Предпочтительно расстояние между точкой воздействия лазерным лучом и электродом дуги, измеренное на внешней поверхности открытой трубы, не превышает 7 мм.

Предпочтительно параметры пучка отраженного светового излучения измеряют со стороны внешней поверхности открытой трубы, а параметры свечения плазмы измеряют со стороны внутренней поверхности открытой трубы.

Предпочтительно лазерный луч состоит из нескольких лазерных лучей, при этом сварку осуществляют так, что сквозные проплавления проникают от внешней поверхности открытой трубы до ее внутренней отдельно в точках воздействия лазерными лучами.

Предпочтительно, кроме этапа, на котором отслеживают со стороны внутренней поверхности открытой трубы точку воздействия лазерного луча, которым облучают продольные края, способ дополнительно включает в себя этап измерения с помощью датчиков параметров пучков отраженного светового излучения и свечения плазмы из точки воздействия лазерным лучом, при этом этап оценки осуществляют следующим образом: для состояния сварки, которое отслеживают на основе отдельных измерений, осуществляемых датчиками, при обнаружении сквозных проплавлений снаружи до внутренней поверхности открытой трубы, и если малы изменения относительных значений измеренных параметров пучков отраженного светового излучения и свечения плазмы, условия сварки лазерным лучом не изменяют, а если не обнаруживают сквозных проплавлений снаружи до внутренней поверхности открытой трубы, если они нестабильны или повторно закрылись, и если велики изменения относительных значений измеренных параметров пучков отраженного светового излучения и свечения плазмы, условия сварки лазерным лучом изменяют так, чтобы сварка могла выполняться со сквозными проплавлениями, проникающими от внешней поверхности до внутренней поверхности открытой трубы в точках воздействия лазерными лучами.

Предпочтительно место контакта продольных краев расположено между двумя сквозными проплавлениями, расположенными поперек продольных краев, причем расстояния от этих проплавлений до продольных краев в направлении, перпендикулярном продольным краям, больше расстояния от любого другого сквозного проплавления.

Предпочтительно размеры сквозных проплавлений, измеренных со стороны внутренней поверхности открытой трубы, больше или равны 0,1 мм в диаметре.

Предпочтительно место контакта продольных краев расположено в расплавленном металле, образовавшемся при воздействии лазерными лучами.

Предпочтительно лазерные лучи представляют собой два лазерных луча.

Предпочтительно дополнительный источник тепла для нагревания продольных краев со стороны внешней поверхности открытой трубы используют так, чтобы продольные края можно было дополнительно нагреть и расплавить.

Согласно настоящему изобретению при изготовлении стальных труб лазерной сваркой точно оценивают состояние лазерной сварки, при этом оценка может быть использована для изменения условий сварки таким образом, чтобы место контакта продольных краев всегда было расположено в сквозном проплавлении (сквозных проплавлениях) или расплавленном металле, образовавшемся при воздействии лазерным лучом (лучами). В результате сваренные лазером стальные трубы могут быть стабильно изготовлены с высокой скоростью. Полученные сваренные лазером стальные трубы имеют высокие характеристики в отношении низкотемпературной ударной вязкости и коррозионной стойкости шва и, следовательно, подходят для использования в качестве нефтегазопромысловых и магистральных труб в регионах с холодным климатом или в агрессивной среде.

Краткое описание чертежей

На фиг.1A схематично показан пример сварки согласно изобретению в месте контакта продольных краев открытой трубы, вид в перспективе;

на фиг.1B и 1C - поперечные сечения (в направлении, перпендикулярном линии сваривания) зоны сварки, показанной на фиг.1A, иллюстрирующие сквозное проплавление 4 и расплавленный металл 5, образующийся вокруг сквозного проплавления;

на фиг.2A-2E - точки воздействия несколькими лазерными лучами, виды сверху;

на фиг.3 - средство измерения диаметра сквозного проплавления и средство измерения параметров свечения плазмы;

на фиг.4 - пример сварки в месте контакта продольных краев открытой трубы с использованием лазерных лучей, расположенных так, как показано на фиг.2A, вид в перспективе;

на фиг.5 - средство измерения параметров отраженного светового излучения;

на фиг.6 - способ предотвращения прожога расплавленным металлом с использованием дуги.

Ссылочные позиции:

1 - открытая труба;

2 - продольный край;

3, 3-1, 3-2, 3-3 и 3-4 - лазерный луч;

4 - сквозное проплавление;

5 - расплавленный металл;

6 - шов;

7 - стержень;

8 - камера слежения;

9 - устройство освещения;

10 - датчик свечения плазмы;

11 - блок обработки изображений;

12 - устройство оценки;

13 - устройство управления позицией;

14 - сварочная головка;

15 - датчик отраженного светового излучения;

16 - устройство отслеживания;

17 - устройство отслеживания;

18 - электрод;

19 - дуга;

20 - сварочный ток;

21 - сила Лоренца.

Осуществление изобретения

Для изготовления стальных труб путем лазерной сварки продольных краев открытых труб были изучены и рассмотрены способы отслеживания состояния лазерной сварки. На фиг.1A схематично показан пример сварки в месте контакта продольных краев 2 открытой трубы 1 в соответствии с изобретением, вид в перспективе. Стрелкой A на фиг.1A показано направление перемещения открытой трубы. На соответствующих чертежах показаны сквозное проплавление 4 и образовавшийся вокруг него расплавленный металл 5, которые получены благодаря воздействию лазерного луча 3. При воздействии лазерным лучом 3 продольные края 2 расплавляются благодаря концентрации тепловой энергии и ее высокой плотности, при этом полученный расплавленный металл испаряется, и давление испарения и сила реакции на испарение образуют глубокую полость 4 (далее называемую сквозным проплавлением 4) в расплавленном металле, что показано на фиг.1A. Во внутреннюю часть сквозного проплавления 4 проникает лазерный луч 3, при этом в указанной внутренней части имеется горячая плазма, образовавшаяся благодаря ионизации паров металла, создаваемой энергией лазерного луча 3. На фиг.1B и 1C показаны сквозное проплавление 4 и образовавшийся вокруг него расплавленный металл 5.

Сквозное проплавление 4 обозначает место, в котором тепловая энергия лазерного луча 3 концентрируется с наибольшей плотностью. Таким образом, может быть обеспечено стабильное изготовление сваренной лазером стальной трубы путем отслеживания сквозного проплавления 4 и, как показано на фиг.1B, осуществления лазерной сварки таким образом, чтобы место С контакта продольных краев располагалось в сквозном проплавлении 4. Тем не менее, чтобы место С контакта продольных краев 2 совмещалось со сквозным проплавлением 4, требуется управление позиционированием с высокой точностью. Для этого лазерная сварка должна осуществляться так, чтобы место С контакта продольных краев 2 было расположено в расплавленном металле 5, который образуется вокруг сквозного проплавления 4. В направлении вдоль окружности трубы (в направлении, перпендикулярном линии сварки) длина зоны расплавленного металла 5 равна Lm, при этом она больше размера Lk сквозного проплавления 4. Таким образом, точкой воздействия лазерного луча можно легко управлять в направлении вдоль окружности трубы с помощью сравнительно простых средств, которые основаны на управлении позицией сварочной головки 14 и собирающей линзы или собирающего зеркала, расположенных в сварочной головке 14. В результате можно стабильно изготавливать сваренную лазером стальную трубу. Следует отметить, что место С контакта продольных краев 2 может находиться в любом месте в направлении A перемещения открытой трубы 1 до тех пор, пока в этом месте средняя ширина G зазора между продольными краями 2, измеренная в направлении толщины и обеспечиваемая действием сжимающих валков, не превысит 0,5 мм.

Кроме того, при осуществлении стабильной лазерной сварки сквозное проплавление 4 проникает от внешней поверхности к внутренней поверхности расплавленного металла 5, и его можно точно отслеживать.

Настоящее изобретение основано на этих вышеуказанных сведениях.

Показанную на фиг.1A открытую трубу 1 получают путем формования стальной полосы в цилиндр с помощью формовочных валков. Когда продольные края 2 открытой трубы 1 сжаты сжимающими валками (не показаны на чертеже), на открытую трубу 1 воздействуют лазерным лучом 3 со стороны ее внешней поверхности. В то же время со стороны внутренней поверхности открытой трубы 1 отслеживают точку воздействия лазерным лучом 3 с целью обнаружения сквозного проплавления 4. Сквозное проплавление 4 можно легко обнаружить с помощью обычных средств обработки изображений, так как сквозное проплавление может проникать от внешней поверхности открытой трубы 1 до ее внутренней поверхности. Обнаруженное со стороны внутренней поверхности сквозное проплавление 4 будет означать, что осуществляется стабильная лазерная сварка. В этом случае условия сварки оставляют без изменений. На фиг.1A не показано никаких устройств отслеживания сквозного проплавления 4. Средство отслеживания сквозного проплавления, используемое в изобретении, показано на фиг.3.

Если сквозное проплавление 4 не найдено, то это значит, что оно закрыто. В этом случае условия сварки необходимо изменить и отрегулировать их таким образом, чтобы обеспечить стабильную лазерную сварку. Если при измененных условиях сварки сквозное проплавление 4 будет обнаружено, то лазерное сваривание будут осуществлять при сохранении этих измененных условий сварки. Наиболее вероятно закрытие сквозного проплавления 4 происходит тогда, когда место C контакта продольных краев 2 выходит за границы сквозного проплавления 4 или расплавленного металла 5, образовавшегося вокруг сквозного проплавления 4. Причина этого заключается в следующем. Когда на место C контакта воздействуют лазерным лучом 3, лазерный луч можно легко переместить в зазор в месте C контакта в направлении ширины, в результате чего с большой вероятностью образуется сквозное проплавление. Однако когда лазерным лучом 3 воздействуют на какую-либо точку, отличную от места C контакта, необходимо, чтобы расплавленный металл испарился с поверхности стальной полосы таким образом, чтобы давление испарения и сила реакции на испарение могли сформировать глубокую полость 4 в расплавленном металле 5, но на это требуется более высокая мощность лазера и, следовательно, увеличивается вероятность того, что сквозное проплавление 4 будет закрыто.

Конкретные условия сварки, полученные при регулировке при закрытии сквозного проплавления 4, являются наиболее предпочтительными условиями, при которых точка воздействия лазерным лучом перемещается в направлении вдоль окружности открытой трубы 1, так что место C контакта продольных краев 2 может быть расположено в точке воздействия лазерным лучом 3 (в сквозном проплавлении 4) или в расплавленном металле 5. Например, предпочтительно, чтобы с помощью средства отслеживания сквозного проплавления получались изображения места контакта продольных краев 2, а также места расположения сквозного проплавления 4 и расплавленного металла 5, и указанные места распознавались, и вычислялись направление вдоль окружности и расстояние, на которое переместилась открытая труба. Затем точка воздействия лазерным лучом 3 может быть перемещена путем управления расположением сварочной головки 14 и собирающей линзы или собирающего зеркала, расположенных в сварочной головке 14, так, чтобы место C контакта продольных краев 2 располагалось в сквозном проплавлении 4 или расплавленном металле 5.

Что касается других условий сварки, то также предпочтительно управлять точкой фокусировки лазерного луча, перемещением точки воздействия лучом в продольном направлении открытой трубы, увеличивать мощность лазера и/или уменьшать скорость сварки.

Такая регулировка взаимного расположения места контакта продольных краев 2 и сквозного проплавления 4 или расплавленного металла 5 может быть легко достигнута при слежении за открытой трубой 1 со стороны ее внутренней поверхности с целью обнаружения сквозного проплавления 4.

Когда диаметр сквозного проплавления 4, измеренный со стороны внутренней поверхности, становится меньшим 0,2 мм, то возможно, что сквозное проплавление 4 находится в закрытом состоянии. Таким образом, предпочтительно, чтобы со стороны внутренней поверхности диаметр сквозного проплавления 4 был не менее 0,2 мм. Тем не менее, когда диаметр, измеренный со стороны внутренней поверхности, превышает 1,0 мм, имеют место не только такие дефекты сварки, как прожог, но и увеличение ширины сварного шва, оставшегося после затвердевания расплавленного металла (то есть шва 6), что портит сваренную лазером стальную трубу. Таким образом, более предпочтительно, чтобы диаметр сквозного проплавления 4, измеренный со стороны внутренней поверхности открытой трубы 1, находился в пределах от 0,2 до 1,0 мм. Когда сквозное проплавление имеет форму эллипса, предпочтительно, чтобы его малая ось была не меньше 0,2 мм. Размер сквозного проплавления 4 отслеживается изнутри открытой трубы 1 с использованием камеры 8 слежения, прикрепленной к стержню 7, подвешенному между подпорками, как показано на фиг.3. Условия получения изображений были следующими: на внутреннюю поверхность открытой трубы 1 воздействовали лучом света с помощью устройства 9 освещения, причем длина волны отличалась от длины волны лазерного луча и свечения плазмы, например, использовали ультрафиолетовое излучение с длиной волны 337 нм. Изображения получали через фильтр, который пропускает излучение только с указанной длиной волны, что предотвращает любые помехи, связанные с инфракрасным излучением, свечением плазмы или любым другим видом излучения, выходящим из сквозного проплавления 4 или расплавленного металла 5. Длина волны излучения, которое может проходить через фильтр, выбрана в зависимости от спектра светового излучения плазмы с целью получения полосы длин волн, отличной от упомянутого спектра и с учетом доступных источников света и фильтров. Скорость камеры была установлена равной 30 кадрам в секунду, а среднее значение скорости было вычислено с использованием пяти случайно отобранных неподвижных изображений. Кроме того, форма сквозного проплавления со стороны внутренней поверхности была практически идеально круглой или эллипсовидной, причем при эллипсовидной форме сквозного проплавления измерялась малая ось. Для принятия решения, закрыто ли сквозное проплавление 4, и управления точкой воздействия лазерным лучом был использован блок 11 обработки изображений, который обрабатывает видео, полученное камерой 8 слежения, с целью получения изображений места C контакта продольных краев 2, сквозного проплавления 4 и расплавленного металла 5 с последующей оцифровкой размеров и позиций указанных элементов, а также использовалось устройство 12 оценки и средство 13 управления позицией лазерного луча. Устройство отслеживания сквозного проплавления 4 необязательно должно иметь описанную выше конструкцию, оно может иметь любую другую возможную конструкцию.

Когда используют два или более лазерных луча 3, для воздействия несколькими лазерными лучами возможны схемы расположения, показанные на фиг.2A-2E. На фиг.2A-2E показаны виды сверху открытой трубы с точками воздействия несколькими лазерными лучами. Стрелкой A на каждом чертеже показано направление перемещения открытой трубы. На фиг.2A показана схема воздействия двумя лазерными лучами, иллюстрирующая пример, в котором лазерные лучи 3-1 и 3-2 расположены поперек продольных краев. На фиг.4 показано то же, что на фиг.2A, но в перспективе. Стрелкой A на фиг.4 показано направление перемещения открытой трубы. И сквозные проплавления 4 и образовавшийся вокруг них расплавленный металл 5 получены благодаря воздействию двумя лазерными лучами 3. На фиг.2B показана схема воздействия тремя лазерными лучами, в которой лазерный луч 3-1 нагревает продольные края первым, а далее поперек продольных краев действуют лазерные лучи 3-2 и 3-3. На фиг.2C показана схема воздействия четырьмя лазерными лучами, в которой четыре лазерных луча 3-1, 3-2, 3-3 и 3-4 расположены парами поперек продольных краев. На фиг.2D показана схема воздействия двумя лазерными лучами, в которой лазерные лучи 3-1 и 3-2 расположены поперек продольных краев и имеют различные уровни мощности излучения. В этом примере мощность лазерного луча 3-1 меньше мощности лазерного луча 3-2, и лазерный луч 3-1 расположен ближе к продольным краям. На фиг.2E показана схема воздействия двумя лазерными лучами, в которой лазерные лучи 3-1 и 3-2 расположены последовательно вдоль продольных краев. В этом примере лазерные лучи рассматривают не как несколько лазерных лучей, а как один лазерный луч. При отслеживании сквозных проплавлений отслеживается только сквозное проплавление, которое сформировано лазерным лучом 3-2 и расположено ближе всего к расплавленному металлу. Три или большее количество лазерных лучей, расположенных последовательно вдоль продольных краев, также будут рассматриваться как единый лазерный луч. При отслеживании сквозных проплавлений отслеживается только сквозное проплавление, которое расположено ближе всего к расплавленному металлу.

Когда используют несколько лазерных лучей, схема расположения точек воздействия лазерными лучами не ограничена примерами, показанными на фиг.2A-2E; для конкретных целей указанные лазерные лучи могут быть расположены произвольным образом. Тем не менее, предпочтительно, чтобы количество лазерных лучей, используемых в настоящем изобретении, находилось в диапазоне от одного до четырех. Нецелесообразно использование пяти или более лазерных лучей из-за стоимости оборудования, затрат на изготовление и сложности управления позициями лазерных лучей.

В настоящем изобретении отслеживают несколько сквозных проплавлений 4, а лазерную сварку осуществляют таким образом, чтобы место контакта продольных краев 2 находилось между двумя сквозными проплавлениями, которые расположены поперек продольных краев 2, при этом расстояния (L1 и L2) от указанных сквозных проплавлений до продольных краев 2 в направлении, перпендикулярном к продольным краям, больше таких расстояний от любого другого сквозного проплавления, как показано на фиг.2A-2E. Тем не менее, расположение места контакта продольных краев 2 в конкретной точке требует высокоточного управления. Для этого лазерная сварка может быть осуществлена таким образом, чтобы местом контакта продольных краев 2 можно было управлять таким образом, чтобы оно было расположено в расплавленном металле 5, который образуется вокруг двух сквозных проплавлений 4. В направлении вдоль окружности трубы (в направлении, перпендикулярном линии сварки) длина Lm расплавленного металла 5 больше размера Lk каждого сквозного проплавления 4, следовательно, для управления могут быть использованы сравнительно простые средства.

Такая регулировка взаимного расположения места контакта продольных краев 2 и двух сквозных проплавлении 4 или расплавленного металла 5, образовавшегося между двумя сквозными проплавлениями 4, может быть легко осуществлена с помощью отслеживания состояния открытой трубы 1 со стороны ее внутренней поверхности с целью обнаружения сквозных проплавлении 4. Когда сварку осуществляют с использование нескольких лазерных лучей с целью получения сквозных проплавлений, количество ванн расплавленного металла часто бывает равным единице. Когда количество ванн расплавленного металла равно единице, то все сквозные проплавления 4, размеры которых составляют менее 0,1 мм со стороны внутренней поверхности, могут закрыться. Таким образом, предпочтительно, чтобы диаметры сквозных проплавлений 4 со стороны внутренней поверхности трубы составляли не менее 0,1 мм. Тем не менее, когда диаметр проплавления со стороны внутренней поверхности превышает 1,0 мм, могут иметь место не только такие дефекты сварки, как прожог, но и значительное увеличение ширины сварного шва, оставшегося после затвердевания расплавленного металла (то есть шва 6), тем самым портится сваренная лазером стальная труба. Таким образом, более предпочтительно, чтобы диаметры сквозных проплавлений 4, измеренные со стороны внутренней поверхности открытой трубы 1, находились в пределах от 0,1 до 1,0 мм. В случае эллипсовидной формы сквозных проплавлений, предпочтительно, чтобы малые оси были не меньше 0,1 мм.

Кроме того, в примере, показанном на фиг.2E, в котором два лазерных луча 3-1 и 3-2 расположены последовательно вдоль продольных краев, лазерные лучи рассматриваются не как несколько лазерных лучей, а как единственный лазерный луч, следовательно, необходимо отслеживать только сквозное проплавление лазерного луча 3-2, которое расположено ближе всего к расплавленному металлу 5. При этом предпочтительно, чтобы со стороны внутренней поверхности диаметр сквозного проплавления 4 был не меньше 0,2 мм.

В этом случае любое закрытое состояние сквозного проплавления 4 будет влиять на изготовление сваренной лазером стальной трубы, даже если закрытое состояние длится только короткий период времени. Например, если закрытое состояние длится в течение 0,01 секунды или дольше, то при лазерной сварке со скоростью сварки, превышающей 5 м/мин, закрытое состояние из-за большого количества брызг приведет к появлению дефектов сварки, таких как недостаточное расплавление и подрез, что приведет к уменьшению скорости выпуска сваренных лазером стальных труб. Такое закрытое состояние любого сквозного проплавления, исчезающее за короткий промежуток времени, трудно обнаружить только путем отслеживания сквозного проплавления описанным выше образом. Для решения указанной задачи, помимо отслеживания сквозного проплавления, состояние сквозного проплавления анализируют на основании измерения с помощью датчиков пучка отраженного светового излучения и свечения плазмы, которые получены из точки воздействия лазерным лучом, при этом состояние сварки отслеживают по сравнительным значениям измерений, полученных для пучка отраженного светового излучения и для свечения плазмы.

Предпочтительно пучок отраженного светового излучения, полученный из точки воздействия лазерным лучом, измеряют со стороны внешней поверхности открытой трубы 1. Это объясняется тем, что таким образом можно проводить точные измерения интенсивности отраженного светового излучения даже в случае возникновения кратковременного закрытия сквозного проплавления.

Предпочтительно свечение плазмы, полученное из точки воздействия лазерным лучом, измеряют со стороны внутренней поверхности открытой трубы 1. Это объясняется тем, что со стороны внешней поверхности открытой трубы 1 свечение плазмы, порожденное возбужденным лазером защитным газом и испарениями, порождает помехи, ведущие к уменьшению точности измерения. Измерение же параметров излучения плазмы со стороны внутренней поверхности позволяет точно определить наличие или отсутствие любого закрытого состояния сквозного проплавления 4, поскольку при возникновении кратковременного состояния закрывания сквозного проплавления 4 со стороны внутренней поверхности трубы будет отсутствовать свечение плазмы.

Кроме того, при использовании нескольких лазерных лучей отслеживают пучки отраженного светового излучения, полученные от всех точек воздействия лазерными лучами. Тем не менее, точки воздействия расположены близко друг к другу, следовательно, для отслеживания требуется только одно средство слежения, которое может наблюдать всю область, в которой распределены позиции воздействия.

Небольшие отклонения относительных величин для измеренных параметров (например, интенсивности) пучка отраженного светового излучения и свечения плазмы, которые порождены воздействием лазерного луча, свидетельствуют о том, что сквозное проплавление 4 проходит от внешней поверхности до внутренней поверхности. В этом случае условия сварки оставляют без изменений. Большие отклонения относительных величин показывают, что сквозное проплавление 4 не проходит до внутренней поверхности, и в этом случае условия сварки изменяют таким образом, чтобы могла осуществляться стабильная лазерная сварка.

При измерении параметров пучка отраженного светового излучения, полученного при воздействии лазерным лучом, пучок отраженного светового излучения отслеживают снаружи открытой трубы 1 с помощью датчика 15 отраженного светового излучения, который подвешен на сварочной головке 14, и средства 16 слежения, как показано на фиг.5. Условия сбора данных являются следующими.

Измерения проводят с помощью датчика 15 отраженного светового излучения, снабженного фильтром, пропускающим только лучи, длина волны которых совпадает с длиной волны лазера, так что могут быть исключены любые помехи, возникающие из-за инфракрасного излучения, приходящего из сквозного проплавления 4 или расплавленного металла 5. Отклонения интенсивности отраженного светового излучения оце