Способ изготовления многослойной печатной платы
Иллюстрации
Показать всеИзобретение относится к способу изготовления многослойной печатной платы. Способ, в частности, подходит для изготовления гибких многослойных элементов, содержащих, например, антенны радиочастотной идентификации РЧИ (RFID). Технический результат - предложение более управляемого и эффективного способа изготовления многослойных печатных плат, посредством которого можно получить рисунок, имеющий межлинейные промежутки точно заданных размеров, включая очень тонкие промежутки, даже в тех случаях, когда рисунок предусматривает наличие больших участков, не содержащих проводника, а также избежать проблем, возникающих в процессе изготовления многослойных элементов защищенных изделий из-за остатков клеевого покрытия на непроводящих участках, предложение экономически рентабельного и надежного способа изготовления электрических контуров, размещаемых по обе стороны подложки, допускающего применение лазера при производстве печатных плат, в том числе и плат, содержащих термобумагу, со спиральной антенной, без ограничения при этом производительности. Достигается тем, что способ изготовления печатной платы с рисунком проводников включает в себя следующие этапы: i) на подложке (1) избирательно крепят проводящий слой, например металлическую фольгу (3), так, что часть указанного проводящего слоя, содержащая заданные участки (3а), образующие в конечном изделии проводники, и узкие участки (3с), расположенные между указанными проводящими участками конечного изделия, закреплена на подложке (1) посредством связующего (2) средства, при этом более крупные, подлежащие удалению участки (3b) проводящего слоя, по существу не закреплены на подложке и соединены с подложкой (1) не более чем своим краевым участком, подлежащим обработке на следующем этапе ii) и, возможно, участками, предотвращающими отделение подлежащих удалению участков до выполнения этапа iii); ii) на указанном проводящем слое выполняют рисунок проводников, путем удаления материала, например металлической фольги (3), из узких промежутков между заданными проводящими участками (3а) и с внешней периферии участка (3b), удаляемого в твердом состоянии; iii) удаляют в твердом состоянии подлежащие удалению участки (3b) проводящего слоя, не закрепленные на подложке (1), поскольку указанные подлежащие удалению участки (3b), ранее соединенные с подложкой своими краевыми участками, более не удерживаются краевыми участками проводящего слоя, которые были удалены с внешней периферии подлежащих удалению участков на этапе ii). 3 н. и 10 з.п. ф-лы, 3 ил.
Реферат
Настоящее изобретение относится к способу изготовления многослойной печатной платы. Способ, в частности, подходит для изготовления гибких многослойных элементов, содержащих, например, антенны радиочастотной идентификации РЧИ (RFID).
Предложенный в настоящей заявке способ подходит для изготовления печатных плат, например контактных площадок для клавиатур, гибких сенсорных ковриков и матриц, этикеток контроля продукции, антенных элементов для радиометок РЧИ, идентификационных и платежных карт, компонентов гибких и солнечных батарей, а также тепловых сопротивлений. Настоящее изобретение описано главным образом на примере способа изготовления антенных многослойных плат для устройств РЧИ. Такие платы, как правило, являются компонентами смарт-меток, либо входят в состав более толстых многослойных структур, размещаясь, например, внутри платежной карты, считываемой контактным способом или дистанционно.
Изделие, изготовленное упомянутым способом и поступившее к потребителю или предназначенное для дальнейшей обработки на этом же предприятии, обычно представляет собой рулон, в котором находятся антенны РЧИ, разнесенные с определенными промежутками по длине и ширине ленты тканеобразного материала подложки, подходящего для дальнейшей обработки и использования готового изделия. Материал подложки представляет собой непроводящий материал, предусматривающий возможность сматывания его в рулон, например бумагу или пластик, и обычно имеет толщину 20-100 мкм, как правило, порядка 50 мкм. Собственно антенны изготавливают из электропроводящего материала, например, из металла или типографской краски с проводящими частицами. Если применяемый электропроводящий материал представляет собой металлическую фольгу, то обычно это алюминиевая или медная фольга толщиной 5-30 мкм, часто порядка 10 мкм.
Площадь поверхности рисунка проводника по отношению к общей площади антенной ленты составляет обычно 10-50%, как правило 10-30%. Это обусловлено тем, что для осуществления дальнейшей обработки необходимо наличие свободного пространства между рисунками антенны, а также тем, что конструкция антенны сама по себе предусматривает наличие больших свободных участков или участков непроводящего материала. Причем, если речь идет об антенне, такие участки должны быть действительно непроводящими, а не просто электрически изолированными от антенны. Следовательно, если проводящий материал представляет собой металлическую фольгу, то в процессе изготовления антенны требуется тем или иным способом удалить большую его часть, оставив в готовом изделии лишь малую часть. Стоимость процесса удаления обычно определяется количеством подлежащего удалению металла.
При изготовлении изделий с повышенными требованиями к защищенности, таких как паспорта или кредитные карты, все чаще применяют идентификаторы РЧИ. Для получения высокой степени защиты необходимо обеспечить возможность объединения слоя, содержащего идентификатор РЧИ с другими слоями из того же основного материала таким образом, чтобы готовый узел нельзя было разъять, не повредив идентификатор. Следовательно, в процессе изготовления антенны на поверхности основного материала не должно оставаться клеящих или иных веществ, либо такие вещества могут оставаться только на минимальной доле общей площади.
Для многих антенн РЧИ характерна спиральная конструкция. В случае использования такой антенны в устройстве планарной конфигурации, верхний и нижний концы спирали неизбежно окажутся на микросхеме сравнительно далеко друг от друга. Следовательно, необходимо электрически соединить один конец спирали с ее другим концом либо с зоной присоединения микросхемы, так называемым мостом, без электрического соединения указанного моста с промежуточными витками спирали. С другой стороны, иногда для наиболее эффективного использования площади, отведенной под антенну идентификатора, необходимо разместить некоторые элементы антенны, например, половину спиральной конструкции, на одной стороне общей подложи, а остальные элементы на другой с обеспечением электрического соединения этих элементов друг с другом.
В производственном процессе после этапа изготовления антенны обычно следует этап присоединения микросхемы. Оборудование, используемое в серийном производстве для монтажа микросхем, предусматривают возможность обработки антенн именно в виде рулона, а технология предъявляет высокие требования к точности размещения антенн на подложке по длине и ширине ленты. Несмотря на то, что устройства РЧИ, о которых идет речь, на первый взгляд, имеют много общего с компонентами систем электронного наблюдения за товарами ЭНТ (EAS) или защитными этикетками, прикрепляемыми к изделию, требования к точности размещения последних существенно ниже, поскольку резонансные контуры этих устройств не оснащены микросхемами.
Изготовление антенн устройств РЧИ само по себе требует более высокой точности по сравнению с изготовлением резонансных контуров систем ЭНТ (EAS) или защитных этикеток.
Во-первых, в отличие от защитных этикеток, антенны РЧИ оснащены микросхемой, а для зоны присоединения микросхемы характерно, например, наличие пустых участков, т.е. межлинейных промежутков, ширина которых часто едва достигает 100-200 мкм. Во-вторых, после крепления микросхемы она совместно с антенной образует резонансный контур, собственная частота которого должна быть достаточно близка к частоте, на которой работает считывающее устройство, чтобы можно было дистанционно считать записанные в микросхеме данные, а для настройки резонансной частоты необходимо точно выдерживать размеры антенны. В-третьих, спираль защитной этикетки обычно имеет всего несколько витков, причем толщина линий проводника и промежутков между ними обычно измеряется миллиметрами. В то время как спираль антенны РЧИ имеет вдвое или втрое больше витков, которые зачастую необходимо разместить на очень ограниченной площади, ввиду чего толщина линий и межлинейных промежутков может быть на порядок меньше, чем в случае защитных этикеток.
ИЗВЕСТНЫЕ СПОСОБЫ ИЗГОТОВЛЕНИЯ АНТЕНН
При изготовлении антенн чаще всего применяется технология запечатывания серебряной пастой и травления, реже - способ металлического покрытия (электролитического или неэлектролитического). Однако применение вышеуказанных технологий связано, по меньшей мере, со следующими проблемами.
1. Запечатывание серебряной пастой является весьма дорогостоящей процедурой, что объясняется высокой стоимостью проводящей печатной краски. Антенна, отпечатанная серебряной пастой, не является твердым металлическим телом, а потому не отличается высокой прочностью и хорошими электрическими характеристиками. Помимо этого существуют проблемы неудобства крепления микросхемы к отпечатанному проводнику и низкой прочности участка крепления.
2. Травление выполняют с использованием многослойной заготовки, представляющей собой пластиковую подложку, по всей поверхности которой закреплена не содержащая покрытия металлическая фольга. Для обеспечения заданных свойств изделия необходимо удалить основную часть металлической фольги, в данном случае путем ее растворения травильным составом, в результате чего он имеет очень малую, либо даже отрицательную ценность, а в худшем случае представляет собой проблемные отходы. Также для обеспечения заданных свойств изделия необходимо удалять фольгу как на больших площадях сплошного материала, так и в очень узких межлинейных просветах, что осложняет получение изделий высокого качества, особенно учитывая высокие скорости серийного производства. После травления участки материала подложки, с которых была удалена металлическая фольга, полностью покрыты клеящим веществом, из-за чего продукт не подходит для изготовления таких изделий с высокой степенью защиты, как паспорта и кредитные карты. Кроме того, для повышения эффективности, каждый процесс травления, обычно направлен на "разъедание" только одного определенного металла, что исключает вариативность производства. В частности, эффективный процесс травления алюминия часто предусматривает применение резистивной краски на основе растворителя, а потому для удаления самой краски также требуются растворители, что очень неудобно как с точки зрения качества самого изделия, так и с точки зрения его производства. При больших объемах производства процесс травления представляет собой источник экологической опасности и требует согласования с компетентными органами.
3. Способ металлического покрытия представляет собой влажный процесс, и поэтому исключает возможность обработки изделий на основе бумаги. Данный способ требует наличия затравочного слоя, обычно выполняемого посредством печати, что предусматривает использования дорогостоящих красок. Кроме того, наращивание металлического слоя до нужной толщины обычно занимает довольно много времени. Обычно, к способу металлического покрытия прибегают только при изготовлении антенн из меди, а медь является дорогим и экологически вредным материалом. Способы металлического покрытия алюминием в промышленности не применяются.
4. Точные антенные рисунки можно получать посредством лазерного испарения, однако данный способ не подходит для быстрого удаления металла с поверхностей большой площади. Например, сложно осуществить испарение металла многослойного элемента большой площади, имеющего бумажную основу, избежав при этом слишком сильного нагрева бумаги.
УРОВЕНЬ ТЕХНИКИ
В публикации GB 869076 раскрыт способ, в соответствии с которым на поверхность листового материала сначала наносят клеевое покрытие в виде желаемого рисунка, затем к указанному листовому материалу прижимают многослойный элемент, покрытый металлической фольгой, после чего эти два элемента разъединяют. В результате указанных манипуляций металлическая фольга, имеющаяся на многослойном элементе, приклеивается к листовому материалу только в тех местах, на которые был нанесен клей. Такой процесс не подходит для изготовления многослойных элементов с антенной РЧИ, поскольку рисунок, получаемый обдиркой фольги, имеет слишком неточную геометрию.
В публикации WO 01/54226 раскрыт способ, очень схожий с описанным выше, при этом точность получаемого с помощью него результата недостаточна для изготовления, например, зоны присоединения микросхемы или спиральной антенны.
В публикации US 2005/0034995 раскрыт способ, согласно которому на теле подложки размещают металлическую фольгу или металлический порошок, либо посредством нанесения на тело подложки клеевого покрытия в виде рисунка, либо избирательным оплавлением тела подложки, после чего не приклеившиеся участки фольги или частицы порошка удаляют механическим способом, например щеткой.
В публикации ЕР 0790123 раскрыт способ, в котором сначала изготавливают многослойный элемент путем наклеивания металлической фольги по всей поверхности материала подложки, а затем в нужных местах удаляют фольгу лазерным испарением. Похожий способ представлен в публикации DE 4000372. Такой способ подходит для удаления фольги с небольшой части поверхности, однако, он малопригоден для серийного производства многослойных элементов антенн РЧИ, поскольку для обеспечения заданных свойств изделия необходимо удалить большую часть фольги, тогда как удаление лазерным испарением является трудоемкой, дорогостоящей и технически сложной операцией, что связано с недопустимостью повреждения материала подложки. Кроме того, при использовании данного способа на участках подложки, с которых была удалена металлическая фольга, остается клеевое покрытие, что делает конечный продукт непригодным для изготовления изделий с высокой степенью защиты, таких как паспорта и кредитные карты.
В той же публикации ЕР 0790123 раскрыт альтернативный способ, в соответствии с которым сначала изготавливают многослойный элемент, нанося между подложкой и фольгой требуемый рисунок клеящего вещества, затем обрезают фольгу по контуру клеевого рисунка и, наконец, удаляют отрезанные части фольги. Такой способ может быть приемлем в тех случаях, когда не требуется выполнение тонких линий и межлинейных промежутков, но едва ли применим для серийного производства многослойных элементов антенн РЧИ. В соответствии с данным способом требуется обрезать фольгу за пределами края клеевого рисунка, чтобы гарантировать отделение и удаление излишков фольги после выполнения реза. Кроме того, нанесение клея всегда связано с определенной размерной и позиционной неточностью, к тому же часто имеется вероятность размазывания клеевого рисунка при склеивании материалов, что дополнительно ухудшает точность позиционирования его контура. Учитывая также позиционные и размерные погрешности резки, становится очевидно, что данный способ не позволяет изготавливать антенны РЧИ с узкими межлинейными просветами. Кроме того, вышеописанные недостатки данного способа приводят к тому, что края остающейся фольги на практике неизбежно оказываются вне контакта с подложкой, что, как правило, недопустимо в пределах зоны крепления микросхемы.
В публикации US 2005/0183817 раскрыт способ, очень похожий на вышеописанный. Согласно данному способу на поверхность подложки наносят клеевое покрытие в виде рисунка, затем укладывают металлическую фольгу, приводя ее в контакт с поверхностью подложки, в результате чего фольга соединяется с клеевым рисунком. После этого осуществляют штамповку фольги по контуру клеевого рисунка и удаляют вырезанные части. Этот способ имеет точно такие же недостатки и ограничения, как и описанный в предыдущем абзаце.
Очень схожий с предшествующими способ описан в публикации WO 2007/087189. Его отличие заключается в том, что вместо одной металлической фольги согласно данному способу применяют многослойный элемент, содержащий помимо металлической фольги несущий слой. В силу указанных выше причин способ малопригоден для изготовления многослойных элементов антенн РЧИ, за исключением разве что антенн простейшей конструкции. Особенности конструкции подавляющего большинства антенн РЧИ не позволяют изготовить данным способом многослойный элемент с такой антенной. Кроме того, применение нескольких слоев вместо одного слоя металлической фольги повышает себестоимость производства.
Еще один схожий с предшествующими способ описан в публикации WO 03/024708. Он не имеет существенных отличий от вышеописанных способов, связан с теми же ограничениями и, следовательно, плохо подходит для серийного производства многослойных элементов антенн РЧИ.
В публикации JP 2001127410 А раскрыт способ, в котором сначала наносят клей на всю поверхность металлической фольги, а затем обрабатывают его таким образом, чтобы он утратил адгезивную способность на участках, с которых в дальнейшем предполагается удалять фольгу. Затем фольгу с обработанным клеевым слоем скрепляют с подложкой, после чего, например, штамповкой прорезают фольгу и клеевой слой до самой подложки по контуру неадгезивных участков и, наконец, при помощи клейкой ленты удаляют неприклеившиеся части фольги. В принципе способ идентичен описанному в публикации ЕР 0790123, за исключением технологии выполнения клеевого рисунка.
В публикации US 6161276 раскрыт способ, согласно которому рисунок проводников выполняют поверх покрытого клеем участка, для чего сначала осуществляют штамповку, прорезая фольгу до самой подложки, а затем изгибают лист, открывая полученные штамповкой разрезы, и заполняют открытые разрезы диэлектриком. Такой способ хорошо подходит для тех случаев, когда нет необходимости в выполнении тонких межлинейных промежутков и в тех случаях, когда микросхема может быть присоединена к антенне, а антенна с присоединенной к ней микросхемой - введена в многослойную негибкую структуру, в том же самом производственном процессе, который используется для изготовления антенны. Однако вышеуказанный способ малопригоден для серийного производства типичных многослойных элементов антенн РЧИ (RFID). Особенности штамповочного инструмента позволяют использовать штамповку только при изготовлении антенн с довольно широкими линиями и межлинейными промежутками. Кроме того, таким способом невозможно выполнить даже самую простую зону присоединения микросхемы антенны РЧИ, поскольку, во-первых, при изгибании листа и заполнении открывшихся разрезов диэлектриком указанная зона будет изгибаться, а во-вторых, на практике, невозможно нанести диэлектрик таким образом, чтобы он не попал на те участки фольги, к которым будет электрически присоединена микросхема. Более сложные зоны присоединения микросхемы, содержащие несколько электрически изолированных поверхностей, невозможно изготовить вообще. Кроме того, одна из главных особенностей раскрытого в цитируемой публикации способа, заключается в том, что для выполнения операции штамповки поверхность фольги необходимо покрыть синтетической пленкой, которую затем нужно удалить, по меньшей мере, с антенн РЧИ, перед дальнейшей их обработкой. В силу указанных причин данный способ является сложным и дорогостоящим.
В публикации WO 2007/121115 раскрыт способ, в котором металлическую фольгу с помощью клея целиком крепят к ткани-носителю с возможностью разъединения указанного клеевого соединения, производят штамповку фольги с помощью цилиндрического штампа, затем удаляют излишки фольги и переносят готовый рисунок на заданный участок конечного изделия, разрушая указанное клеевое соединение.
В публикации US 7256738 раскрыт способ, в соответствии с которым металлическую фольгу целиком покрывают термоплавким клеем, получают требуемый рисунок путем штамповки в прокатном устройстве, в котором один из цилиндров представляет собой штамповочный цилиндр, а другой - транспортный цилиндр, затем отштампованный рисунок через один или несколько транспортных цилиндров переносят на поверхность подложки, где окончательно закрепляют, расплавляя термоплавкий клей. Для этого способа характерны ограничения, схожие с ограничениями предшествующего способа, а потому он в целом неприменим для серийного производства многослойных элементов антенн РЧИ.
Таким образом, как следует из вышеизложенного, известные из уровня техники способы неприменимы для серийного производства меток РЧИ, содержащих микросхему.
ЗАДАЧИ ИЗОБРЕТЕНИЯ
Задача настоящего изобретения заключается в том, чтобы предложить более управляемый и эффективный способ изготовления многослойных печатных плат с рисунком проводников, посредством которого можно получить рисунок имеющий межлинейные промежутки точно заданных размеров, включая очень тонкие промежутки, даже в тех случаях, когда рисунок предусматривает наличие больших участков, не содержащих проводника, а также избежать проблем, возникающих в процессе изготовления многослойных элементов защищенных изделий из-за остатков клеевого покрытия на непроводящих участках. Дополнительная задача настоящего изобретения заключается в том, чтобы предложить экономически рентабельный и надежный способ изготовления электрических контуров, размещаемых по обе стороны подложки. Еще одна задача изобретения состоит в уменьшении объема не подлежащих возвращению в оборот отходов производства, что будет способствовать возможности повторного использования материалов. Наконец, еще одна задача изобретения заключается в том, чтобы предложить способ, допускающий применение лазера при производстве печатных плат, в том числе и плат, содержащих термобумагу, со спиральной антенной, без ограничения при этом производительности,
ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Ниже настоящее изобретение описано со ссылками на прилагаемые чертежи, на которых:
на фиг.1а и фиг.1b показаны этапы предложенного способа в случае применения травления;
на фиг.2а и фиг.2b показаны этапы предложенного способа в случае применения испарения;
на фиг.3а, фиг.3b и фиг.3с проиллюстрировано изготовление электрического контура, расположенного по обе стороны подложки.
На всех чертежах для обозначения элементов применяются следующие номера позиций:
1 - подложка,
2 - рисунок, нанесенный клеем или другим связующим веществом,
3 - металлическая фольга,
3а - проводник на готовой печатной плате,
3b - участок металлической фольги, подлежащий удалению.
На фиг.1а показана заготовка, на которую в соответствии с настоящим изобретением перед травлением нанесен клей. Поверх металлической фольги 3 нанесен кислотоупорный материал. При травлении металл на участках, покрытых таким материалом, не разрушается. Между подложкой 1 и фольгой 3, под участками расположения кислотоупорных масок 4а, формирующих рисунок проводников в конечном изделии, нанесен клей 2, причем этот клей выступает за границы участков 4а. В правой части заготовки показаны несколько расположенных близко друг к другу кислотоупорных масок 4а, причем в пределах покрываемой ими зоны фольга 3 приклеена к подложке 1 сплошным слоем клея. В середине и в левой части заготовки имеются участки большей протяженности, с которых должен быть удален проводящий материал. На этих участках на фольгу нанесены кислотоупорные маски 4b, под которыми клеевой слой между фольгой 3 и подложкой 1 отсутствует.
При травлении удаляются те участки металлической фольги, которые не были покрыты кислотоупорным материалом. Вид заготовки после завершения процесса травления представлен на фиг.1b. В правой части заготовки имеются несколько расположенных близко друг к другу линий 3а проводника, сформированные расположением кислотоупорных масок 4а. В результате травления образовались узкие промежутки между линиями проводника, покрытые клеевым слоем 2. В середине и левой части заготовки в результате травления высвободились участки 3b металлической фольги, которые были закрыты кислотоупорными масками 4b и которые теперь можно удалить в виде твердых металлических тел, не приклеенных к подложке 1. В данном способе не предъявляются жесткие требования к точности нанесения клеящего вещества в соответствии с линиями проводника, и к толщине линий, при этом процедуру травления можно оптимизировать под высокоточное удаление только тонких полос, благодаря чему достигается лучшее качество изделий. Кроме того, в травильном растворе растворяется меньше металла, что позволяет дольше использовать данный травильный раствор, минимизируя потребность в добавлении нового. При этом основная масса удаляемой фольги отделяется в виде твердого металла, в связи с чем появляется возможность ее повторного использования. Наконец, большая часть обнажаемой при удалении фольги поверхности не покрыта клеем, что снимает ограничения на дальнейшую обработку изделия.
Следует отметить, что на фиг.1b кислотоупорный материал не показан или удален. На самом деле, вероятно, нет необходимости удалять его перед повторным использованием участков 3b фольги, поскольку обычные кислотоупорные покрытия из органического материала сгорают при плавлении металла без каких-либо отрицательных последствий. Некоторые кислотоупорные материалы могут также использоваться на следующих стадиях производства в качестве флюса или изолирующего лака, и поэтому нет необходимости удалять их с изделия перед его дальнейшей обработкой.
На фиг.2 показано аналогичное исходное состояние заготовки в случае удаления участков 3с путем лазерного испарения, а на фиг.2b состояние заготовки после проведения испарения. В данном случае, достигаются те же преимущества относительно выполнения плотно расположенных проводников, что и при использовании травления, т.е. точность исполнения рисунка определяется только погрешностями работы лазера, но не погрешностями процесса склеивания. Поскольку участок 3b не приклеен к подложке, нет необходимости проводить его полное испарение - достаточно испарить окружающие его узкие участки 3с. Это существенно ускоряет процесс, причем основная масса удаляемой фольги отделяется в виде твердого металлического тела, что обеспечивает возможность ее повторного использования. Кроме того, основная часть поверхности, обнажаемой при удалении фольги, не покрыта клеем, что снимает ограничения на дальнейшую обработку изделия. Следует отметить, что хотя лазерный луч может проникать в слой клея или иного связующего вещества, или даже проходить его насквозь до самой подложки, это не сводит на нет обеспечиваемые предлагаемым способом преимущества, а потому должно рассматриваться как вариант его осуществления.
В цитировавшихся выше документах раскрыты различные способы, в которых проводящие дорожки печатной платы выполняют с использованием штамповки. Однако практические испытания показали, что штамповка не позволяет с высокой степенью надежности получать достаточно точный рисунок. Возникшие на практике проблемы аналогичны тем, которые были описаны выше применительно к цитируемым публикациям и связаны, в тот числе, с необходимостью удалять материал из узких непроводящих участков, либо заполнять эти участки диэлектриком. В противном случае неизбежны короткие замыкания, обусловленные пластической деформацией и неровностью поверхности. Если же в процессе штамповки удалять материал из непроводящих участков посредством обдирки или выполнением двух разрезов с последующим отделением полоски металлической фольги, то невозможно получить линию необходимо малой ширины, поскольку такое удаление требует отсутствия клеевого покрытия на участке, на котором оно производится, и выполнения двух операций штамповки с каждой стороны этого участка. Таким образом, штамповкой, или, во всяком случае, одной только штамповкой, невозможно получить требуемый рисунок проводника, поскольку в таком случае требуется отдельный процесс для удаления материала с клеевого слоя в узких межлинейных просветах.
Можно сочетать различные способы выполнения рисунка проводника. Например, отделение больших участков 3b можно осуществлять с применением лазера перед травлением или даже перед нанесением кислотоупорного покрытия. В этом случае удаление участков 3b можно выполнить даже до травления, а в ходе травления с высокой точностью соблюдения размеров удалить полностью или частично приклеенные участки фольги, примыкающие к краям удаляемых участков. С другой стороны, несмотря на то, что антенна в целом изготовлена способом травления, зоны крепления микросхемы можно обрабатывать посредством лазера.
Прикрепление металлической фольги 3 к подложке и выполнение рисунка крепления можно производить не только путем нанесения клея, например, трафаретным или струйным способом на подлежащие склеиванию участки, но также и с использованием клея, отверждаемого под воздействием ультрафиолетового излучения, который отверждают после нанесения на участках, которые должны оставаться неприклеенными. Затем фольгу 3 прижимают, приводя ее в плотный контакт с подложкой 1 и отверждают оставшийся клей освещением сквозь подложу с изнаночной по отношению к фольге стороны. Выполнение рисунка крепления можно производить также путем локального нагрева и расплавления в нужных местах пластического материала, например полиолефиновой пленки, помещенной в виде рисунка между фольгой и подложкой. Также можно применять клей, активируемый давлением. Такой клей может содержать разрушаемые при давлении микрокапсулы, благодаря чему клей активируется только в подвергаемых давлению областях. Наконец, для выполнения указанного рисунка можно применить деактивирующий слой, который может, например, представлять собой растворимый или плавкий слой, расположенный под металлическим или клеевым слоем, за счет чего клеевой слой или металлический слой не приклеивается к подложке в местах расположения деактивирующего слоя.
На фиг.3а показан этап изготовления многослойного элемента двусторонней печатной платы, осуществляемый в соответствии с предложенным способом, согласно которому в подложке 1 выполняют отверстия 5, которые в ходе производственного процесса полностью или частично покрывают проводниками 3а из металлической фольги. На этапе, показанном на фиг.3а, отверстия 5 проходят сквозь слой 2 нанесенного в виде рисунка клея или иного связующего. Это означает, что либо слой 2 в виде рисунка клея или иного связующего наносят еще перед выполнением отверстий и далее одновременно выполняют отверстия как в материале подложки 1, так и в слое клея или другого связующего либо отверстия 5 выполняют только в подложке 1, после чего слой 2 клея или другого связующего наносят на поверхность подложки 1 таким образом, чтобы не перекрыть отверстия 5. В этом случае слой 2 клея или другого связующего может присутствовать либо на одной стороне, либо на двух сторонах подложки. На фиг.3а он показан только на одной стороне.
На фиг.3b показан этап выполнения электрического контура на обеих сторонах подложки. На этом этапе на обе стороны подложки 1 наносят проводники 3а из металлической фольги. На фиг.3b видно, что отверстия 5 полностью покрыты проводниками 3а, однако также возможен вариант, при котором отверстия лишь частично покрыты проводниками. В любом случае, если рисунок на металлической фольге выполняют травлением, предпочтительно, чтобы отверстия 5 были полностью покрыты проводниками 3а, поскольку в этом случае отверстие 5 будет представлять собой закрытую область, внутрь которой не попадает травильный раствор. Также возможно выполнение проводников 3а из металлической фольги только с одной стороны подложки 1, с нанесением на другую сторону проводящего состава из другого материала, например проводящей печатной краски.
На фиг.3с показан готовый электрический контур, расположенный на двух сторонах подложки. Проводники 3а из металлической фольги, расположенные по обе стороны подложки 1 поверх отверстий 5 электрически соединены между собой через отверстия 5 точечной или ультразвуковой сваркой или иным подобным способом. Проводники 3а также можно электрически соединить между собой многими другими способами, например, заполнив отверстия 5, открытые с одной или обеих сторон или частично покрытые проводниками 3а, электропроводной печатной краской или иным материалом. Если проводники 3а изготовлены из металлической фольги только с одной стороны подложки 1, а на другой ее стороне они выполнены из иного материала, например из проводящей печатной краски, электрическое соединение последней с проводниками 3а из металлической фольги может выполняться через отверстия 5 в ходе производственного процесса без выполнения отдельного этапа соединения.
Следует отметить, что все чертежи лишь иллюстрируют принципы осуществления изобретения и выполнены без соблюдения масштаба. Это особенно относится к фиг.3с, на которой для обозначения электрического соединения проводников 3а из металлической фольги они имеют форму выпуклости очень маленького радиуса. В действительности диаметр отверстия 5 значительно превышает толщину подложки 1, а проводники 3а подвергаются значительно меньшему натяжению и изгибу, чем показано на фиг.3с.
Пропускание соединительного элемента через отверстие, которое необходимо выполнить в процессе избирательного клеевого соединения или в процессе крепления металлической фольги производят таким образом, что окружающая отверстие фольга остается свободной от клея или связующего по меньшей мере в некоторых направлениях. Таким образом, заводимая в отверстие фольга может лучше проходить через отверстие, чем фольга, закрепленная по всей своей периферии. Кроме того, путем избирательного клеевого соединения можно сформировать вблизи области соединения гибкий участок, не прикрепленный к материалу подложки. Вышеописанный способ пропускания соединительного элемента через отверстие может найти применение также в других областях, где рисунок проводника выполняют посредством избирательного нанесения клея или другого связующего.
По меньшей мере в случае выполнения рисунка проводника лазером несложно обеспечить наличие участков проводника, которые оставались бы свободными от адгезивной связи по меньшей мере в зоне окружающей отверстия и которые можно было бы затем соединить между собой сквозь печатную плату вышеописанным способом. В случае выполнения рисунка проводника травлением, можно осуществить покрытие обратной стороны фольги до выполнения ее крепления к подложке. Также для выполнения заводимых в отверстие элементов можно использовать штамповку или резание. То обстоятельство, что проводник в области соединения не прикреплен к подложке, может облегчить процесс пайки или склеивания элементов через отверстие, поскольку не заполненный клеем зазор между проводником и многослойным элементом печатной платы может работать как капиллярный элемент, притягивая соединяемые поверхности одна к другой. Благодаря тому, что фольга не приклеена в непосредственной близости от отверстия, удается осуществлять соединение даже сквозь очень толстый многослойный элемент, поскольку в этом случае фольга может проходить через отверстие без слишком сильного натяжения. В том случае, если не приклеенный участок фольги выполнен в виде соответствующих допускающих изгиб вырезных участков, которые жестко не соединены с подложкой, то для выполнения соединения фольгу можно пропустить через многослойный элемент почти любой толщины в ходе, например, ультразвуковой сварки. Фольга также может быть не закрепленной по трем направлениям или оставленной закрепленной слабым соединением, которое может быть нарушено в процессе соединения элементов.
Неприклеенные проводящие перемычки также могут служить в качестве плавких предохранителей, либо же конфигурация электрической схемы может предусматривать наличие разрушаемых перемычек, расположенных поверх отверстий печатной платы, причем разрушение может выполняться путем отламывания их в месте расположения отверстия. За пределами отверстия разрушение осуществляется путем соскабливания или разрезания. В этом случае перемычка имеет такую конструкцию, при которой без труда можно отломать ее на обоих концах и, таким образом, полностью удалить. Например, на обоих концах перемычки может быть выполнена перфорация, а удаляемая часть может быть снабжена уширением с отверстиями, за которые может зацепиться инструмент. Неприклеенные металлические перемычки также могут служить в качестве блокирующих или сигнальных соединений. Например, для выведения из строя метки РЧИ, не приклеенные к подложке участки рисунка проводника могут быть выполнены легко разрушаемыми, например, в месте соединения с адгезивной поверхностью метки РЧИ, надеваемой на запястье, вследствие чего разрушение адгезивной связи приведет к очень трудно восстанавливаемому разрушению проводников. Таким образом, появляется возможность выпускать более надежные пломбы РЧИ с возможностью адгезионного соединения. Можно также размещать разрушаемые проводники между двумя слоями многослойного элемента, обеспечивая, таким образом, их лучшую защиту, например, от коррозии, при этом отрывание метки приведет к разрушению проводников изнутри.
Можно также выполнять разрезание неприклеенной металлической фольги лазером так, чтобы ее можно было заводить с изгибом в отверстие или перегибать через край печатной платы. На практике для этого сначала выполняют отверстие, которое затем при нарезании печатных плат на окончательный размер превращается в выемку на кромке платы. В результате фольга не достигает печатной платы на величину указанной выемки, что защищает ее от повреждения. Это позволяет прокладывать соединительные линии по кромке платы. Такие линии могут служить соединительными элементами, либо могут быть закреплены на обратной стороне печатной платы, например, ультразвуковой сваркой или пайкой.
ВАРИАНТЫ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Отличительные признаки заявляемого способа изложены в независимом пункте формулы изобретения, а предпочтительные варианты осуществления раскрыты в ее зависимых пунктах.
Предложенный способ предназначен для изготовления проводников из металлической фольги для многослойного элемента антенны РЧИ и включает в себя следующие этапы:
1. Подложку 1 и металлическую фольгу 3