Способ имплантации конструкционной стали ионами меди и свинца
Изобретение относится к области машиностроения, а именно к способам ионной обработки поверхности деталей из конструкционных сталей, в частности, типа 30ХГСН2А. Технический результат - повышение усталостной прочности стали и снижение коэффициента трения детали при скольжении. Согласно способу осуществляют совместную имплантацию ионов меди и свинца в поверхность стали с помощью катода, который изготавливают из бинарного сплава меди и свинца. При этом содержание свинца в катоде составляет 25-45%. Дозу (флюенс) имплантации выбирают в пределах диапазона (1-2,5)·1017 ион/см2, причем с увеличением содержания свинца флюенс снижают в пределах этого диапазона. 1 табл.
Реферат
Предлагаемое изобретение относится к области ионно-лучевой вакуумной обработки материалов и может быть использовано в машиностроении для повышения эксплуатационных свойств деталей машин и механизмов.
Известен способ (заявка Франции 2476143, кл. С23С 14/48) ионно-лучевой обработки изделий, заключающийся в том, что в камеру, где располагаются изделия, напускают газ. Газ ионизируют и используют для обработки изделий. Ионы газа ускоряются за счет приложения переменной разности потенциала между изделиями и камерой. Технические возможности данного способа по созданию необходимой структуры и элементного состава в приповерхностном слое изделий ограничены тем, что при такой обработке в изделие имплантируют только ионы напускаемого газа. Создаваемые приповерхностные слои имеют сильные ограничения по значениям микротвердости из-за больших возникающих градиентов свойств между упрочненными слоями и матрицей. Следствием является возникновение высоких внутренних напряжений в приповерхностных слоях, приводящее к разрушению материала даже при слабых нагрузках.
Известен способ ионно-лучевой обработки изделий и материалов (Sharkeev Yu.P., Gritsenko B.P., Perry A.J., Fortuna S.V., Modification of mettallic materials and hard coatings using vacuum arc metal ion implantation. Vacuum, 1999, 1, v.52, p.247-254), по которому можно с помощью ионных пучков повышать износостойкость изделий. Одним из основных недостатков данного способа является ограничение по достигаемой микротвердости в приповерхностных слоях. Начиная с некоторых значений микротвердости, которые для каждого материала свои, напряжения, возникающие в приповерхностных слоях, столь велики, что прочности материала не хватает, и он разрушается либо самопроизвольно, либо при нагружении.
Наиболее близким по технической сущности к заявляемому способу ионной имплантации является способ, при котором поверхность обрабатываемой детали подвергается воздействию пучка ионов меди с дозой (1-5)·1017 ион/см2 (Овчинников В.В., Козлов Д.А., Якутина С.В. Исследование свойств поверхности стали 30ХГСН2А после имплантации ионами меди. / Машиностроение и инженерное образование. 2009. №2. С.7-13).
Недостатком прототипа является ограниченное увеличение усталостной прочности и износостойкости обработанной поверхности деталей. Увеличение дозы имплантирования ионов меди приводит к росту длительности обработки при постоянстве значения усталости обработанной стали и появлению задиров на имплантированной поверхности.
Предлагаемый способ ионной имплантации конструкционной стали ионами меди и свинца обеспечивает повышение усталостной прочности при низких значениях коэффициента трения скольжения.
Технический результат, на достижение которого направлен заявляемый способ, обеспечивается одновременной имплантацией ионов меди и свинца, осуществляют совместную имплантации ионов меди и свинца, катод изготавливают из бинарного сплава меди и свинца, содержание свинца в котором составляет 25-45%, дозу (флюенс) имплантации выбирают в пределах (1-2,5)×1017 ион/см2, причем с увеличением содержания свинца флюенс снижают пределах рабочего диапазона.
Выполнение совместной имплантации ионами с большой массой (свинец) в сочетании с ионами (медь), близкими по массе к основе мишени (железо), позволяет создавать большое количество радиационных дефектов, по которым ионы меди проникают вглубь мишени. С помощью метода вторичной масс-спектрометрии установлено, что при одновременной имплантации ионов меди и свинца при дозе 1,5·1017 ион/см2 глубина проникновения ионов меди в обрабатываемую сталь в 4 раза превышает глубину проникновения ионов меди при облучении ими стали при одинаковой дозе.
На глубину проникновения ионов и свойства имплантированного слоя оказывает влияние материал, из которого выполнен катод установки для имплантирования. Содержание свинца в материале катода выбирают в пределах 25-45%. При содержании свинца менее 25% наблюдается снижение глубины проникновения ионов меди в мишень, усталостной прочности облученных образцов. Увеличение содержания свинца в материале катода более 45% сопровождается увеличением усталостной прочности облученных образцов, которое сопровождается резким ростом значений коэффициента трения.
Значение дозы, при которой достигается оптимальное сочетание высокой усталостной прочности и низкого коэффициента трения при одновременной имплантации ионов меди и свинца в сталь, уменьшается с 2,5×1017 ион/см2 при содержании свинца 25% до 1×1017 ион/см2 при содержании свинца 45%.
Предлагаемый способ осуществляют следующим образом. Вакуумную камеру, в которой расположен источник ионов, откачивают до давления 10-3 Па. Производят ионную очистку изделия с помощью ионного источника. При этом энергия ионов не превышает 10…15 кэВ. Затем повышают энергию ионов до 40 кэВ, одновременно имплантируют ионы меди и свинца с дозой (1-2,5)×1017 ион/см2, осуществляя формирование поверхностного слоя.
Образцы стали 30ХГСН2А в исходном состоянии и после имплантирования были подвергнуты испытаниям на усталость. Кроме того, на образцах в виде втулок диаметром 12 мм по величине момента страгивания определяли коэффициент трения скольжения. Полученные результаты представлены в таблице.
№ п/п | Состав материала катода | Доза имплантации (флюенс), ион/см2 | Усталость, кцикл. при σ=300 МПа при частоте 22,5 Гц | Коэффициент трения |
1 | Контрольный образец без имплантации | 87,2 | 0,14 | |
2 | 100% Cu | 1,5·1017 | 92,4 | 0,10 |
3 | 77% Cu+23% Pb | 1,5·1017 | 117,8 | 0,11 |
4 | 75% Cu+25% Pb | 1,5·1017 | 145,2 | 0,11 |
5 | 64% Cu+36% Pb | 1,5·1017 | 148,5 | 0,12 |
6 | 55% Cu+45% Pb | 1,5·1017 | 149,4 | 0,12 |
7 | 50% Cu+50% Pb | 1,5·1017 | 149,7 | 0,17 |
8 | 64% Cu+36% Pb | 0,8·1017 | 129,2 | 0,11 |
9 | 64% Cu+36% Pb | 1·1017 | 138,7 | 0,11 |
10 | 64% Cu+36% Pb | 1,5·1017 | 148,5 | 0,12 |
11 | 64% Cu+36% Pb | 2·1017 | 149,2 | 0,12 |
12 | 64% Cu+36% Pb | 2,5·1017 | 149,9 | 0,12 |
13 | 64% Cu+36% Pb | 3·1017 | 148,3 | 0,15 |
14 | 75% Cu+25% Pb | 2,5·1017 | 149,2 | 0,11 |
15 | 64% Cu+36% Pb | 1,5·101 7 | 149,4 | 0,11 |
16 | 55% Cu+45% Pb | 1·1017 | 149,4 | 0,11 |
Способ имплантации конструкционной углеродистой стали, при котором в поверхность стали имплантируют ионы меди и свинца, отличающийся тем, что осуществляют совместную имплантации ионов меди и свинца, катод изготавливают из бинарного сплава меди и свинца, содержание свинца в котором составляет 25-45%, дозу (флюенс) имплантации выбирают в пределах диапазона (1-2,5)·1017 ион/см2, причем с увеличением содержания свинца флюенс снижают в пределах указанного рабочего диапазона.