Комплексная гидропереработка с высокопроизводительными катализаторами

Иллюстрации

Показать все

Настоящее изобретение относится к способам комплексной гидропереработки с использованием высокоактивных катализаторов низкой плотности. Изобретение касается способа получения базового масла, включающего обеспечение первого катализатора, включающего по меньшей мере один металл VIII группы, нанесенный на носитель катализатора M41S, такой как МСМ-41, и имеющего плотность 600 кг/м3 или менее; обеспечение второго катализатора, включающего по меньшей мере один металл VIII группы, имеющего производительность при депарафинизации, достаточную для обеспечения обработки потока легких нейтральных (150N) углеводородов из установки для гидрокрекинга среднего давления, имеющего кинематическую вязкость при 100°С менее 5 и конечную температуру кипения менее 550°С, при 320°С и часовой объемной скорости жидкости (ЧОСЖ), равной 1 час-1, с получением базового масла, имеющего температуру застывания менее -15°С; приведение сырья в контакт с первым катализатором при эффективных условиях для обработки сырья, причем указанные эффективные условия являются эффективными для одного из процессов, выбранного из гидрообработки, гидроочистки или гидрирования ароматических соединений, и приведение обработанного сырья в контакт со вторым катализатором при условиях, эффективных для депарафинизации обработанного сырья. Изобретение также касается другого способа получения базового масла. Технический результат - обеспечение возможности гибкой обработки сырья с различной парафинистостью. 2 н. и 11 з.п. ф-лы, 12 ил., 4 табл., 19 пр.

Реферат

Область техники

Это изобретение относится к способам каталитической гидропереработки сырья.

Уровень техники

Каталитическая гидропереработка продуктов перегонки или сырья, имеющего интервал температуры кипения продуктов перегонки или смазочных масел, обычно включает применение катализатора, содержащего нанесенные на носитель металлы VIII группы и/или VI группы. Во многих случаях нанесенные на носитель металлы составляют существенную долю стоимости катализатора. Поскольку для загрузки в типичный реактор гидропереработки требуется большой объем катализатора, для любой переработки являются востребованными катализаторы с более низкой стоимостью.

В патенте США №5951848 предложен способ обработки углеводородного сырья путем первоначального воздействия на сырье высокоактивным катализатором гидрообработки, чтобы снизить содержание, например, азота, серы и ароматических соединений. Затем осуществляют депарафинизацию гидрообработанного сырья, используя катализатор депарафинизации, такой как ZSM-23, ZSM-35 или ZSM-48.

Существует потребность в улучшенном способе гидропереработки углеводородного сырья, который обеспечивает снижение стоимости операций.

Сущность изобретения

В одном из воплощений изобретение обеспечивает способ получения базового масла. Способ включает обеспечение первого катализатора, включающего по меньшей мере один металл VIII группы, нанесенный на носитель катализатора M41S, такой как МСМ-41, и имеющего плотность 600 кг/м3 или менее. Обеспечивают второй катализатор, который включает по меньшей мере один металл VIII группы. Второй катализатор выбирают таким образом, чтобы он имел производительность при депарафинизации, достаточную, чтобы выполнять рассматриваемую как контрольную обработку потока легких нейтральных (150N) углеводородов, полученного из установки для гидрокрекинга среднего давления, причем поток легких нейтральных углеводородов имеет кинематическую вязкость при 100°С менее 5 и температуру кипения менее 550. Второй катализатор имеет достаточную активность при 320°С и часовую объемную скорость жидкости (ЧОСЖ), равную 1 ч-1, для получения базового масла, имеющего температуру застывания менее -15°С. Сырье приводят в контакт с первым катализатором при эффективных условиях для обработки сырья, причем указанные эффективные условия являются эффективными для одного из процессов, выбранного из гидрообработки, гидроочистки или гидрирования ароматических соединений. Затем обработанное сырье приводят в контакт со вторым катализатором при условиях, эффективных для депарафинизации обработанного сырья.

В другом воплощении изобретение обеспечивает способ получения базового масла. Способ включает приведение сырья в контакт с первым катализатором, причем указанный первый катализатор включает по меньшей мере один металл VIII группы, нанесенный на носитель катализатора, и имеет плотность 600 кг/м3 или менее, при эффективных условиях для обработки сырья, причем указанные эффективные условия являются эффективными для одного из процессов, выбранного из гидрообработки, гидроочистки или гидрирования ароматических соединений. Обработанное сырье затем приводят в контакт с катализатором, включающим ZSM-48 с соотношением SiO2:Al2O3, составляющим от примерно 70 до примерно 110, и металлический гидрирующий компонент, при условиях, эффективных для депарафинизации обработанного сырья.

В еще одном воплощении изобретение обеспечивает способ получения основ для смазочных масел. Способ включает обеспечение технологической линии, включающей первый катализатор, который представляет собой катализатор гидрообработки, гидроочистки или гидрирования ароматических соединений, и второй катализатор, который представляет собой катализатор депарафинизации. Первое сырье, имеющее первую парафинистость, обрабатывают на технологической линии при первой температуре, чтобы получить основу, имеющую температуру застывания менее - 15°С, причем первая температура составляет 365°С или менее. Второе сырье, имеющее вторую парафинистость, обрабатывают на той же технологической линии при температуре в пределах 30°С от первой температуры, причем вторая парафинистость по меньшей мере на 30% больше первой парафинистости, чтобы получить вторую основу, имеющую температуру застывания менее -15°С.

Краткое описание чертежей

Фиг.1 представляет собой микрофотографию кристаллов ZSM, приготовленных при соотношении темплат : диоксид кремния, равном 0,023, и показывающую присутствие некоторого количества игольчатых кристаллов.

Фиг.2 представляет собой микрофотографию, показывающую отсутствие игольчатых кристаллов для кристаллов ZSM-48, приготовленных из реакционной смеси, имеющей соотношение темплат : диоксид кремния 0,018.

Фиг.3 представляет собой микрофотографию, показывающую присутствие игольчатых кристаллов для кристаллов ZSM-48, приготовленных из реакционной смеси, имеющей соотношение темплат : диоксид кремния 0,029.

Фиг.4 представляет собой микрофотографию, показывающую отсутствие игольчатых кристаллов для кристаллов ZSM-48, приготовленных из реакционной смеси, имеющей соотношение темплат : диоксид кремния 0,019.

Фиг.5 представляет собой график зависимости выхода изо-С10 от степени конверсии н-С10.

Фиг.6 представляет собой график зависимости температуры реактора от требуемой температуры для удовлетворения требования температуры застывания 370°С+.

Фиг.7 представляет собой другой график зависимости температуры реактора от требуемой температуры для удовлетворения требования температуры застывания 370°С+.

Фиг.8 представляет собой график зависимости температуры застывания от индекса вязкости для сырья, гидропереработанного в присутствии ZSM-48 с низким соотношением и высоким соотношением.

Фиг.9 и 10 представляют собой графики зависимости температуры застывания от индекса вязкости для сырья, последовательно обработанного различными катализаторами гидропереработки.

Фиг.11 и 12 показывают различие в гидрировании ароматических соединений для обработки сырья различными катализаторами гидрирования ароматических соединений.

Подробное описание воплощений изобретения

Изобретение предусматривает способ гидропереработки углеводородного сырья, который обеспечивает повышенную гибкость и/или пониженную стоимость эксплуатации. Способ включает применение катализаторов гидропереработки высокой производительности и/или низкой плотности, таких как катализаторы гидрообработки, гидроочистки или гидродепарафинизации, для гидропереработки углеводородного сырья. Способ по изобретению обеспечивает снижение стоимости операций тремя различными путями.

Во-первых, применение высокопроизводительных катализаторов согласно изобретению приводит к пониженным расходам. Катализатор с более высокой производительностью может обеспечить достижение такого же эффекта, как катализатор с более низкой производительностью, при уменьшенном количестве катализатора. Уменьшенное количество требуемого катализатора означает, что при каждой загрузке реактора необходимо меньшее количество катализатора, что приводит к экономии затрат. Альтернативно катализатор с более высокой производительностью можно использовать для осуществления процесса при более низкой температуре. Из-за деградации катализатора температуру во многих реакторах гидропереработки необходимо повышать во время эксплуатации, чтобы поддерживать требуемый уровень активности. Когда катализатор деградирует в достаточной степени, так что требуемая температура превышает заданный порог, катализатор заменяют. Осуществление реакции при более низкой температуре может продлить срок службы катализатора между операциями его замены двумя отдельными путями. Эксплуатация при более низкой температуре обычно снижает степень деградации катализатора. Дополнительно, по мере того, как катализатор начинает деградировать, более низкая исходная рабочая температура означает, что больший интервал температур доступен для противодействия деградации катализатора при минимизации других побочных эффектов. Таким образом, эксплуатация при более низкой температуре позволяет снизить частоту остановок реакционной установки, что также приводит к снижению затрат.

Во-вторых, применение катализаторов низкой плотности согласно изобретению обеспечивает снижение затрат через снижение количества металла, вводимого в катализатор. Содержание металла в катализаторе обычно характеризуют в показателях количества металла на массу катализатора. Когда используют катализатор низкой плотности, требуется меньше металла для достижения требуемого количества металла на массу катализатора. Таким образом, применение катализаторов низкой плотности снижает общее содержание металла, присутствующего в слое катализатора, что приводит к пониженным расходам.

Наконец, катализаторы высокой производительности, низкой плотности, используемые по изобретению, позволяют обеспечить «поочередную обработку» сырья в реакционной установке. Обычно для обработки конкретного сырья используют технологическую линию. Изменение типа сырья, предназначенного для обработки, требует модификации технологической линии. При применении катализаторов согласно изобретению различные типы сырья можно обрабатывать в реакционной установке либо без изменения рабочих условий, либо при изменении только температуры технологической линии. Такой тип «поочередной обработки» сырья позволяет обеспечить большую гибкость при эксплуатации технологической линии, поскольку сырье, вводимое в технологическую линию, можно менять без модификации оборудования или иной потери значительного времени на простой.

Выбор катализаторов высокой производительности и низкой плотности

Катализаторы высокой производительности относятся к катализаторам, которые имеют относительно высокую скорость реакции на единицу объема для требуемой реакции, такой как гидрообработка, гидродепарафинизация, гидроочистка или гидрирование ароматических соединений. Катализаторы низкой плотности относятся к катализаторам, которые имеют относительно более низкую общую массу на единицу объема.

В различных воплощениях изобретения используют высокопроизводительные катализаторы гидрообработки. Эти катализаторы гидрообработки можно характеризовать активностью k гидрообработки, которая представляет собой константу скорости реакции удаления серы или азота из сырья с определенным содержанием серы и азота. Эту константу скорости реакции определяют, исходя из объема, для обеспечения возможности сравнения катализаторов.

В других воплощениях изобретения используют высокопроизводительные катализаторы гидроочистки и/или гидрирования ароматических соединений. Для катализаторов гидроочистки или гидрирования ароматических соединений производительность можно определить в показателях температуры обработки, требуемой для достижения заданной степени удаления ароматических соединений для определенного сырья при определенном отношении скорости подачи сырья к количеству катализатора.

Катализаторы депарафинизации представляют собой другой тип катализаторов, которые можно характеризовать на основе производительности. Катализаторы депарафинизации часто воздействуют на несколько характеристик сырья одновременно. Таким образом, характеристика катализатора депарафинизации как «высокопроизводительного» требует одновременно рассмотрения нескольких переменных. В этом изобретении для определения производительности катализатора депарафинизации принято следующее испытание.

Высокопроизводительный катализатор депарафинизации определяют как катализатор, который дает следующий результат при обработке легкого нейтрального (150N) сырья, получаемого из установки для гидрокрекинга среднего давления, имеющего кинематическую вязкость при 100°С менее 5 и конечную температуру кипения менее 550°F. Сырье обрабатывают при 320°С и ЧОСЖ, равной 1 час-1, в присутствии катализатора гидропереработки с получением депарафинизированной основы со следующими свойствами:

Температура застывания: менее -15°С

Степень конверсии: по меньшей мере 20 мас.%

В других воплощениях изобретения используют катализаторы гидропереработки низкой плотности. В этом изобретении под плотностью катализатора понимают плотность множества частиц катализатора в сосуде. Эта величина отличается от плотности отдельной частицы катализатора. Плотность частиц катализатора в сосуде ниже плотности отдельной частицы катализатора из-за пустот между соседними частицами катализатора. В одном воплощении плотность катализатора составляет менее 600 кг/м3 (0,6 г/см3), или менее 590 кг/м3, или менее 580 кг/м3, или менее 570 кг/м3, или менее 550 кг/м3, или менее 525 кг/м3, или менее 500 кг/м3, или менее 475 кг/м3.

Катализаторы гидропереработки (общие положения)

В одном из воплощений один или более катализаторов гидропереработки могут представлять собой катализаторы, подходящие для гидрообработки, гидроочистки и/или гидрирования ароматических соединений сырья. В таком воплощении катализатор может состоять из одного или более металлов VIII группы и/или VI группы на носителе. Подходящие оксиды металлов в качестве носителей включают оксиды низкой кислотности, такие как диоксид кремния, оксид алюминия, алюмосиликаты или диоксид титана. Нанесенные металлы могут включать Со, Ni, Fe, Mo, W, Pt, Pd, Rh, Ir или их сочетание. Предпочтительно нанесенный металл представляет собой Pt, Pd или их сочетание. Количество металлов, по отдельности или в смесях, составляет от примерно 0,1 до 35 мас.%, исходя из массы катализатора. В одном из воплощений количество металлов, по отдельности, или в смесях, составляет по меньшей мере 0,1 мас.%, или по меньшей мере 0,25 мас.%, или по меньшей мере 0,5 мас.%, или по меньшей мере 0,6 мас.%, или по меньшей мере 0,75 мас.%, или по меньшей мере 1 мас.%. В другом воплощении количество металлов, по отдельности, или в смесях, составляет 35 мас.% или менее, или 20 мас.% или менее, или 15 мас.% или менее, или 10 мас.% или менее, или 5 мас.% или менее. В предпочтительных воплощениях, где нанесенный металл представляет собой благородный металл, количество металлов обычно составляет менее 1 мас.%. В таких воплощениях количество металлов может составлять 0,9 мас.% или менее, или 0,75 мас.% или менее, или 0,6 мас.% или менее. Количество металлов можно определить способами, установленными ASTM для отдельных металлов, включая атомную абсорбционную спектроскопию или атомную эмиссионную спектроскопию с индуктивно связанной плазмой.

В предпочтительном воплощении катализатор гидрообработки, гидроочистки или гидрирования ароматических соединений представляет собой металл VIII группы и/или VI группы, нанесенный на связанный носитель семейства M41S, такой как связанный МСМ-41. Семейство катализаторов M41S представляет собой мезопористые материалы, имеющие высокое содержание диоксида кремния, получение которых подробно описано в J. Amer. Chem. Soc., 1992, 114, 10834. Примеры включают МСМ-41, МСМ-48 и МСМ-50. Мезопористыми называют катализаторы, имеющие размеры пор от 15 до 100 Å. Предпочтительным представителем этого класса является МСМ-41, получение которого описано в патенте США №5098684. МСМ-41 представляет собой неорганическую, пористую, неслоистую фазу, имеющую гексагональную конфигурацию однородных по размеру пор. Физическая структура МСМ-41 подобна пучку соломинок, где размер отверстия соломинок (диаметр ячейки пор) составляет от 15 до 100 Å. МСМ-48 имеет кубическую симметрию и описан, например, в патенте США №5198203, тогда как МСМ-50 имеет чешуйчатую структуру. МСМ-41 можно изготовить с различным размером отверстий пор в мезопористом диапазоне. Подходящие связующие для МСМ-41 могут включать Al, Si или любое другое связующее или сочетание связующих, которое обеспечивает высокую производительность и/или низкую плотность катализатора. Примером высокопроизводительного катализатора гидрирования ароматических соединений, который также является катализатором с низкой плотностью, является платина на мезопористом МСМ-41, связанном оксидом алюминия. МСМ-41, связанный оксидом алюминия, можно синтезировать с плотностью катализатора менее 600 кг/м3 (0,6 г/см3), или менее 590 кг/м3, или менее 580 кг/м3, или менее 560 кг/м3, или менее 550 кг/м3, или менее 540 кг/м3, или менее 525 кг/м3, или менее 500 кг/м3, или менее 475 кг/м3. Такой катализатор можно пропитать металлом гидрирования, таким как Pt, Pd, другой металл VIII группы, металл VI группы, или смесью этих металлов. В одном из воплощений количество металла VIII группы составляет по меньшей мере 0,1 мас.%, исходя из массы катализатора. Предпочтительно количество металла VIII группы составляет по меньшей мере 0,5 мас.% или по меньшей мере 0,6 мас.% В таких воплощениях количество металлов может составлять 1,0 мас.% или менее, или 0,9 мас.% или менее, или 0,75 мас.% или менее, или 0,6 мас.% или менее. В других воплощениях количество металлов, по отдельности или в смесях, составляет по меньшей мере 0,1 мас.%, или по меньшей мере 0,25 мас.%, или по меньшей мере 0,5 мас.%, или по меньшей мере 0,6 мас.%, или по меньшей мере 0,75 мас.%, или по меньшей мере 1 мас.%. Еще в других воплощениях количество металлов, по отдельности или в смесях, составляет 35 мас.% или менее, или 20 мас.% или менее, или 15 мас.% или менее, или 10 мас.% или менее, или 5 мас.% или менее.

Катализатор депарафинизации - ZSM-48

Одним из примеров катализатора депарафинизации, подходящего для применения в заявленном изобретении, является ZSM-48 с соотношением SiO2:Аl2O3 менее 110, предпочтительно, от примерно 70 до примерно 110. В предпочтительном воплощении ZSM-48 с соотношением SiO2:Аl2О3 менее 110 не содержит затравочных кристаллов, отличных от ZSM-48. Предпочтительно кристаллы ZSM-48 высокой чистоты также не содержат ZSM-50.

В приведенных ниже воплощениях кристаллы ZSM-48 описывают различным образом в терминах кристаллов «в синтезированной форме», которые еще содержат органический темплат обожженных кристаллов, таких как Na-форма ZSM-48 кристаллов, или обожженных и подвергнутых ионному обмену кристаллов, таких как Н-форма ZSM-48 кристаллов.

Под выражением «не содержащий затравочных кристаллов, отличных от ZSM-48» понимают, что реакционная смесь, используемая для образования ZSM-48 кристаллов, не содержит затравочных кристаллов, отличных от ZSM-48. Вместо этого ZSM-48 кристаллы, синтезированные согласно изобретению, либо синтезированы без использования затравочных кристаллов, либо с затравочными кристаллами ZSM-48 в качестве затравки. Под выражением «не содержащий кеньяита и ZSM-50» понимают, что кеньяит и ZSM-50, если они присутствуют, присутствуют в количествах, которые не обнаруживаются посредством рентгеновской дифракции. Предпочтительно ZSM-48, используемый в изобретении, также не содержит других кристаллов, отличных от ZSM-48 в такой степени, что такие другие кристаллы также не обнаруживаются посредством рентгеновской дифракции. Это «не обнаруживаемое» определение можно осуществить на приборе Bruker D4 Endeavor, изготовленном Bruker AXS и оборудованным быстродействующим детектором Vantec-1. Прибор эксплуатируют при использовании стандартного кремниевого порошка (Nist 640B), который является материалом без внутренних напряжений. Ширина на уровне половины максимума (fwhm) для стандартного пика при 28,44 градусах 2θ составляет 0,132. Шаг составляет 0,01794 градуса и временной шаг составляет 2,0 секунды. При сканировании по 2θ использовали Сu мишень при 35 кВ и 45 мА. Под выражениями «не содержащий нитевидных кристаллов» и «не содержащий игольчатых кристаллов» понимают, что нитевидные и/или игольчатые кристаллы, если они присутствуют, присутствуют в количествах, которые не обнаруживаются посредством сканирующей электронной микроскопии (СЭМ). Микрофотографии СЭМ можно использовать для идентификации кристаллов различной морфологии. Шкала разрешения (1 микрометр) показана на микрофотографиях в представленных чертежах.

Дифракционная рентгенограмма (ДРГ) кристаллов ZSM-48, подходящих для применения в изобретении, является такой, которая характерна для ZSM-48, т.е. межплоскостные расстояния и относительные интенсивности соответствуют величинам для чистого ZSM-48. Хотя ДРГ можно применять для установления идентичности данного цеолита, ее нельзя применять для распознавания конкретной морфологии. Например, игольчатые и пластинчатые формы данного цеолита будут показывать одинаковые дифракционные рентгенограммы. Для того чтобы отличить различные морфологии, необходимо применять аналитический инструмент с большим разрешением. Примером такого инструмента является сканирующая электронная микроскопия (СЭМ). Микрофотографии СЭМ можно применять для идентификации кристаллов различной морфологии.

Кристаллы ZSM-48 после удаления направляющего структуру агента имеют особенную морфологию и молярный состав согласно общей формуле:

(n)SiO2:Al2O3,

где n составляет от 70 до 110, предпочтительно, от 80 до 100, более предпочтительно, от 85 до 95. В другом воплощении n составляет по меньшей мере 70, или по меньшей мере 80, или по меньшей мере 85. В еще одном воплощении n составляет 110 или менее, или 100 или менее, или 95 или менее. В других воплощениях Si можно заменить Ge, a Al можно заменить Ga, В, Fe, Ti, V и Zr.

Синтезированную форму кристаллов ZSM-48 получают из смеси, содержащей диоксид кремния, оксид алюминия, основание и гексаметониевую соль в качестве направляющего агента. В одном из воплощений молярное соотношение структурный направляющий агент : диоксид кремния в смеси составляет менее 0,05, или менее 0,025, или менее 0,022. В другом воплощении молярное соотношение структурный направляющий агент : диоксид кремния в смеси составляет по меньшей мере 0,01, или по меньшей мере 0,015, или по меньшей мере 0,016. В еще одном воплощении молярное соотношение структурный направляющий агент : диоксид кремния в смеси составляет от 0,015 до 0,025, предпочтительно, от 0,016 до 0,022. В одном из воплощений кристаллы ZSM-48 в синтезированной форме имеют молярное соотношение диоксид кремния : оксид алюминия от 70 до 110. В другом воплощении кристаллы ZSM-48 в синтезированной форме имеют молярное соотношение диоксид кремния : оксид алюминия по меньшей мере 70, или по меньшей мере 80, или по меньшей мере 85. Еще в одном воплощении кристаллы ZSM-48 в синтезированной форме имеют молярное соотношение диоксид кремния : оксид алюминия 110 или менее, или 100 или менее, или 95 или менее. Для любого заданного способа получения кристаллов ZSM-48 в синтезированной форме молярный состав содержит диоксид кремния, оксид алюминия и направляющий агент. Необходимо отметить, что кристаллы ZSM-48 в синтезированной форме могут иметь молярные соотношения, слегка отличающиеся от молярных отношений реагентов реакционной смеси, применяемой для получения синтезированной формы. Это может происходить из-за неполного вовлечения 100% реагентов реакционной смеси в образующиеся (из реакционной смеси) кристаллы.

Цеолит ZSM-48 либо в обожженной форме, либо в синтезированной форме обычно образует агломераты из небольших кристаллов, которые могут иметь размеры от примерно 0,01 до примерно 1 микрометра. Эти небольшие кристаллы желательны, поскольку они обычно приводят к большей активности. Более мелкие кристаллы означают большую площадь поверхности, что приводит к большему числу активных каталитических центров на данное количество катализатора. Предпочтительно кристаллы ZSM-48 либо в обожженной форме, либо в синтезированной форме имеют морфологию, не содержащую нитевидных кристаллов. Под нитевидными понимают кристаллы, которые имеют отношение L/D>10/1, где L и D представляют собой длину и диаметр кристалла. В другом воплощении кристаллы ZSM-48 либо в обожженной форме, либо в синтезированной форме имеют небольшое количество или не содержат игольчатых кристаллов. Под игольчатыми понимают кристаллы, которые имеют отношение L/D<10/1, предпочтительно менее 5/1, более предпочтительно, от 3/1 до 5/1. СЭМ показывает, что кристаллы, полученные согласно рассматриваемым здесь способам, не содержат обнаруживаемых кристаллов, имеющих нитевидную или игольчатую морфологию. Эта морфология сама по себе или в сочетании с низкими отношениями диоксид кремния : оксид алюминия приводит к катализаторам, имеющим высокую активность, а также требуемые экологические характеристики.

Композицию ZSM-48 получают из водной реакционной смеси, включающей диоксид кремния или соль кремниевой кислоты, оксид алюминия или растворимую соль алюминиевой кислоты, основание и направляющий агент. Для того чтобы достичь требуемой морфологии кристаллов, реагенты в реакционной смеси имеют следующие молярные соотношения:

SiO2:Аl2О3=от 70 до 100

Н2O:SiO2=от 1 до 500

ОН-:SiO2=от 0,1 до 0,3

ОН-:SiO2 (предпочтительно)=от 0,14 до 0,18

темплат : SiO2=0,01-0,05

темплат : SiO2 (предпочтительное)=от 0,015 до 0,025

В приведенных выше соотношениях указаны два интервала значений для соотношений основание : диоксид кремния и направляющий структуру агент : диоксид кремния. Более широкие интервалы значений этих соотношений включают смеси, которые приводят к образованию кристаллов ZSM-48 с некоторым количеством кеньяита и/или кристаллов игольчатой морфологии. Для случаев, когда кеньяит и/или кристаллы игольчатой морфологии нежелательны, следует использовать предпочтительные интервалы значений, как дополнительно проиллюстрировано ниже в примерах.

Источником диоксида кремния предпочтительно является осажденный диоксид кремния, промышленно выпускаемый Degussa. Другие источники диоксида кремния включают порошковый диоксид кремния, включающий осажденный диоксид кремния, такой как Zeosil® и силикагели, кремниевую кислоту, коллоидный диоксид кремния, такой как Ludox® или растворенный диоксид кремния. В присутствии основания эти другие источники диоксида кремния могут образовывать силикаты. Оксид алюминия может находиться в форме растворимой соли, предпочтительно соли натрия, и он промышленно выпускается US Aluminate. Другие подходящие источники алюминия включают другие соли алюминия, такие как хлорид, алкоголяты алюминия или гидратированный оксид алюминия, такой как гамма-оксид алюминия, псевдобемит и коллоидный оксид алюминия. Основание, используемое для растворения оксида металла, может представлять собой любой гидроксид щелочного металла, предпочтительно, гидроксид натрия или калия, гидроксид аммония, дичетвертичный гидроксид и подобные соединения. Направляющий агент представляет собой гексаметониевую соль, такую как дихлорид гексаметония или гидроксид гексометония. Анион (отличный от хлорида) может быть другим анионом, таким как гидроксид, нитрат, сульфат, другой галогенид и подобные анионы. Дихлорид гексаметония представляет собой дихлорид N,N,N,N',N',N'-гексаметил-1,6-гександиаммония.

При синтезе кристаллов ZSM-48 реагенты, включающие силикатную соль, алюминатную соль, основание и направляющий агент, смешивают с водой в установленных выше соотношениях и нагревают при перемешивании от 100 до 250°С. Кристаллы можно образовать из реагентов или, альтернативно, затравочные кристаллы ZSM-48 можно добавить в реакционную смесь. Затравочные кристаллы ZSM-48 можно добавить для увеличения скорости образования кристаллов, но они не влияют иным образом на морфологию кристалла. В приготовлении не участвуют другие типы затравочных кристаллов, отличных от ZSM-48, такие как цеолит бета. Кристаллы ZSM-48 очищают, обычно путем фильтрации, и промывают деионизированной водой.

В одном из воплощений кристаллы, полученные путем синтеза согласно изобретению, имеют состав, который не содержит затравочных кристаллов, отличных от ZSM-48, и не содержит ZSM-50. Предпочтительно кристаллы ZSM-48 содержат небольшое количество кеньяита. В одном из воплощений количество кеньяита может составлять 5% или менее, или 2% или менее, или 1% или менее. В другом воплощении кристаллы ZSM-48 могут не содержать кеньяита.

В одном из воплощений кристаллы, полученные путем синтеза согласно изобретению, имеют морфологию, которая не включает нитевидную морфологию. Нитевидная морфология нежелательна, так как эта морфология кристаллов подавляет каталитическую активность ZSM-48 при депарафинизации. В другом воплощении кристаллы, полученные путем синтеза согласно изобретению, имеют морфологию, включающую небольшое процентное содержание игольчатой морфологии. Количество кристаллов игольчатой морфологии, присутствующих в кристаллах ZSM-48, может составлять 10% или менее, или 5% или менее, или 1% или менее. В альтернативном воплощении кристаллы ZSM-48 могут не содержать кристаллы игольчатой морфологии. Небольшое количество игольчатых кристаллов является предпочтительным для некоторых применений, так как полагают, что игольчатые кристаллы уменьшают активность ZSM-48 в некоторых типах реакций. Для получения требуемой морфологии высокой чистоты следует использовать соотношения диоксид кремния : оксид алюминия, основание : диоксид кремния и направляющий агент : диоксид кремния в реакционной смеси согласно воплощениям изобретения. Дополнительно, если требуется композиция, не содержащая кеньяит и/или кристаллы игольчатой морфологии, следует использовать предпочтительные интервалы.

Согласно патенту США №6923949 гетероструктурные затравочные кристаллы, отличные от ZSM-48, используют для приготовления кристаллов ZSM-48, имеющих соотношение диоксид кремния : оксид алюминия менее 150:1. Согласно патенту США №6923949 приготовление чистого ZSM-48 с соотношениями диоксид кремния: оксид алюминия вплоть до 50:1 или менее зависит от применения гетероструктурных затравочных кристаллов, таких как затравочные кристаллы цеолита бета.

Если гетерогенные затравочные кристаллы не используют, при синтезе ZSM-48 с особенно низкими соотношениями диоксид кремния : оксид алюминия образование ZSM-50 в качестве примеси возрастает на порядок. Соотношение направляющий агент : диоксид кремния более примерно 0,025 обычно приводит к агломератам смешанной фазы, содержащим игольчатые кристаллы. Предпочтительно соотношение направляющий агент : диоксид кремния составляет примерно 0,022 или менее. При соотношениях направляющий агент : диоксид кремния ниже примерно 0,015 начинается образование продукта, содержащего кеньяит. Кеньяит представляет собой аморфный слоистый силикат и представляет собой форму природной глины. Он не проявляет активности цеолитового типа. Вместо этого он относительно инертен при реакционных условиях, обычно присутствующих, когда сырье подвергают воздействию ZSM-48. Таким образом, хотя присутствие кеньяита в образце ZSM-48 допустимо в некоторых применениях, присутствие кеньяита приводит к уменьшению общей активности ZSM-48. Соотношения гидроксид : диоксид кремния (или другое основание : диоксид кремния) и соотношения диоксид кремния : оксид алюминия также важны для морфологии образующихся кристаллов, а также для чистоты образующихся кристаллов. Соотношения диоксид кремния : оксид алюминия также важны для каталитической активности. Соотношение основание : диоксид кремния является фактором, влияющим на образование кеньяита. Применение гексаметониевого направляющего агента является фактором для получения продукта, не содержащего нитевидного материала. Образование игольчатой морфологии зависит от соотношения диоксид кремния : оксид алюминия и соотношения направляющий структуру агент : диоксид кремния.

Кристаллы ZSM-48 в синтезированной форме следует по меньшей мере частично высушить до применения или дополнительной обработки. Сушку можно осуществлять нагреванием при температурах от 100 до 400°С, предпочтительно, от 100 до 250°С. Давление может быть атмосферным или ниже атмосферного. Если сушку выполняют при условиях низкого вакуума, температуры могут быть более низкими, чем температуры при атмосферном давлении.

Катализаторы перед применением обычно связывают со связующим или материалом матрицы. Связующие устойчивы к требуемым для применения температурам и устойчивы к истиранию. Связующие могут быть каталитически активными или неактивными и включают другие цеолиты, другие неорганические материалы, такие как глины и оксиды металлов, такие как оксид алюминия, диоксид кремния и алюмосиликат. Глины могут представлять собой каолин, бентонит и монтмориллонит, и их промышленно выпускают. Их можно смешивать с другими материалами, такими как силикаты. Другие пористые матричные материалы в дополнение к алюмосиликатам включают другие бинарные материалы, такие как силикат магния, силикат тория, силикат циркония, силикат бериллия силикат титана, а также тройные материалы, такие как алюмосиликат магния, алюмосиликат тория и алюмосиликат циркония. Матрица может находится в форме совместно образованного геля. Связанный ZSM-48 может содержать от 10 до 100 мас.% ZSM-48, исходя из массы связанного ZSM-48, причем остальное составляет связующее.

Кристаллы ZSM-48 как часть катализатора также можно применять с металлическим гидририрующим компонентом. Металлические гидририрующие компоненты могут представлять собой металлы из 6-12 групп Периодической таблицы (основанной на системе IUPAC и содержащей группы 1-18), предпочтительно 6 и 8-10 группы. Примеры таких металлов включают Ni, Mo, Со, W, Мn, Сu, Zn, Ru, Pt или Pd, предпочтительно Pt или Pd. Также можно применять смеси металлов гидрирования, такие как Со/Мо, Ni/Mo, Ni/W и Pt/Pd, предпочтительно Pt/Pd. Количество металла или металлов гидрирования может составлять от 0,1 до 5 мас.%, исходя из массы катализатора. В одном воплощении количество металла или металлов гидрирования составляет по меньшей мере 0,1 мас.%, или по меньшей мере 0,25 мас.%, или по меньшей мере 0,5 мас.%, или по меньшей мере 0,6 мас.%. или по меньшей мере 0,75 мас.% В другом воплощении количество металла или металлов составляет 5 мас.% или менее, или 4 мас.% или менее, или 3 мас.% или менее, или 2 мас.% или менее, или 1 мас.% или менее. Способы введения металла в катализатор ZSM-48 хорошо известны и включают, например, пропитку катализатора ZSM-48 металлической солью гидрирующего компонента и нагревание. Катализатор ZSM-48, содержащий металл гидрирования, также можно сульфидировать перед применением. Катализатор можно также обработать паром перед применением.

Кристаллы ZSM-48 высокой чистоты, полученные согласно приведенным выше воплощениям, имеют относительно низкое соотношение диоксид кремния : оксид алюминия. Это более низкое соотношение диоксид кремния : оксид алюминия означает, что настоящие катализаторы являются более кислотными. Несмотря на эту повышенную кислотность, они обладают превосходной активностью и селективностью, а также обеспечивают превосходные выходы продукта. Они также имеют экологические преимущества с точки зрения влияния на здоровье из-за формы кристалла, и небольшой размер кристалла также является преимуществом для каталитической активности.

В дополнение к описанным выше воплощениям в еще одном воплощении изобретение относится к композиции ZSM-48 высокой чистоты, имеющей молярное отношение диоксид кремния : оксид алюминия от 70 до 110, причем ZSM-48 не содержит затравочных кристаллов, отличных от ZSM-48, и нитевидных кристаллов. Предпочтительно кристаллы ZSM-48 также имеют низкое содержание или вообще не содержат игольчатых кристаллов. Другое воплощение относится к кристаллам ZSM-48, которые в синтезированной форме включают ZSM-48, имеющий молярное соотношение диоксид кремния : оксид алюминия от 70 до 110, и образованы из реакционной смеси, содержащей гексаметониевый направляющий агент в молярном соотношении гексаметоний : диоксид кремния от 0,01 до 0,05, предпочтительно, от 0,015 до 0,025. В этом воплощении кристаллы ZSM-48 в синтезированной форме не содержат затравочных кристаллов, отличных от ZSM-48, и нитевидных кристаллов. Предпочтительно кристаллы ZSM-48 также имеют низкое содержание игольчатых кристаллов или вообще не содержат игольчатых кристаллов.

В еще одном воплощении кристаллы ZSM-48 в синтезированной форме обжигают, таким образом удаляя гексаметониевый направляющий структуру агент для образования Na-формы ZSM-48 высокой чистоты. Эта Na-форма ZSM-48 также может быть подвергнута ионному обмену с образованием Н-формы ZSM-48. В еще одном воплощении кристаллы ZSM-48 в синтезированной форме или обожженный ZSM-48 (Na-фо