Устройство для имитации затяжного прыжка с парашютом с вертикальной аэродинамической трубой (варианты) и вертикальная аэродинамическая труба

Иллюстрации

Показать все

Группа изобретений относится к области обучения парашютистов. Устройство имитации полета в виде вертикальной аэродинамической трубы содержит полетную камеру, в которой человек может получать ощущение свободного падения. Воздушный поток для поддержки человека создается узлами вентиляторов, расположенных рядом друг с другом и соединенных над полетной камерой через канал. Полетная камера расположена на впускной стороне узла вентиляторов. К полетной камере примыкает промежуточная площадка, имеющая проемы в полетную камеру. Используются один или два возвратных воздушных канала для возврата воздуха от выхода вентиляторов к входам вентиляторов. Один сегмент канала включает противоположные жалюзи для регулирования с помощью их температуры посредством принудительного ввода окружающего воздуха в устройство имитации. Предполагается использование нескольких сегментов канала, имеющих расходящиеся стенки. Группа изобретений направлена на повышение коммерческой ценности за счет уменьшения высоты. 4 н. и 42 з.п. ф-лы, 35 ил.

Реферат

Ссылки на родственные заявки

Данная заявка претендует на приоритет заявки США с порядковым номером 11/184 940 от 19 июля 2005, которая является частичным продолжением заявки США с порядковым номером 10/909 088, поданной 30 июля 2004.

Область техники, к которой относится изобретение

Данное изобретение относится к области вертикальных аэродинамических труб, в частности к вертикальным аэродинамическим трубам с управлением температурой обратного потока, используемым в качестве устройств для имитации затяжных прыжков с парашютом и развлекательных устройств.

Уровень техники

Аэродинамические трубы известны в уровне техники. Имеются аэродинамические трубы различных типов и конструкций в зависимости от потребностей пользователя. Они включают дозвуковые аэродинамические трубы с и без обратного потока, околозвуковые аэродинамические трубы с и без обратного потока, вертикальные дозвуковые аэродинамические трубы с и без обратного потока, сверхзвуковые и гиперзвуковые аэродинамические трубы с или без обратного потока и аэродинамические трубы со сжимаемым потоком.

Большинство аэродинамических труб используются для исследовательских и испытательных целей. Они включают испытание обычных самолетов, вертолетов, парашютов и других аэродинамических устройств, поверхностей крыла, управляющих поверхностей, подводных лодок, ракет и других средств выведения, наземных транспортных средств, зданий и других базовых исследований потока.

Горизонтальные аэродинамические трубы (те, в которых воздух в секции полной скорости трубы проходит в основном горизонтально) используются для аэродинамических исследований и испытаний и обычно принадлежат крупным выполняющим оборонные заказы фирмам, федеральному правительству или образовательным институтам и университетам. Некоторые из них преобразованы или приспособлены для вертикальной работы (при этом воздух в секции полной скорости проходит в основном вертикально), но большинство или все работают в этой роли плохо.

Конструктивные ограничения, которые применяются для вертикальных аэродинамических труб, используемых для имитации свободного падения, отличаются от ограничений для горизонтальных испытательных труб. В вертикальной аэродинамической трубе (устройстве имитации свободного падения) важно, чтобы объекты в секции полной скорости аэродинамической трубы (в данном случае люди в полете) были способны перемещаться внутри секции для ощущения или тренировки полета человеческого тела. В горизонтальной испытательной трубе объекты, размещенные в трубе, обычно являются неподвижными объектами, наблюдаемыми или измеряемыми извне. По этой причине эта наиболее быстрая часть горизонтальной аэродинамической трубы называется «испытательной секцией». В вертикальной аэродинамической трубе эту зону вместо этого называют «полетной камерой».

В вертикальной аэродинамической трубе важно, что люди, летящие внутри трубы, могут сменяться в полетной камере без остановки воздушного потока. В противоположность этому, редко имеется необходимость перемещения неподвижных объектов в испытательной секции горизонтальной аэродинамической трубы во время ее работы. Кроме того, поскольку летящий человек в вертикальной аэродинамической трубе может свободно перемещаться внутри полетной камеры, то необходимо ограничивать его перемещения подходящими частями системы.

Хотя можно размещать защитную сетку как на верхнем, так и на нижнем концах полетной камеры, они создают чрезвычайно большое аэродинамическое сопротивление, которое приводит к образованию шума и увеличивает мощность, необходимую для достижения заданной скорости. В действительности, такая пара сеток может расходовать до около 30-50% полной мощности, требуемой для работы такой аэродинамической трубы.

Желательно также иметь сплетенную решетку из шнуров на нижнем или верхнем конце полетной камеры для использования в качестве платформы для стояния, когда участники не летают. Этот «шнуровой пол» обеспечивает удобную рабочую платформу для обеспечивающих безопасность служащих или инструкторов в полетной камере.

Поэтому, по указанным выше причинам для безопасности и простоты использования, желательно иметь шнуровой пол/сетку безопасности, выполненную из шнуров с возможно меньшим аэродинамическим сопротивлением при заданных прочности и диаметре. Дополнительно к аэродинамическим трубам имеется множество применений для использования шнуров, движущихся в воздухе, или же при потоке воздуха, проходящего через шнуры, для которых простой и дешевый шнур с уменьшенным аэродинамическим сопротивлением может обеспечивать существенные преимущества.

Шнуры с низким аэродинамическим сопротивлением, имеющие плоское или крыловидное поперечное сечение, известны из уровня техники и часто используются в самолетной промышленности. Однако их нельзя применять для формирования плетеного шнурового пола для вертикальной аэродинамической трубы, поскольку сложно сохранять правильную ориентацию таких шнуров относительно потока воздуха. Кроме того, нижний относительно потока конец такого плоского или крыловидного шнура заострен. Поскольку человек, падающий на плетеный пол/сетку безопасности, приземляется на нижний относительно потока конец, то этот тип шнура также не безопасен для такого применения. Известные из уровня техники крыловидные в поперечном сечении шнуры нельзя использовать в некоторых других типах применения, где желательно иметь шнур с небольшим аэродинамическим сопротивлением, по аналогичным причинам ориентации, стабильности, стоимости или возможности повреждения.

Важно также исключить возможность полета участников вне воздушного столба и падение без поддержки на находящийся внизу пол. По этой причине самые современные вертикальные аэродинамические трубы выполнены так, что воздушный столб занимает все пространство от одной стенки полетной камеры до другой стенки.

Вертикальные аэродинамические трубы, используемые для имитации свободного падения, часто работают в чувствительном к шуму окружении, таком как парки аттракционов и торговые пассажи. Горизонтальные испытательные трубы можно располагать в удаленных местах, где они могут создавать столько шума, сколько необходимо.

В качестве развлекательных устройств имитаторы свободного падения вследствие ценовой конкуренции с другими аттракционами часто вынуждены работать почти непрерывно. Эти два фактора делают энергетическую эффективность критической для успешной коммерческой работы устройства имитации свободного падения. Энергетическая эффективность не так важна для горизонтальных аэродинамических труб, в которых постановка эксперимента часто занимает часы или дни с последующей работой трубы в течение нескольких минут для сбора требуемых данных.

Высота является главным ограничением устройств имитации свободного падения, которые выполнены вертикально и часто должны быть расположены в местах развлечения, которые имеют жесткие ограничения по высоте. Это не относится к горизонтальным испытательным аэродинамическим трубам, которые опираются на свою боковую сторону и могут быть успешно установлены далеко от мест скопления людей.

Наконец, известный уровень техники не ориентирован на дизайне этих систем с целью оптимизации возможности наблюдения со стороны зрителей в условиях тесного расположения аттракционов.

Для изготовления коммерчески выгодных вертикальных аэродинамических труб для имитации затяжного прыжка с парашютом необходимо: (1) приводить в движение достаточное количество воздуха и достаточно плавно для адекватного имитирования свободного падения для одного или нескольких человек в полетной камере; (2) устройство должно быть достаточно коротким и достаточно тихим для расположения там, где можно ожидать большого количества потенциальных клиентов; (3) потребление мощности должно иметь достаточно низкий уровень для обеспечения доступной цены для публики.

Эти противоречивые требования удовлетворяются в устройстве согласно изобретению. Высокие скорости воздуха необходимы в полетной камере для поддержки одного или нескольких человек. Однако перемещение воздуха через систему каналов с высокими скоростями приводит к образованию чрезвычайно большого количества шума и выделению тепла и требует огромной мощности. Следовательно, в большинстве современных аэродинамических труб расширяют и замедляют воздух сразу после полетной камеры для уменьшения расходуемой мощности, снижения генерирования шума и выделения тепла. Это может понижать расход мощности на более чем 60%, и только так можно реализовать вертикальные аэродинамические трубы, коммерчески прибыльные, в качестве развлекательных устройств или устройств имитации затяжного прыжка с парашютом.

Однако, если расширять поток воздуха в любой секции аэродинамической трубы слишком быстро, то поток разделяется и становится турбулентным, а не ламинарным. Это может приводить к ухудшению рабочих параметров всей системы, увеличению расхода энергии и ухудшению качества потока в такой степени, что устройство не будет адекватно имитировать настоящее свободное падение. Порог, при котором происходит это разделение потока в расширяющемся канале, достаточно хорошо определен в технической литературе; простыми словами, стенки расширительного конуса не должны расходится под углом более 9-12 градусов. По этой причине увеличение длины горизонтальных испытательных аэродинамических труб или высоты вертикальных аэродинамических труб способствует увеличению эффективности.

К сожалению, в то время как в горизонтальных системах это легко осуществлять, в вертикальных системах при этом резко увеличиваются конструктивные и эксплуатационные расходы и уменьшается количество мест, для которых можно получить разрешение на строительство. Следовательно, минимизация высоты при одновременной максимизации расширения и торможения воздушного потока после полетной камеры является ключевым моментом для обеспечения коммерческого успеха вертикальной аэродинамической трубы. Аналогичным образом, существенным является ограничение нахождения участников в безопасных зонах аэродинамической трубы без увеличения аэродинамического сопротивления и потребления энергии.

В уровне техники не известна конструкция, которая бы была достаточно короткой, бесшумной и пригодной для строительства в плотно используемых торговых и развлекательных центрах при сохранении достаточной эффективности с целью обеспечения коммерчески выгодной работы.

Приведенные выше примеры уровня техники и связанные с ними ограничения являются лишь иллюстрацией и не претендуют на полноту. Другие ограничения уровня техники станут ясными для специалистов в данной области техники при чтении описания и изучении чертежей.

Сущность изобретения

Согласно одному аспекту данного изобретения предлагается развлекательное устройство в виде вертикальной аэродинамической трубы, имеющей полетную камеру, расположенную на впускной стороне нескольких вентиляторов, которые, в свою очередь, соединены с несколькими расширяющимися возвратными воздушными каналами для максимизации тем самым эффективности при одновременной минимизации высоты развлекательного устройства.

Согласно другому аспекту данного изобретения предлагается вертикальная аэродинамическая труба, имеющая полетную камеру на впускной стороне вентиляторов для повышения скорости и качества воздушного потока при низком потреблении энергии и высокой безопасности для летающих.

Согласно другому аспекту данного изобретения предлагается вертикальная аэродинамическая труба, снабженная множеством небольших вентиляторов, установленных под углом с не параллельным выравниванием, вместо единственного, более дорогого и более сложного для технического обслуживания вентилятора.

Согласно следующему аспекту данного изобретения предлагается вертикальная аэродинамическая труба, имеющая один или несколько возвратных воздушных каналов для сохранения тепла, уменьшения расхода энергии, снижения шума и обеспечения работы в любых погодных условиях.

Согласно другому аспекту данного изобретения предлагается вертикальная аэродинамическая труба, имеющая один или два возвратных канала, хотя она может иметь большее число вентиляторов, чем возвратных каналов.

Согласно другому аспекту данного изобретения предлагается вертикальная аэродинамическая труба, имеющая вентиляторы, расположенные в низкопрофильных, диффузорных корпусах, которые позволяют устанавливать их возможно ближе друг к другу, так что с каждым возвратным воздушным каналом можно соединять более чем один вентилятор без необходимости длинных передаточных каналов, которые бы увеличивали высоту или ширину всей системы.

Согласно другому аспекту данного изобретения предлагается вертикальная аэродинамическая труба, имеющая пассивную систему обмена воздуха с регулируемыми впускными/выпускными створками, которые механически выбрасывают нагретый воздух из системы и всасывают более холодный окружающий воздух с целью максимально эффективного управления температурой внутри аэродинамической трубы с минимальной дополнительной работой вентиляторов.

Согласно другому аспекту данного изобретения предлагается вертикальная аэродинамическая труба, в которой регулируемые впускные/выпускные створки расположены так, что они могут также образовывать сопло или сужать поток, создавая тем самым благоприятный градиент давления между внутренним и наружным пространством трубы и улучшая обмен воздуха с целью эффективного управления температурой внутри аэродинамической трубы с минимальной дополнительной работой вентиляторов и без использования других, более дорогостоящих технологий охлаждения воздуха.

Согласно следующему аспекту данного изобретения предлагается вертикальная аэродинамическая труба, имеющая сеточный пол, выполненный из специально разработанных шнуров (предпочтительно стальных), которые создают меньшее аэродинамическое сопротивление и поэтому меньше шума, чем обычные шнуры.

Согласно другому аспекту данного изобретения предлагается вертикальная аэродинамическая труба, имеющая один или несколько верхних барьеров, реализованных из электронных компонентов, с нулевым аэродинамическим сопротивлением вместо физической сетки, предназначенных для предотвращения движения летающих слишком высоко в полетной камере и способных быстро изменять скорость воздуха для возвращения летающих обратно вниз и удерживания их на безопасном уровне.

Согласно другому аспекту данного изобретения предлагается вертикальная аэродинамическая труба, имеющая возможно меньшую общую высоту для любой заданной эффективности с целью уменьшения конструктивных затрат и соблюдения общих ограничений высоты зданий.

Согласно другому аспекту данного изобретения предлагается вертикальная аэродинамическая труба, имеющая оптимальную высоту за счет нерасположения первичного диффузора сразу после полетной камеры, а обеспечения возможно быстрого расширения воздуха без вызывания разделения воздуха с помощью большинства или всех компонентов после полетной камеры.

Согласно другому аспекту данного изобретения предлагается вертикальная аэродинамическая труба, имеющая оптимальную высоту за счет возможно большего расширения воздуха без вызывания разделения при его прохождении через полетную камеру. Эту диффузорную полетную камеру можно считать также полетной камерой с нулевой высотой или испытательной секцией с нулевой длиной.

Согласно другому аспекту данного изобретения предлагается полетная камера нулевой высоты, в которой летающие могут летать в расширяющейся диффузорной камере с уменьшающейся скоростью воздуха при увеличении высоты полета, за счет чего в камере образуется самоулавливающийся поток для замедления летящего человека при его снижении.

Согласно одному аспекту устройства согласно изобретению предлагается шнур с уменьшенными аэродинамическим сопротивлением и шумом в движущемся воздухе.

Другие аспекты данного изобретения следуют из последующего описания и прилагаемой формулы изобретения со ссылками на прилагаемые чертежи, образующие часть данного описания, в которых подобными позициями обозначены соответствующие части в различных проекциях.

Для уменьшения риска выпадания участников из воздушного столба и получения повреждений воздушный столб проходит по всей ширине от одной стенки полетной камеры до другой ее стенки. Этот воздушный поток «от стенки до стенки» уменьшает также аэродинамическое сопротивление воздушному потоку у кромок и увеличивает эффективность всей системы. Воздушный поток проходит через плетеный из шнура пол в полетную камеру. Плетеный пол обеспечивает опору для пользователей, когда воздушный поток в камере является не достаточным для их поддержки. Плетеный пол выполнен из шнуров с уменьшенным аэродинамическим сопротивлением, содержащих комплект круглых прядей с особой ориентацией и с особыми размерами. Эти шнуры можно использовать также в любом применении, где требуется уменьшенное аэродинамическое сопротивление в воздухе.

На или вблизи верхнего (или выходного) конца полетной камеры предусмотрена «виртуальная сетка», содержащая один или несколько электронных (предпочтительно оптических) датчиков, для мониторинга положения пользователей внутри полетной камеры. В раскрываемом варианте выполнения система управления автоматически уменьшает скорость, если пользователи летят в полетной камере слишком высоко.

Полетная камера может быть круглой, овальной или многоугольной и может иметь площадь от немного меньше 75 квадратных футов до более 160 квадратных футов. В полетной камере могут одновременно находиться до 6 пользователей. Скорость воздушного потока в полетной камере может достигать свыше 160 миль в час, что обеспечивает полную поддержку до 6 пользователей. В предпочтительном варианте выполнения одна или несколько стенок полетной камеры включают или содержат плоские или изогнутые окна, выполненные из прозрачного плексигласа (Plexiglas®), акриловой пластмассы, стекла или аналогичного прозрачного материала высокой прочности. Когда они имеются, то окна обеспечивают неограниченный обзор действий, происходящих в полетной камере.

Вблизи полетной камеры имеется промежуточная площадка. Полетная камера имеет входной проем и выходной проем к промежуточной площадке, через которые пользователь или несколько пользователей могут входить и выходить из полетной камеры. В некоторых вариантах выполнения, в которых замена участников в полетной камере может быть менее частой, эти проемы могут быть оборудованы дверьми, которые скользят, свертываются или по-другому движутся для закрывания одного или обоих проемов. Пользователи ожидают на промежуточной площадке своей очереди попадания в полетную камеру. Промежуточная площадка имеет прозрачные окна, так что можно наблюдать за полетом любого человека внутри полетной камеры, не входя на промежуточную площадку. Промежуточная площадка имеет одну или несколько дверей, которые периодически открываются для обеспечения выхода участников из всей системы. Промежуточная площадка может быть также оборудована, не обязательно, пристроенной или вторичной промежуточной площадкой. Она создает воздушный шлюз, который позволяет входить и выходить группам из промежуточной площадки наружу без остановки воздушного потока.

Зона над (ниже по потоку) каждой дверью в верхней секции полетной камеры может включать перфорированную панель, которая обеспечивает альтернативный путь прохождения воздушного потока, когда пользователи входят или выходят из полетной камеры. В предпочтительном варианте выполнения небольшой дефлектор расположен ниже (перед) плетеного из шнура дна как раз под каждым проемом между полетной камерой и промежуточной площадкой для минимизации количества воздуха, проходящего между ними, и уменьшения величины необходимого выравнивания.

Управление вентиляторами и другими управляющими элементами можно выполнять с промежуточной площадки, из полетной камеры или из присоединенного или удаленного поста управления. Управление вентиляторами осуществляется для обеспечения необходимой скорости воздушного потока через полетную камеру.

Непосредственно над перфорированной секцией расположен первичный расходящийся диффузор. Первичный диффузор расходится под углом примерно 3,5-5 градусов от главной оси с образованием эквивалентного конусного угла от 7 до 10 градусов. Увеличивающаяся площадь поперечного сечения уменьшает скорость воздушного потока от полетной камеры к вентиляторам. Над (или после) первичным диффузором находится верхняя коллекторная камера, которая может включать первый набор высокоэффективных отклоняющих лопастей. В единичной возвратной системе эти отклоняющие лопасти (или просто коллекторная камера, если лопасти не используются) изменяют направление воздушного потока из по существу вертикального в по существу горизонтальное. В множественной возвратной системе эти лопасти (или просто коллекторная камера, если лопасти не используются) разделяют поток воздуха в основном на равные потоки и отклоняют каждый поток из по существу вертикального направления в по существу горизонтальное направление.

Затем воздушный поток проходит через впускные каналы к вентиляторам. Впускной канал вентиляторов преобразует поток из примерно квадратного или примерно прямоугольного в примерно круговой. В предпочтительном варианте выполнения впускные каналы вентиляторов действуют в качестве диффузоров, расширяющих возможно больше площадь потока без разделения потока. Вентиляторы предпочтительно являются высокоэффективными осевыми вентиляторами, хотя можно использовать любой вентилятор, предназначенный для работы в аэродинамической трубе. В предпочтительном варианте выполнения корпуса вентиляторов действуют в качестве диффузоров и имеют такие размеры, что с учетом площади в центре вентилятора, закрытой носовым конусом, центрального тела вентилятора и заднего конуса чистая площадь потока через вентиляторы по возможности увеличивается без разделения потока. Управление скоростью потока через аэродинамическую трубу согласно изобретению осуществляется посредством изменения наклона вентиляторов или посредством изменения скорости вращения вентиляторов.

Воздушный поток проходит через вентиляторы и затем в выходные каналы, которые также преобразуют поток из примерно круглого в примерно квадратный или прямоугольный. В предпочтительном варианте выполнения выходные каналы действуют в качестве диффузоров, возможно больше расширяющих поток воздуха без разделения потока. Воздушный поток проходит через ряд выходных каналов во второй комплект высокоэффективных отклоняющих лопастей (если они используются), которые поворачивают поток из по существу горизонтального направления в по существу вертикальное направление.

Затем воздушный поток входит в возвратные каналы для воздуха. В предпочтительном варианте выполнения эти возвратные воздушные каналы также имеют форму расходящихся диффузоров, возможно больше расширяющих воздушный поток без вызывания разделения потока. В предпочтительном варианте выполнения каждый такой возвратный воздушный канал имеет механизм обмена воздуха, состоящий из четного числа жалюзи, расположенных на противоположных поверхностях возвратного воздушного канала. Они расположены так и имеют такие размеры, что совместно они образуют сопло или внезапное ограничение в площади потока в точке расположения жалюзи. Это сопло [увеличивает] уменьшает [динамическое] статическое давление в этой точке системы и способствует выведению нагретого воздуха из аэродинамической трубы через выпускные жалюзи. Это понижает давление в системе и помогает впускным жалюзи втягивать более холодный окружающий воздух снаружи системы. Это расположение обеспечивает замену нагретого воздуха в системе более холодным окружающим воздухом, что позволяет пользователю регулировать температуру в полетной камере для комфорта летающих без необходимости дорогостоящих альтернативных решений, таких как кондиционирование воздуха или испарительное охлаждение.

На нижнем (или выходном) конце возвратных воздушных башен воздух снова проходит через комплект отклоняющих лопастей (или просто через канал с поворотом на 90°, если лопасти не используются), которые изменяют направление воздуха из по существу вертикального в по существу горизонтальное. Затем воздух входит в нижнюю коллекторную камеру, которая может действовать также в качестве расходящегося диффузора для возможно большего расширения воздушного потока без разделения потока. У конца или (выходного) конца нижней коллекторной камеры воздух снова проходит через комплект отклоняющих лопастей (или просто через канал с поворотом на 90°, если лопасти не используются), которые изменяют направление воздуха из по существу горизонтального в по существу вертикальное. В множественных возвратных системах в этой точке снова объединяются потоки.

Затем воздух проходит во впускной участок сжатия. Это имеющее форму воронки или колокола устройство быстро уменьшает площадь потока и ускоряет воздух до его максимальной скорости непосредственно перед полетной камерой. Здесь снова аэродинамические законы определяют, насколько быстро можно уменьшать эту площадь потока без ухудшения качества этого потока.

Краткое описание чертежей

На чертежах изображено:

фиг.1 - устройство имитации с единичным возвратом в изометрической проекции на виде сверху;

фиг.2 - разрез варианта выполнения согласно фиг.1;

фиг.3 - полетная камера согласно фиг.1 в изометрической проекции;

фиг.4 - участок сжатия с овальным выходом и прямоугольным входом на виде сверху;

фиг.5 - схема овального/многоугольного выхода участка сжатия воздушного потока;

фиг.6 - схема овального выхода участка сжатия воздушного потока;

фиг.7 - схема овальной зоны наблюдения;

фиг.8 - промежуточная площадка с двойным воздушным шлюзом в изометрической проекции на виде сверху;

фиг.9 - схема регулятора температуры;

фиг.10 - разрез регулятора температуры согласно фиг.9 на виде сбоку;

фиг.11 - дефлектор на входных дверях полетной камеры в изометрической проекции на виде сверху;

фиг.12 - дефлектор в увеличенном масштабе;

фиг.13 - разрез вентилятора и корпуса на виде сбоку;

фиг.14 - разрез двух вентиляторов и корпусов, установленных с расхождением от центральной линии между ними, на виде сбоку;

фиг.15 - устройство имитации с двумя возвратными путями в изометрической проекции на виде сверху;

фиг.16 - разрез варианта выполнения согласно фиг.15;

фиг.17 - схема устройства имитации с двумя V-образными возвратными путями;

фиг.18 - схема устройства имитации с двумя V-образными возвратными путями в галерее магазинов;

фиг.19 - схема устройства имитации множественной конфигурации в здании;

фиг.20 - наблюдательная зона типа галереи для устройства имитации в изометрической проекции на виде сбоку;

фиг.21 - схема системы с двумя участками сжатия (один подземный и другой горизонтальный);

фиг.21А - разрез по линии 21А-21А на фиг.21;

фиг.22 - плетеный из шнура пол в изометрической проекции на виде сверху;

фиг.23 - схема системы датчиков пола/выключения;

фиг.24 - скругленный диффузор в изометрической проекции на виде сверху;

фиг.25 - схема круизного судна, имеющего устройство имитации с водяным охлаждением;

фиг.26 - первый вариант выполнения шнура с уменьшенным аэродинамическим сопротивлением в изометрической проекции на виде сбоку;

фиг.27 - второй вариант выполнения шнура;

фиг.28 - третий вариант выполнения шнура;

фиг.29 - поперечное сечение шнура с одной наружной прядью, имеющей размер, отличающийся от других наружных прядей;

фиг.30 - поперечное сечение другого варианта выполнения шнура с уменьшенным аэродинамическим сопротивлением;

фиг.31 - поперечное сечение другого варианта выполнения шнура с уменьшенным аэродинамическим сопротивлением с единственным большим проводом;

фиг.32 - поперечное сечение другого варианта выполнения шнура с уменьшенным аэродинамическим сопротивлением с двумя меньшими проводами;

фиг.33 - шнур с большой прядью в изометрической проекции;

фиг.34 - шнур с двумя меньшими прядями в изометрической проекции;

фиг.35 - график уменьшения аэродинамического сопротивления некоторых раскрываемых шнуров.

Перед подробным описанием раскрываемого варианта выполнения данного изобретения следует отметить, что изобретение не ограничивается в своем применении деталями показанных частных систем, поскольку возможны другие варианты выполнения изобретения. Кроме того, используемая при этом терминология используется с целью описания, но не ограничения.

Подробное описание чертежей

На фиг. 1 показано устройство 1 имитации, в котором высота h1 предпочтительно находится в диапазоне около 50-120 футов. В некоторых установках все компоненты могут быть под землей на уровне G1 или G2. Полетная камера 10 может быть выполнена полностью или частично с прозрачными панелями. Если уровень земли G2, то в зоне d1 может быть образован непрозрачный пьедестал высотой около 7 футов. Этот вариант выполнения создает в галерее магазинов притягательный вид полета человека в полетной камере 10. Этот дизайн привлекает новых желающих полетать, готовых оплачивать ощущение имитации затяжного прыжка с парашютом в полетной камере 10. Пунктирная линия R обозначает крышу, где могут быть установлены компоненты над уровнем R для уменьшения шума. Пунктирная линия W представляет стену, при этом компоненты за стеной W могут быть изолированы от полетной камеры 10 для уменьшения шума вблизи полетной камеры 10.

Большинство полетных камер согласно уровню техники имеют параллельные стенки в полетной камере, так что опытные летающие могут практиковать маневры при постоянной скорости ветра около 140 миль в час. Имитационное устройство 1 имеет полетную камеру «нулевой высоты» вдоль возвышения 11. Возвышение 11 является линией, которая соединяет участок 9 сжатия воздушного потока с диффузором 10, при этом диффузор 10 имеет расходящиеся стенки 20, 21, 22 и так далее служит также в качестве полетной камеры 10.

Номинально скорость воздуха на линии 11 составляет около 140 миль в час, что является максимальной скоростью в имитационном устройстве. При перемещении летающего в полетной камере 10 выше к вершине полетной камеры 10 до стыка 110 скорость воздуха падает до около 120 миль в час. Летающие могут изменять профили своего аэродинамического сопротивления от максимально раскинутого положения орла в минимальное положение свернувшегося клубком человека. Таким образом, если летающий поднимается к вершине полетной камеры 10, а затем изменяет свое аэродинамическое сопротивление до свернувшегося клубком человека, то он падает вниз. Диффузорная форма полетной камеры 10 обеспечивает самотормозящуюся систему за счет увеличения скорости воздуха при каждом снижении в полетной камере 10. На линии 11 предусмотрена защитная сетка.

Отклоняющий участок 2 примыкает к диффузору 10 в соединении 110. В отклоняющем участке 2 воздух отклоняется от вертикального в горизонтальное направление. Все отклоняющие участки 2, 4, 6, 8 изменяют направление воздуха на около 90°.

Узел 3 вентиляторов ускоряет воздух, возможно, с помощью двух расположенных рядом друг с другом вентиляторов. Базовые динамические характеристики в имитационном устройстве с возвратом воздуха включают компромиссы относительно эффективности использования энергии, шума и размеров. В простейшей конструкции пытаются удерживать полную скорость воздушного потока во всем контуре имитационного устройства. Однако придется увеличить высоту, шум будет чрезвычайно сильным и будет очень большим тепло от трения в коллекторных камерах. Поэтому для более эффективной работы необходимо замедлять воздух во время его прохождения через контур имитационного устройства посредством увеличения площадей поперечного сечения коллекторной камеры для обеспечения коммерчески приемлемой высоты h1, а также шумности, при одновременном использовании вентиляторов минимально возможной мощности.

Отклоняющие участки 2, 4, 6, 8 в основном не имеют расходящихся стенок по соображениям стоимости конструкции. Сегмент 300 корпусов вентиляторов и вентиляторная секция 3 имеют расходящиеся стенки. Верхняя коллекторная камера 30 имеет расходящиеся стенки. Вертикальная возвратная коллекторная камера 5 имеет расходящиеся стенки. Нижняя коллекторная камера 7 не имеет расходящихся стенок по причинам стоимости конструкции. Нижняя коллекторная камера 7 может иметь расходящиеся стенки.

Участок 9 сжатия воздушного потока имеет сходящиеся стенки для снижения площади поперечного сечения коллекторной камеры, за счет чего воздух ускоряется до около 140 миль в час для имитации полета. Воздушный вход 12 впускает окружающий воздух для охлаждения воздуха в имитационном устройстве.

На фиг.2 показана схема внутренней работы имитационного устройства 1. Воздушный поток обозначен стрелками F. Отклоняющие лопасти 200, 201, 202, 203 изменяют направление воздушного потока каждая на 90°. Два вентилятора 40, 41 схематично показаны установленными горизонтально рядом друг с другом в своем корпусе 3 (смотри фиг.13 в изометрической проекции), в котором правый после вентиляторов диффузор 300 коллекторной камеры расширяет и замедляет поток воздуха. Сужение продолжается в верхней коллекторной камере 30, затем в вертикальной возвратной коллекторной камере 5 и, наконец, в полетной камере 10.

Предусмотрена система пассивного регулирования температуры за счет направленных вниз по потоку жалюзи 120 воздушного входа 12. Дополнительно к этому воздушный выход имеет жалюзи 260, направленные вверх по потоку. За счет установки входа 12 над противоположным выходом 26 жалюзи 120, 260 образуют сужающееся сопло, создавая тем самым зону V пониженного статистического давления после входа 12. Поэтому окружающий воздух втягивается (пассивно) в имитационное устройство 1 без использования дополнительного вентилятора.

На фиг.3 показан диффузор/полетная камера 10 в форме многоугольника (восьмиугольника) на виде от основания В. Основание В покрыто защитной сеткой. Стенки 20, 21, 22 и далее расходятся под оптимальным аэродинамическим углом в диапазоне около 7-12° друг от друга. Верх полетной камеры 10 виден по стрелке 110 в виде прямоугольника. Все или некоторые стенки 20, 21, 22 и далее могут быть прозрачными.

Как показано на фиг.4, участок 400 сжатия воздушного потока имеет предпочтительную конструкцию с прямоугольным входом 401 и овальным выходом 402. Переходные стенки 403 контактируют с воздушным потоком от входа 401 до выхода 402. Предпочтительно высота h2 (смотри фиг.2), которая иногда находится под землей, равна длине d4. Эта комбинация формы и размеров обеспечивает эффективное по стоимости сочетание для относительно небольшого по высоте и коммерчески выгодного имитационного устройства 1.

Как показано на фиг.5, 6, 7, понятие «овальный выход» устройства сжатия воздушного потока относится к любой подобной овалу форме, такой как многоугольный овальный выход 500 и чисто овальный выход 600. Овалоподобная форма обеспечивает бόльшую зону 700 наблюдения по сравнению с круглым выходом, имеющим одинаковую площадь поперечного сечения. Зона 701 включает промежуточную и входную площадку. Дно В1 полетной камеры может быть расположено в галерее с дорогостоящим пространством, в котором большая зона 700 обзора имеет значительную коммерческую ценность.

Как показано на фиг.8, двухступенчатая промежуточная камера 800 состоит из дна В2 полетной камеры, при этом стенка 809 полетной камеры имеет окна 810 и входы 806, 807 для пользователей. Входы 806, 807 могут не иметь дверей или иметь шарнирные или раздвижные двери. Когда двери 801, 805 закрыты, то нет необходимости выключать вентиляторы для обеспечения летающ