Устройство для съемки изображения, способ управления им и носитель информации

Иллюстрации

Показать все

Устройство для съемки изображения содержит датчик изображения для захвата сигнала изображения, формируемого фотографической оптической системой, которая включает в себя фокусирующую линзу, обнаруживающий блок для обнаружения области объекта на основании сигнала изображения, захватываемого упомянутым датчиком изображения, первый генерирующий блок для генерирования первой информации, связанной с состоянием фокусировки фотографической оптической системы, на основании сигнала изображения, захватываемого упомянутым датчиком изображения, второй генерирующий блок для деления оптического потока из объекта на два, для формирования двух изображений и для генерирования второй информации, связанной с величиной относительного позиционного сдвига между двумя изображениями, и управляющий блок для управления проведением, по меньшей мере, одного из первого управления фокусировкой с использованием первой информации и второго управления фокусировкой с использованием второй информации. Управляющий блок сконфигурирован для ограничения проведения второго управления фокусировкой в случае, когда упомянутый обнаруживающий блок обнаруживает область объекта. Технический результат - обеспечение стабильной фокусировки на объекте с высокой скоростью без создания неудобства фотографу. 5 н. и 15 з.п. ф-лы, 16 ил.

Реферат

Уровень техники

Область техники, к которой относится изобретение

Данное изобретение относится к устройству для съемки изображения, способу управления им и носителю информации, а более конкретно - к устройству для съемки изображения, сконфигурированного для обнаружения области объекта на экране для съемки изображения и осуществления управления фокусировкой на основании результата этого обнаружения.

Описание известного уровня техники

При управлении автофокусировкой (АФ) устройства для съемки изображения, такого как видеокамера, доминирующим является способ телевизионной автофокусировки (ТВ-АФ), при осуществлении которого генерируется сигнал значения оценки АФ, который характеризует четкость (состояние контрастности) видеосигнала, сгенерированного с помощью элемента для съемки изображения, и осуществляется поиск положения фокусирующей линзы, при этом сигнал значения оценки АФ предполагается имеющим максимальное значение.

Кроме того, известно устройство для съемки изображения, обладающее функцией обнаружения человеческого лица для стабильной фокусировки на объекте-человеке в случае фотографирования человека. Например, предложено устройство для съемки изображения, в котором задается область обнаружения фокуса, включающая в себя распознаваемую область обнаружения лица, а затем выполняется обнаружение фокуса (см., например, публикацию № 2006-227080 выложенного японского патента). Кроме того, предложено устройство для съемки изображения, в котором осуществляется обнаружение глаз человека, а обнаружение фокуса осуществляется на основании обнаруженных глаз человека (см., например, публикацию № 2001-215403 выложенного японского патента).

Способ АФ включает в себя способ внешнего определения дальности (способ внешнего обнаружения разности фаз), при осуществлении которого датчик определения дальности предусматривается отдельным от фотографического объектива, а положение «в фокусе» фокусирующей линзы вычисляют на основании информации, характеризующей расстояние до объекта, обнаруженного датчиком определения дальности. Затем фокусирующую линзу перемещают в вычисленное положение «в фокусе».

При этом способе внешнего обнаружения разности фаз, оптический поток, принимаемый от объекта, делят на два потока, составляющие разделенного оптического потока принимаются с помощью пары матриц светоприемных элементов (однострочных датчиков), соответственно. Затем обнаруживают величину сдвига между изображениями, образуемыми на соответствующих однострочных датчиках, т.е. разность фаз между двумя изображениями, и определяют расстояние до объекта на основании разности фаз с использованием метода триангуляции. Затем перемещают фокусирующую линзу в положение (положение «в фокусе»), где происходит фокусировка объекта на расстоянии до объекта.

Способ АФ включает в себя способ внутреннего (ТТЛ) обнаружения разности фаз.

При этом способе внутреннего обнаружения разности фаз, оптический поток, прошедший сквозь фотографический объектив, делят на два потока и осуществляют прием разделенных составляющих оптического потока с помощью пары датчиков обнаружения фокуса, соответственно. Затем непосредственно получают величину отклонения фокуса фотографического объектива и направление отклонения фокуса путем обнаружения величины сдвига между выходными изображениями, т.е. величины относительного позиционного сдвига в направлении разделения оптического потока на основании соответствующих количеств принимаемого света, и перемещают фокусирующую линзу на основании величины отклонения фокуса фотографического объектива и направления отклонении фокуса.

Кроме того, предложен также гибридный способ АФ в качестве комбинации способа внутреннего обнаружения разности фаз и способа ТВ-АФ. При осуществлении гибридного способа АФ фокусирующую линзу перемещают близко к положению «в фокусе» с использованием способа внутреннего обнаружения разности фаз, а затем точнее перемещают фокусирующую линзу в положение «в фокусе» с использованием способа АФ (см., например, например, публикацию № Н-05064056 выложенного японского патента (абзацы [0008]-[0009], фиг.1, и т.д.). Предложен еще один гибридный способ АФ, в котором комбинируются способ внешнего обнаружения разности фаз и способ ТВ-АФ (см., например, например, публикацию № 2005-234325 выложенного японского патента (абзацы [0037]-[0065], фиг.3, и т.д.).

В гибридном способе АФ, предложенном в публикации № 2005-234325 выложенного японского патента, для управления фокусировкой выбирают один из способа ТВ-АФ и способа внешнего обнаружения разности фаз - в зависимости от изменения в каждом сигнале при осуществлении способа ТВ-АФ и способа внешнего обнаружения разности фаз.

За счет обнаружения фокуса посредством комбинирования гибридного способа АФ и функции обнаружения лица устройство для съемки изображения способно не только осуществлять стабильную фокусировку на главном объекте-человеке, но и осуществлять высокоскоростную фокусировку из состояния, в котором возникает размытость изображения.

Однако когда объект перемещается или камера дрожит у фотографа, не всегда возможно получить положение «в фокусе» фокусирующей линзы для области обнаружения лица способом обнаружения разности фаз. Даже в случае осуществления стабильной фокусировки после обнаружения лица человека иногда возникает ситуация, в которой, когда положение «в фокусе» фокусирующей линзы для области обнаружения лица временно не может быть получено, а получается положение «в фокусе» фокусирующей линзы для фона, фокусирующая линза перемещается в положение «в фокусе» фокусирующей линзы для фона на основании решения, согласно которому текущее положение фокусирующей линзы не является близким к положению «в фокусе» фокусирующей линзы для области обнаружения лица. Это вызывает у фотографа ощущение неудобства.

Далее, когда применяется способ внешнего обнаружения разности фаз, используют оптическую систему, отличающуюся от главной оптической системы фотографического объектива, что вызывает параллакс. По этой причине область обнаружения лица на экране, в которой обнаруживается лицо человека, может отличаться от области определения дальности, определяемой способом внешнего обнаружения разности фаз. В этом случае, даже когда обнаруживается лицо главного объекта-человека и осуществляется стабильная фокусировка, положение «в фокусе» фокусирующей линзы, получаемое способом внешнего обнаружения разности фаз, иногда соответствует объекту-фону. В этом случае выносят решение, что произошло размывание изображения, а объект-фон сфокусирован, и это причиняет неудобство фотографу. Далее, когда область обнаружения лица для главного объекта-человека и область определения дальности, определенная способом вешнего обнаружения разности фаз, перекрываются друг с другом, осуществляют высокоскоростную фокусировку на главном объекте-человеке, что может вызвать нестабильную фокусировку.

Далее, в случае, когда высокоскоростную фокусировку осуществляют из состояния, в котором весь экран размыт, область обнаружения лица для главного объекта-человека и область определения дальности, определенная способом внешнего обнаружения разности фаз, не всегда совпадают друг с другом. Поэтому если две области не совпадают друг с другом, то иногда бывает так, что сначала фокусируется фон, а затем фокусируется главный объект-человек, что делает осуществление стабильной фокусировки с высокой скоростью невозможным.

Сущность изобретения

В данном изобретении предложены устройство для съемки изображения, способное осуществлять стабильную фокусировку на объекте, интересующем фотографа, с высокой скоростью без создания неудобства фотографу, способ управления устройством для съемки изображения и носитель информации, хранящий программу для воплощения упомянутого способа.

В первом аспекте данного изобретения предложено устройство для съемки изображения, содержащее датчик изображения для захвата сигнала изображения, формируемого фотографической оптической системой, которая включает в себя фокусирующую линзу, обнаруживающий блок, сконфигурированный для обнаружения области объекта на основании сигнала изображения, захватываемого датчиком изображения, первый генерирующий блок, сконфигурированный для генерирования первой информации, связанной с состоянием фокусировки фотографической оптической системы, на основании сигнала изображения, захватываемого датчиком изображения, и управляющий блок, сконфигурированный для управления осуществлением, по меньшей мере, одного из первого управления фокусировкой с использованием первой информации и второго управления фокусировкой в зависимости от того, обнаружена ли область объекта обнаруживающим блоком.

Во втором аспекте данного изобретения предложено устройство для съемки изображения, содержащее датчик изображения для захвата сигнала изображения, формируемого фотографической оптической системой, которая включает в себя фокусирующую линзу, задающий блок, сконфигурированный для задания области фокусируемого объекта сигнала изображения, и управляющий блок, сконфигурированный для управления осуществлением первого управления фокусировкой с использованием первой информации, связанной с состоянием фокусировки фотографической оптической системы, на основании выходного сигнала из датчика изображения и второго управления фокусировкой с использованием второй информации, отличающейся от первой информации, в соответствии с положением области фокусируемого объекта, задаваемой задающим блоком.

В третьем аспекте данного изобретения предложен способ управления устройством для съемки изображения, снабженным датчиком изображения для захвата сигнала изображения, формируемого фотографической оптической системой, которая включает в себя фокусирующую линзу, способ, заключающийся в том, что обнаруживают, существует ли область объекта, на основании сигнала изображения, захватываемого датчиком изображения, генерируют первую информацию, связанную с состоянием фокусировки фотографической оптической системы, на основании выходного сигнала из датчика изображения, и управляют осуществлением, по меньшей мере, одного из первого управления фокусировкой с использованием первой информации и процесса второго управления фокусировкой в зависимости от того, обнаружена ли область объекта.

В четвертом аспекте данного изобретения предложен носитель информации, хранящий код компьютерной программы, который при выполнении на компьютере вызывает осуществление компьютером способа управления устройством для съемки изображения, снабженным датчиком изображения для захвата сигнала изображения, формируемого фотографической оптической системой, которая включает в себя фокусирующую линзу, при этом способ заключается в том, что обнаруживают, существует ли область объекта, на основании сигнала изображения, захватываемого датчиком изображения, генерируют первую информацию, связанную с состоянием фокусировки фотографической оптической системы, на основании выходного сигнала из датчика изображения и управляют осуществлением, по меньшей мере, одного из первого управления фокусировкой с использованием первой информации и процесса второго управления фокусировкой в зависимости от того, обнаружена ли область объекта.

Желаемое преимущество вариантов осуществления данного изобретения заключается в том, что появляется возможность проведения стабильной фокусировки на объекте, намеченном фотографом, с высокой скоростью без неудобства для фотографа.

Признаки и преимущества изобретения станут понятнее из нижеследующего подробного описания, приводимого в связи с прилагаемыми чертежами.

Краткое описание чертежей

На фиг.1 представлена блок-схема главной части видеокамеры в качестве устройства для съемки изображения в соответствии с первым вариантом осуществления данного изобретения.

На фиг.2 представлена блок-схема последовательности операций процесса управления фокусировкой, проводимого микрокомпьютером, показанным на фиг.1.

На фиг.3 представлена блок-схема последовательности операций процесса ТВ-АФ, проводимого на этапе в процессе управления фокусировкой, изображенном на фиг.2.

На фиг.4 представлено продолжение фиг.3.

На фиг.5 представлена блок-схема последовательности операций гибридного процесса АФ, проводимого на этапе в процессе управления фокусировкой, изображенном на фиг.2.

На фиг.6 представлена блок-схема первого варианта процесса управления фокусировкой, изображенного на фиг.2.

На фиг.7 представлена блок-схема второго варианта процесса управления фокусировкой, изображенного на фиг.2.

На фиг.8 представлена блок-схема третьего варианта процесса управления фокусировкой, изображенного на фиг.2.

На фиг.9 представлена блок-схема четвертого варианта процесса управления фокусировкой, изображенного на фиг.2.

На фиг.10 представлен чертеж, используемый при пояснении микросрабатывания фокусирующей линзы, которое осуществляется на этапе процесса ТВ-АФ, изображенного на фиг.3.

На фиг.11 представлен чертеж, используемый при пояснении привода фокусирующей линзы с поиском экстремума, который осуществляется на этапе процесса ТВ-АФ, изображенного на фиг.3.

На фиг.12А представлен вид, иллюстрирующий взаимосвязь между внешним датчиком определения дальности и объективом, которая используется при пояснении случая, когда видеокамера имеет установленный на нее внешний датчик определения дальности.

На фиг.12В представлен вид, иллюстрирующий экран для съемки изображения на стороне телефотообъектива, используемый при пояснении случая, когда видеокамера имеет установленный на нее внешний датчик определения дальности.

На фиг.12С представлен вид, иллюстрирующий экран для съемки изображения на широкой стороне, который используется при пояснении случая, когда видеокамера имеет установленный на нее внешний датчик определения дальности.

На фиг.13 представлен чертеж, используемый при пояснении случая, когда лицо человека обнаруживается во время отклонения фокусирующей линзы в положение «в фокусе».

На фиг.14 представлена блок-схема существенных частей видеокамеры в качестве устройства для съемки изображения в соответствии со вторым вариантом осуществления данного изобретения.

Подробное описание вариантов осуществления

Теперь данное изобретение будет подробно описано ниже со ссылками на прилагаемые чертежи, иллюстрирующие варианты его осуществления.

Сначала будет приведено описание устройства для съемки изображения в соответствии с первым вариантом осуществления данного изобретения. Хотя в данном варианте осуществления устройство для съемки изображения представляет собой видеокамеру, это не является ограничением и возможно применение устройства для съемки изображения, относящегося к другому типу, такому как цифровая фотокамера.

На фиг.1 представлена блок-схема главной части видеокамеры в качестве устройства для съемки изображения в соответствии с данным вариантом осуществления.

Обращаясь к фиг.1, отмечаем, что позиция 101 обозначает первую группу неподвижных линз, позиция 102 - линзу с регулируемой силой, которая осуществляет операцию с регулируемой силой или операцию трансфокации, перемещаясь при этом в направлении оптической оси для изменения фокусного расстояния, а позиция 103 - диафрагму. Кроме того, позиция 104 обозначает вторую группу неподвижных линз, а позиция 105 - линзу компенсации фокуса (именуемую далее «фокусирующей линзой»), наделенной и функцией коррекции отклонения фокальной плоскости из-за операции с регулируемой силой, и функцией фокусировки. Первая группа 101 неподвижных линз, линза 102 с регулируемой силой, диафрагма 103, вторая группа 104 неподвижных линз, и фокусирующая линза 105 составляют фотографическую оптическую систему.

Позиция 106 обозначает элемент для съемки изображения в качестве фотоэлектрического преобразующего элемента, воплощенного посредством датчика на основе прибора с зарядовой связью (ПЗС) или датчика на основе структуры «металл - окисел - полупроводник» (КМОП-матрицы). Элемент 106 для съемки изображения осуществляет съемку формируемого фотографической оптической системой изображения объекта и выдает видеосигнал, характеризующий снятое изображение объекта. Позиция 107 обозначает схему системы цветного отображения/автоматической регулировки усиления (СЦО/АРУ), которая производит выборку выходного сигнала из элемента 106 съемки изображения и осуществляет регулировку усиления.

Позиция 108 обозначает схему обработки сигнала камеры. Схема 108 обработки сигнала камеры осуществляет разных типов обработку изображения над выходным сигналом из схемы 107 СЦО/АРУ для генерирования видеосигнала. Позиция 109 обозначает монитор, воплощенный, например, посредством жидкокристаллического индикатора (ЖКИ). Монитор 109 отображает изображение на основе видеосигнала из схемы 108 обработки сигнала камеры. Позиция 115 обозначает записывающий модуль. В записывающем модуле 115 видеосигнал из схемы 108 обработки сигнала камеры записывается на носителе записи, таком как магнитная лента, оптический диск или полупроводниковое запоминающее устройство.

Позиция 110 обозначает источник движущей силы привода трансфокации для перемещения линзы 102 с регулируемой силой. Позиция 111 обозначает источник движущей силы привода фокусировки для перемещения фокусирующей линзы 105. Каждый из источника 110 движущей силы привода трансфокации и источника 111 движущей силы привода фокусировки образован исполнительным механизмом, таким, как шаговый электродвигатель, электродвигатель постоянного тока, электродвигатель колебания или электродвигатель с линейной обмоткой.

Позиция 112 обозначает логическую схему АФ, которая из всех сигналов пикселей, подаваемых из схемы 107 СЦО/АРУ, пропускает только сигналы для области, предназначенной для использования при обнаружении фокуса.

Схема 113 обработки сигнала АФ выделяет высокочастотную составляющую, составляющую яркостного различия (разность между максимальным и минимальным значениями уровня яркости сигнала, прошедшего через логическую схему 112 АФ), и т.д. из каждого сигнала, прошедшего через логическую схему 112 АФ, для генерирования сигнала значения оценки АФ. Сигнал значения оценки АФ выдается в камеру/микрокомпьютер АФ (именуемый далее просто «микрокомпьютером) 114. Сигнал значения оценки АФ указывает четкость (состояние контрастности) видеосигнала, генерируемого на основании сигнала, выданного из элемента 106 для съемки изображения. Четкость видеосигнала изменяется в соответствии с состоянием фокусировки фотографической оптической системы и поэтому сигнал значения оценки АФ, в конечном счете, указывает состояние фокусировки фотографической оптической системы.

Микрокомпьютер 114 управляет всей работой видеокамеры и осуществляет управление фокусировкой для управления источником 111 движущей силы привода фокусировки с целью перемещения фокусирующей линзы 105. Микрокомпьютер 114 осуществляет управление фокусировкой способом ТВ-АФ (именуемом далее просто «ТВ-АФ»).

Обнаруживающий лицо модуль 116 осуществляет известную обработку обнаружения лица человека видеосигнала, чтобы обнаружить область лица человека на экране для съемки изображения. Результат этого обнаружения посылается в микрокомпьютер 114. Микрокомпьютер 114 посылает информацию в логическую схему 112 АФ, так что область для обнаружения фокуса будет добавлена к положению, включающему в себя область лица, в пределах экрана для съемки изображения, на основании результата обнаружения.

Следует отметить, что для воплощения процесса обнаружения лица человека описаны, например, способ, при осуществлении которого выделяют область бледного персикового цвета на основании классифицированных цветов пикселей, представленных данными изображения, и обнаруживают лицо человека на основании степени совпадения между областями бледного персикового цвета и пластины с контуром лица, предусмотренной заранее, и способ, при осуществлении которого обнаружение лица человека осуществляют путем выделения особых точек лица, включая глаза, нос и рот, с использованием хорошо известного метода распознавания образов. В данном варианте осуществления способ обнаружения лица человека не ограничивается вышеописанным, и возможно применение любого другого подходящего способа.

Позиция 117 обозначает внешний блок определения дальности. Во внешнем блоке 117 определения дальности возможно применение любого из: традиционного способа внешнего обнаружения разности фаз, способа ультразвуковых датчиков, способа инфракрасных датчиков и т.д. Информация об определении дальности и информация о надежности определения дальности из внешнего блока 117 определения дальности записываются в микрокомпьютер 114 для преобразования в информацию о положении «в фокусе» фокусирующей линзы 105. Что касается надежности определения дальности, например в случае способа внешнего обнаружения разности фаз, определение дальности осуществляют на основании величины относительного позиционного сдвига между разделенными оптическими потоками в направлении оптических разделенных потоков и поэтому в качестве параметра надежности определения разности обычно записывают корреляцию между двумя раздвоенными изображениями.

Далее будет приведено описание процесса управления фокусировкой посредством микрокомпьютера 114.

На фиг.2 представлена блок-схема последовательности операций процесса управления фокусировкой, проводимого микрокомпьютером 114, показанным на фиг.1. Данный процесс выполняется неоднократно на основании компьютерной программы, хранящейся в микрокомпьютере 114, на интервалах времени, в которых сигнал съемки изображения считывается из элемента 106 для съемки изображения так, чтобы генерировать, например, одноплоскостное изображение.

Обращаясь к фиг.2, отмечаем, что сначала из модуля 116 распознавания лица, который осуществил обнаружение лица человека над самым последним видеосигналом, получают (этап S201) информацию, указывающую, существует ли область лица человека.

Затем, основываясь на полученной информации, определяется может или нет область лица человека быть распознанной модулем 116 распознавания лица (этап S202).

Если на этапе S202 определяют, что область лица человека можно обнаружить с помощью модуля 116 обнаружения лица («Да» на этапе S202), микрокомпьютер 114 задает (этап S203) в логической схеме 112 АФ заранее определенный кадр АФ (именуемый далее «кадром лица» и служащий примером «первой области обнаружения фокуса», указанной в прилагаемой формуле изобретения) на основании информации о положении, соответствующей положению на экране для съемки изображения, в пределах которого обнаруживают лицо человека. Осуществляют управление кадром лица для того, чтобы следовать за фотографируемым объектом, изображение которого включает в себя область обнаружения лица. Информация о положении может быть информацией, характеризующей центральное положение области, где обнаруживается лицо человека, или положение особой точки лица, такой как глаза, нос или рот.

Затем осуществляют получение (этап S204) сигнала значения оценки АФ (пример «первой информации об области фокуса», упоминаемой в прилагаемой формуле изобретения), который касается кадра лица и выдается из схемы 113 обработки сигнала АФ (пример работы «первого генерирующего блока», упоминаемого в прилагаемой формуле изобретения).

Затем осуществляют (этап S205) описываемый ниже со ссылками на фиг.3 и 4 процесс ТВ-АФ (пример «первого управления фокусировкой», упоминаемого в прилагаемой формуле изобретения) с использованием значения оценки АФ (пример «первой информации», упоминаемой в прилагаемой формуле изобретения) согласно полученному сигналу значения оценки АФ, касающемуся кадра лица. Иными словами, измеряют четкость или контрастность обнаруженного лица, чтобы найти положение «в фокусе» (т.е. самое четкое изображение) фокусирующей линзы в оптической системе. В процессе ТВ-АФ, иллюстрируемом на фиг.3 и 4, состояние «в фокусе» получают путем регулирования фокуса за счет привода фокусирующей линзы 105 с одновременным оперативным контролем значения оценки АФ, вследствие чего значение оценки АФ достигает максимального значения (т.е. самое четкое изображение). При осуществлении способа ТВ-АФ, описываемого ниже со ссылками на фиг.3 и 4, определяют, требуется ли повторный привод фокусирующей линзы 105, в условиях, при которых достигается состояние «в фокусе», и поэтому также предусматривается обработка с целью поддержания состояния «в фокусе», такая, как определение, происходит ли снижение значения оценки АФ после достижения максимального значения и задания его как соответствующего состоянию «в фокусе».

Если на этапе S202, по фиг.2, определяют, что обнаруживающий лицо модуль 116 не может обнаружить область лица человека («Нет» на этапе S202), в логической схеме 112 (этап S206) АФ задают фиксированный кадр АФ, центр которого выровнен с центральной частью экрана для съемки изображения (и именуют далее просто «нормальным кадром» или «общим кадром», который служит в качестве «второй области обнаружения фокуса», упоминаемой в прилагаемой формуле изобретения).

Затем осуществляют получение (этап S207) сигнала значения оценки АФ (пример «второй информации об области фокуса», упоминаемой в прилагаемой формуле изобретения), который касается нормального кадра и выдается из схемы 113 обработки сигнала АФ.

Затем осуществляют (этап S208) процесс управления фокусировкой гибридным способом АФ (именуемый далее «гибридным процессом АФ»), который будет описан ниже со ссылками на фиг.5, с использованием значения оценки АФ согласно полученному сигналу значения оценки АФ, касающемуся нормальной области. В гибридном процессе АФ, показанном на фиг.5, фокусировку осуществляют, используя сочетание способа ТВ-АФ и способа обнаружения разности фаз.

После выполнения этапа S205 или S208 архив значения оценки АФ, получаемого из кадра АФ, заданного в логической схеме 112 АФ, сохраняют как архивную информацию (этап S209).

Затем архив получаемого положения «в фокусе» фокусирующей линзы 105 сохраняют (этап S210) как архивную информацию, после чего данный процесс заканчивается.

На фиг.3 и 4 представлена блок-схема последовательности операций процесса ТВ-АФ, проводимого на этапе S205 в процессе управления фокусировкой, изображенном на фиг.2. Данный процесс также осуществляется на этапе S401 в гибридном процессе АФ, описываемом ниже со ссылками на фиг.5, и поэтому блок-схема последовательности операций представлена на фиг.3 и 4 для случая, когда принимается во внимание, что гибридный процесс ТВ-АФ осуществляется с учетом гибридного процесса ТВ-АФ, изображенного на фиг.5.

Обращаясь к фиг.3, отмечаем, что сначала определяют, является ли режим ТВ-АФ режимом микросрабатывания (этап S301). Режим микросрабатывания будет описан ниже.

Если на этапе S301 определяют, что режим ТВ-АФ является режимом микросрабатывания («Да» на этапе S301), то предписывают (этап S302) микросрабатывание фокусирующей линзы. Микросрабатывание будет описано ниже со ссылками на фиг.10.

Затем определяют, достигнуто ли состояние «в фокусе» (этап S303).

Если на этапе S303 определяют, что состояние «в фокусе» достигнуто («Да» на этапе S303), то останавливают (этап S304) микросрабатывание фокусирующей линзы 105.

Затем сохраняют (этап S305) значение оценки АФ, связанное с положением «в фокусе» фокусирующей линзы 105, в запоминающем устройстве (не показано) микрокомпьютера 114.

Затем происходит замена данного режима режимом определения повторного привода (этап S306).

После этого отменяют (этап S307) режим использования разности фаз. Режим использования разности фаз предназначен для разрешения - только в случае, когда удовлетворяются конкретные условия, - проведения управления фокусировкой посредством способа внешнего обнаружения разности фаз во время определения дальности (именуемого далее «АФ во время внешнего определения дальности») при разрешенном перемещении фокусирующей линзы 105 в положение «в фокусе» согласно внешнему определению дальности. На этапе S307 режим использования разности фаз отменяют потому, что в результате определения положения «в фокусе», проведенного посредством ТВ-АФ, фокусирующая линза 105 уже остановлена и требуется предотвратить перемещение фокусирующей линзы 105 в положение «в фокусе» согласно внешнему определению дальности посредством АФ во время внешнего определения дальности, которое могло бы вызвать ненужное размывание видеоизображения.

Если на этапе S303 определяют, что состояние «в фокусе» не достигнуто («Нет» на этапе S303), то (на этапе S308) определяют, в каком направлении следует перемещать фокусирующую линзу 105 из ее текущего положения, чтобы заставить ее достичь положения «в фокусе».

Затем определяют (этап S309), удалось ли на этапе S308 определить направление, в котором следует перемещать фокусирующую линзу 105, чтобы заставить ее достичь положения «в фокусе».

Если на этапе S309 определяют, что направление фокусировки определить не удалось («Нет» на этапе S309), процесс возвращается к этапу S308. Если определяют, что направление фокусировки определить удалось («Да» на этапе S309), то режим ТВ-АФ заменяют режимом привода c поиском экстремума (этап S310), описываемым ниже со ссылками на фиг.11.

Если на этапе S301 определяют, что режим ТВ-АФ не является режимом микросрабатывания («Нет» на этапе S301), то определяют (этап S311), является ли режим ТВ-АФ режимом привода с поиском экстремума.

Если на этапе S311 определяют, что режим ТВ-АФ является режимом привода с поиском экстремума («Да» на этапе S311), то осуществляют (этап S312) привод фокусирующей линзы 105 с поиском экстремума (т.е. подвергают управлению с обнаружением положения «в фокусе») на предварительно определенной скорости.

Затем определяют, превысило ли значение оценки АФ свой пик во время привода фокусирующей линзы 105 с поиском экстремума (этап S313).

Если на этапе S313 определяют, что значение оценки АФ превысило свой пик («Да» на этапе S313), то возвращают фокусирующую линзу 105 в положение, в котором значение оценки АФ достигло пика (и которое именуется дальше «положением пика») во время привода фокусирующей линзы 105 с поиском экстремума (этап S314).

Затем определяют (этап S315), возвратилась ли фокусирующая линза 105 в положение пика.

Если на этапе S315 определяют, что фокусирующая линза 105 не возвратилась в положение пика («Нет» на этапе S315), процесс возвращается к этапу S314, а если на этапе S315 определяют, что фокусирующая линза 105 возвратилась в положение пика («Да» на этапе S315), то режим ТВ-АФ заменяют (этап S316) режимом микросрабатывания.

Затем отменяют (этап S317) режим использования разности фаз. При этом положение «в фокусе» (положение пика) в режиме привода с поиском экстремума определено, а фокусирующая линза 105 достигла положения «в фокусе». Следовательно, этап S317 проводят, чтобы предотвратить привод фокусирующей линзы 105 в положение «в фокусе» согласно внешнему определению дальности посредством АФ во время внешнего определения дальности, которое может вызывать ненужное размытие видеоизображения.

Если на этапе S311 определяют, что режим ТВ-АФ не является режимом привода с поиском экстремума («Нет» на этапе S311), процесс переходит к этапу S318, показанному на фиг.4, на котором определяют, является ли текущий режим режимом определения повторного привода (этап S318).

Если на этапе S318 определяют, что текущий режим является режимом определения повторного привода, процесс переходит к этапу S319, на котором - посредством сравнения между оценочным значением АФ, хранящимся в запоминающем устройстве (не показано) микрокомпьютера 114 и текущим оценочным значением АФ - определяют, превышает ли разность между этими двумя оценочными значениями АФ заранее определенное значение, т.е. велико ли изменение в значении оценки АФ.

Если на этапе S319 определяют, что изменение в значении оценки АФ велико («Да» на этапе S319), то режим ТВ-АФ заменяют (этап S320) режимом микросрабатывания.

Если на этапе S319 определяют, что изменение в значении оценки АФ мало («Нет» на этапе S319), то прекращают (этап S321) приводить в движение фокусирующую линзу 105.

Если на этапе S318 определяют, что режим является режимом привода на основании разности фаз, т.е. если фокусирующая линза 105 перемещается к положению «в фокусе» согласно внешнему определению дальности, то это положению «в фокусе» согласно внешнему определению дальности задают в качестве целевого положения и определяют, достигла ли фокусирующая линза 105 этого целевого положения (этап S322).

Если на этапе S322 определяют, что фокусирующая линза 105 достигла целевого положения («Да» на этапе S322), то текущий режим переключают (этап S323) в режим микросрабатывания. Более конкретно, режим переключают в режим микросрабатывания ТВ-АФ из АФ во время внешнего определения дальности.

Затем отменяют (этап S324) режим привода на основании разности фаз.

После выполнения этапа S307, S310, S317, S320, S321 или S324 данный процесс заканчивается.

На фиг.10 представлен чертеж, используемый при пояснении микросрабатывания фокусирующей линзы, которое осуществляется на этапе S302 процесса ТВ-АФ, изображенного на фиг.3.

Обращаясь к фиг.10, отмечаем, что горизонтальная ось отображает время, а вертикальная ось отображает положение фокусирующей линзы 105. Кроме того, в верхней части фиг.10 показан сигнал синхронизации кадровой развертки видеосигнала.

Как показано на фиг.10, значение EVA оценки АФ, связанное с электрическим зарядом (и обозначенное заштрихованным эллипсом на фиг.10), накапливаемым в элементе 106 для съемки изображения в течение периода А времени, захватывается в момент ТА, а значение EVB оценки АФ, связанное с электрическим зарядом, накапливаемым в элементе 106 для съемки изображения в течение периода В времени, захватывается в момент ТВ. Кроме того, в момент ТС значения EVA и EVB оценки АФ сравниваются друг с другом, и если EVB>EVA, то центр привода (вибрации) микросрабатывания сдвигается. С другой стороны, если EVA>EVB, то центр привода (вибрации) микросрабатывания не сдвигается. Микросрабатывание - это операция для определения направления перемещения фокусирующей линзы 105, которое увеличивает значение оценки АФ, или для локализации положения (положения пика) фокусирующей линзы 105, в котором значение оценки АФ становится максимальным во время перемещения фокусирующей линзы 105, как описано выше.

Управление микросрабатыванием фокусирующей линзы 105 с тем, чтобы на основании изменения в значении оценки АФ определить, достигнуто ли состояние «в фокусе», может быть названо управлением с проверкой достижения состояния «в фокусе».

Кроме того, управление микросрабатыванием фокусирующей линзы 105 с тем, чтобы на основании изменения в значении оценки АФ определить что направление фокусировки можно назвать управлением определением направления фокусировки.

На фиг.11 представлен чертеж, используемый при пояснении привода фокусирующей линзы 105 с поиском экстремума, который осуществляется на этапе S311 процесса ТВ-АФ, изображенного на фиг.3.

На фиг.11 горизонтальная ось отображает положение фокусирующей линзы 105, а вертикальная ось отображает значение оценки АФ.

Как показано на фиг.11, при перемещении, обозначенном символом А, значение оценки АФ превышает свой пик, а затем убывает и поэтому появляется возможность подтвердить существование положения пика (положения «в фокусе»). В этом случае фокусирующая линза 105 возвращается в положение, близкое к положению пика, затем привод с поиском экстремума завершается, после чего операция привода переключается на микросрабатывание. С другой стороны, при перемещении, обозначенном символом В, значение оценки АФ монотонно убывает, не достигая пика, и поэтому появляется возможность определить, что фокусирующая линза 105 приводится в движение в неверном направлении. В этом случае направление, в котором приводят в движение фокусирующую линзу 105, изменяют на обратное, пос