Присадочная композиция, пригодная для придания антистатических качеств неживому органическому материалу и улучшения его электропроводности

Присадочная композиция состоит из: (A) 1-50% мас. сополимера олефина и диоксида серы, (B) 1-50% мас. соединения, содержащего один или несколько основных атомов азота, с длинноцепочечными углеродными остатками, по меньшей мере, с 4 атомами углерода или эквивалентным ему структурным элементом, обеспечивающим растворимость компонента (В) в неживом органическом материале, (C) 0,1-30% мас. маслорастворимой кислоты и (D) 1-80% мас. высококипящего органического растворителя, причем 80% мас. сортов его молекул при нормальном давлении характеризуются точкой кипения более 150°С. Композиция обеспечивает высокую электропроводность неживого органического материала. 9 з.п. ф-лы, 9 пр.

Реферат

Изобретение касается новой и улучшенной присадочной композиции, которая пригодна для придания антистатических качеств неживому органическому материалу и улучшения его электрической проводимости, а также для воспрепятствования формированию электрического заряда при химических и физических процессах. Кроме того, настоящее изобретение касается способа изготовления этой присадочной композиции. Сверх того, настоящее изобретение касается применения этой присадочной композиции и, таким образом, неживого органического материала, которому приданы антистатические характеристики. Кроме того, настоящее изобретение касается способа изготовления сополимеров олефинов и диоксида серы с низким остаточным содержанием олефинов, которые можно с выгодой применять в качестве компонентов в этой присадочной композиции.

Неживой органический материал, например топливо, как правило, очень плохо проводит электричество. Поэтому имеется склонность к локальному накоплению электрических зарядов в таком органическом материале и неконтролируемому разряду в виде искры, что при контакте этого органического материала (большей частью горючего и часто легковоспламенимого) с воздухом или кислородом может вести к взрывам или пожарам. С помощью надлежащих антистатических добавок можно повысить электропроводность неживого органического материала, что препятствует образованию статических зарядов и снижает риск взрыва и пожара.

Из заявки США US-A 3917466 (1) известны присадочные композиции для придания антистатических свойств и улучшения электропроводности, которые состоят из сополимеров олефинов и диоксида серы, полимерных полиаминов, получаемых реакцией эпихлоргидрина с алифатическими моноаминами или полиаминами, например N-стеарин-1,3-диаминопропаном, а также растворимых в масле сульфоновых кислот и растворителей с низкой температурой кипения, например толуола и/или изопропанола.

В заявке США US-A 4416668 (2) описаны смеси сополимеров α-олефинов с имидом малеиновой кислоты и сополимеров олефинов и диоксида серы, применяемые в качестве антистатиков для органических жидкостей, например топлива. Эти смеси могут содержать растворители, например бензол, толуол или ксилолы.

Эффективность антистатических средств, описанных на нынешнем техническом уровне, однако, нельзя считать удовлетворительной. Имеется потребность в более эффективном и более устойчивом повышении электропроводности неживого органического материала.

Кроме того, антистатик должен обладать более высокой температурной стабильностью. По токсикологическим и экологическим соображениям желательно, чтобы антистатики по возможности не содержали металлов и галогенов. Не в последнюю очередь желательно, чтобы они имели по возможности высокую температуру вспышки, чтобы в процессе их изготовления, транспортировки и хранения перед использованием в неживом органическом материале обращение с ними было безопасно, т.е. не несло риска взрыва и пожара.

Поэтому стояла задача представить безопасные с токсикологической и экологической точек зрения композиции для повышения электропроводности в неживом органическом материале, в особенности в топливе и продуктах на основе минеральных масел, обладающие высокой эффективностью, высокой термической стабильностью и по возможности максимально высокой температурой вспышки.

В соответствии с этой задачей нашли рецептуру добавок, пригодную для антистатического оснащения и улучшения электропроводности неживого органического материала и включающую в себя в основном

(A) 1-50% мас. сополимера олефина и диоксида серы,

(B) 1-50% мас. соединения, содержащего один или несколько основных атомов азота, которое включает в себя по меньшей мере один более длинноцепочечный линейный или разветвленный углеродный остаток, по меньшей мере, с 4 атомами углерода или эквивалентный ему структурный элемент, обеспечивающий растворимость компонента (В) в неживом органическом материале,

(C) от 0,1 до 30% мас. маслорастворимой кислоты и

(D) 1-80% мас. высококипящего органического растворителя, который состоит из одного или нескольких сортов молекул, причем 80% мас. этих сортов молекул при нормальном давлении характеризуются точкой кипения более 150°С,

причем сумма всех компонентов (включая, возможно, присутствующие побочные компоненты и/или не являющиеся помехой примеси) составляет 100% мас.

В качестве побочных компонентов и/или не являющихся помехой примесей присадочная композиция согласно изобретению может содержать (что по большей части обусловлено производственным процессом) еще до 10% мас., в особенности до 5% мас., прежде всего до 2% мас., прочих компонентов.

В предпочтительной форме исполнения рецептура добавок согласно изобретению в основном состоит из

(A) 10-30% мас., в особенности 13-25% мас., компонента (А),

(B) 10-30% мас., в особенности 13-25% мас., компонента (В),

(C) 2-15% мас., в особенности 4-10% мас., компонента (С) и

(D) 40-78% мас., в особенности 50-70% мас., компонента (D).

Описанная присадочная композиция согласно изобретению представляет собой концентрат собственно действующих компонентов (А), (В) и (С) в высококипящем органическом растворителе (D), пригодный для безопасной транспортировки и безопасного складирования товара.

Структура и известные способы изготовления сополимера олефина и диоксида серы компонента (А) описаны в публикациях (1) и (2). Компонент (А) предпочтительно представляет собой сополимер диоксида серы с одним или несколькими линейными или разветвленными 1-олефинами с 2-24 атомами углерода. Обычно сополимеры (полисульфоны) компонента (А) представляют собой альтернирующие сополимеры типа 1:1, в которых, как правило, за сульфоновым мономером следует олефиновый мономер; в небольших количествах возможно наличие последовательностей из двух или более олефиновых мономеров. Часть олефиновых мономеров может быть заменена этилен-ненасыщенными карбоновыми кислотами (например, акриловой кислотой, метакриловой кислотой или винилуксусной кислотой) или этилен-ненасыщенными дикарбоновыми кислотами (например, малеиновой кислотой или фумаровой кислотой) или их производными (например, ангидридом малеиновой кислоты), так что сополимер компонента (А), в частности, образован 50% мол. мономеров диоксида серы или сульфона, 40-50 мол.% олефиновых мономеров и 0-10 мол.% этилен-ненасыщенных карбоновых кислот, этилен-ненасыщенных дикарбоновых кислот или их производных.

В качестве разветвленных, а в особенности линейных 1-олефинов с 2-24 атомами углерода для синтеза компонента (А) можно использовать, например, этен, пропен, 1-бутен, 2-бутен, изобутен, 1-пентен, 1-гексен, 1-гептен, 1-октен, 1-нонен, 1-децен, 1-ундецен, 1-додецен, 1-тридецен, 1-тетрадецен, 1-пентадецен, 1-гексадецен, 1-гептадецен, 1-октадецен, 1-нонадцецен, 1-эйкозен, 1-генэйкозен, 1-докозен, 1-трикозен, 1-тетракозен или их смеси. Особо предпочтительны линейные 1-олефины с 6-16, в особенности с 8-14 атомами углерода, или линейные 1-олефины с 12-22, в особенности 14-20 атомами углерода, а также их смеси, например смесь из 1-додецена и 1-тетрадецена. Также может оказаться целесообразным применять для синтеза компонента (А) смеси низкомолекулярных и высокомолекулярных 1-олефинов, т.е. смеси 1-олефинов с бимодальным распределением, например смеси 1-олефинов с 6-13 атомами углерода и 1-олефинов с 14-20 атомами углерода, или смеси 1-олефинов с 6-10 атомами углерода и 1-олефинов с 11-15 атомами углерода, или смеси 1-олефинов с 2-24 атомами углерода и одного конкретного 1-олефина с 4-10 атомами углерода. Если применяют технические или прочие смеси 1-олефинов, данные о диапазонах количества атомов углерода, приведенные выше, относятся к среднему количеству атомов углерода этих смесей, причем среднее количество атомов углерода представляет собой сумму всех произведений массовых долей и соответствующих количеств атомов углерода всех 1-олефинов, присутствующих в смеси.

Сополимер олефина и диоксида серы компонента (А) обычно имеет среднечисленную молекулярную массу Mn, составляющую 2000-1000000, в особенности 4000-100000, прежде всего 6000-25000. Полидисперсность (PDI=Mw/Mn), как правило, находится в пределах 1,1-30, в особенности 1,5-20, прежде всего 2-10, крайне предпочтительно 2,3-5.

В публикации (1) рекомендован синтез сополимеров олефина и диоксида серы с помощью надлежащего метода радикальной полимеризации при температурах в диапазоне 0-50°С; в качестве подлежащих применению растворителей указаны бензол, толуол или ксилол. Работают при небольшом молярном избытке диоксида серы - максимум 1,5 кратном; рекомендованы радикальные стартеры, как то: пероксиды или азосоединения и дополнительное облучение актиничным светом. В соответствии с публикацией (2) возможно синтезировать сополимеры олефинов и диоксида серы путем эмульсионной полимеризации в водной среде. Оба способа синтеза, однако, нуждаются в улучшении, а применение полученных с их помощью сополимеров олефинов и диоксида серы в присадочной композиции согласно изобретению ведет к сложностям в обращении с ними и снижению эффективности. В частности, содержание исходных олефинов, горючих и обладающих высокой летучестью, все еще высоко, так что точка вспышки получающейся антистатической присадочной композиции расположена слишком низко. Таким образом, имелась потребность в улучшенном способе синтеза сополимеров олефина и диоксида серы, чтобы обеспечить их не отягощенное проблемами применение в присадочной композиции согласно изобретению.

Соответственно, в рамках настоящего изобретения был найден способ синтеза сополимеров олефина и диоксида серы, содержащих менее 15 мол.%, предпочтительно менее чем 10 мол.%, в особенности - менее чем 7 мол.%, а прежде всего менее 5 мол.% олефина, не прошедшего преобразование при сополимеризации с диоксидом серы, данный способ отличается тем, что диоксид серы применяют, по меньшей мере, в 1,4-кратном молярном избытке, в особенности в 1,6-кратном молярном избытке, а полимеризацию проводят в высококипящем инертном органическом растворителе, который состоит из одного или нескольких сортов молекул, причем 50% мас. этих сортов молекул имеют более 8 атомов углерода. Предпочтительно применять диоксид серы, по меньшей мере, в 1,8-кратном молярном избытке, в особенности в 1,8-2,5-кратном молярном избытке, а полимеризацию проводить в высококипящем инертном органическом растворителе, который состоит из одного или нескольких сортов молекул, причем, по меньшей мере, 80% мас. этих сортов молекул содержат 9-30 атомов углерода. Целесообразно применять высококипящий органический растворитель, в особенности высококипящий ароматический углеводород с 9-30 атомами углерода или смесь таких высококипящих органических углеводородов, определенных для настоящего изобретения как компонент (D). Реакцию предпочтительно проводить при 10-40°С, в особенности при 15-29°С, на протяжении 0,5-24 часов.

Соответственно, в рамках настоящего изобретения был найден еще один способ синтеза сополимеров олефина и диоксида серы, содержащих менее 15 мол.%, предпочтительно менее чем 10 мол.%, в особенности - менее чем 7 мол.%, а прежде всего менее 5 мол.% олефина, не прошедшего преобразование при сополимеризации с диоксидом серы, данный способ отличается тем, что диоксид серы применяют, по меньшей мере, в 1,1-кратном молярном избытке, в особенности в 1,6-кратном молярном избытке, а полимеризацию проводят при 15-38°С, в особенности при 20-30°С, при давлении системы. При этом предпочтительно применять диоксид серы, по меньшей мере, в 1,4-кратном молярном избытке, в особенности, по меньшей мере, в 1,6-кратном молярном избытке, прежде всего, по меньшей мере, в 1,8-кратном молярном избытке, особо предпочтительно в 1,8-2,5-кратном или 1,4-2,5-кратном молярном избытке, а полимеризацию проводить в высококипящем инертном органическом растворителе, который состоит из одного или нескольких сортов молекул, причем, по меньшей мере, 80% мас. этих сортов молекул содержат 9-30 атомов углерода. В этом случае также целесообразно применять высококипящий органический растворитель, в особенности высококипящий ароматический углеводород с 9-30 атомами углерода или смесь таких высококипящих органических углеводородов, определенных для настоящего изобретения как компонент (D).

В предпочтительной форме исполнения последнего упомянутого способа синтеза сополимеров олефинов и диоксида серы полимеризацию проводят на первом этапе в течение 0,5-5 часов при 30-38°С и при собственном давлении системы, а затем, на втором этапе - в течение 1-5 часов при 20-29°С, также при собственном давлении системы.

Во многих случаях для того, чтобы добиться желательного улучшения процесса, особенно с точки зрения повышения температуры вспышки получаемой антистатической присадочной композиции, достаточно альтернативного исполнения первого или второго из упомянутых способов синтеза сополимеров олефинов и диоксида серы. Кроме того, можно сочетать оба способа, т.е. диоксид серы можно применять, по меньшей мере, в 1,6-кратном молярном избытке, а полимеризацию проводить в инертном высококипящем органическом растворителе, состоящем из одного или нескольких сортов молекул, причем, по меньшей мере, 50% мас. этих сортов молекул обладают более чем 8 атомами углерода, при 15-38°С при собственном давлении системы. Во всех указанных альтернативных вариантах можно обойтись без обработки актиничным светом, что (прежде всего, в промышленном масштабе) можно было бы осуществить только с большими затратами.

Как правило, описанная совместная полимеризация диоксида серы с олефином протекает по радикальному механизму. Такую радикальную полимеризацию проводят обычными методами. Для этого применяют обычные радикальные стартеры, в особенности таковые на основе пероксидов или азосоединений, например ди-трет-бутилпероксид, трет-бутилпероксипивалат или азобисизобутиронитрил. Для регулировки желательной итоговой молекулярной массы можно применять регуляторы, например меркаптаны, как то: додецилмеркаптан.

С помощью описанного улучшенного способа синтеза сополимеров олефинов и диоксида серы удается добиться практически полного преобразования олефинов.

Содержащее один или несколько основных атомов азота соединение компонента (В) должно быть растворимо в неживом органическом материале, подлежащем обработке присадочной композицией согласно изобретению; по крайней мере должна существовать хотя бы возможность гомогенного распределения этого соединения в материале. Во многих случаях компонент (В) также представляет собой полимер. Он имеет, по меньшей мере, один длинноцепочечный разветвленный или, в особенности, линейный углеводородный остаток, по меньшей мере, с 4, предпочтительно, по меньшей мере, с 8, в особенности - по меньшей мере, с 12, а прежде всего - с 12-30 атомами углерода, если только эквивалентный структурный элемент не обеспечивает растворимость в неживом органическом материале. Предпочтительно, чтобы соединение компонента (В) не содержало свободных гидроксильных групп, поскольку в определенных обстоятельствах эти группы могут отрицательно влиять на эффективность присадочной композиции согласно изобретению.

Указанный длинноцепочечный разветвленный или линейный углеводородный остаток в соединении компонента (В) может быть присоединен к одному из основных атомов азота или к атому углерода в полимерных структурах, в особенности к атому углерода основной цепи полимера. Типичные разветвленные или линейные длинноцепочечные углеводородные остатки - это, например, линейные алкильные остатки, которые встречаются в жирных кислотах, и полиизобутиловые остатки, в особенности таковые с 20-150, а прежде всего - с 35-100 атомами углерода.

Надлежащие типы олигомерных или полимерных структур с подобными длинноцепочечными углеводородными остатками для компонента (В) - это, например, продукты реакции олигоэтиленаминов или олигоэтилениминов с алкилгалогенидами, полиэтилениминов с ангидридами полиизобутенилянтарной кислоты, терполимерами этилена, винилацетата и амино-(мет)-акрилатами, в особенности с аминами или полиаминами дериватизированных сополимеров олефина и ангидрида малеиновой кислоты, прежде всего - сополимеров α-олефинов и имида малеиновой кислоты, по меньшей мере, с одним основным атомом азота.

Типичный пример продукта реакции олигоэтиленамина с алкилгалогенидом - это имеющий структуру гребня продукт реакции декаэтиленундекамина и многократного молярного избытка н-гексадецилхлорида.

Примеры надлежащих типов неполимерных структур с подобными длинноцепочечными углеводородными остатками для компонента (В) - это соли жирных кислот с триалкиламмонием, например олеаты триалкиламмония, и имиды полиизобутенилянтарной кислоты.

Надлежащие типы структур для компонента (В) без длинноцепочечных углеводородных остатков - это, например, полиэтиленимины и поливиниламины, у которых желательные характеристики растворимости обеспечены особым, обычно имеющим поперечную сшивку полимерным каркасом.

Структура и способ изготовления особо предпочтительных для компонента (В) сополимеров α-олефинов и имида малеиновой кислоты, по меньшей мере, с одним основным атомом азота, в принципе, описаны в публикации (2). В предпочтительной форме исполнения эти полимеры α-олефинов и имидов малеиновой кислоты с 6-50 атомами углерода получают радикальной полимеризацией одного или нескольких линейных или разветвленных α-олефинов с 6-50 атомами углерода с ангидридом малеиновой кислоты и последующей реакцией с одним или несколькими алифатическими полиаминами. Сополимеры α-олефинов и ангидрида малеиновой кислоты и синтезированные из них сополимеры α-олефинов и имида малеиновой кислоты обычно представляют собой переменные (альтернирующие) по главной полимерной цепи сополимеры типа 1:1, в которых мономер малеиновой кислоты всегда следует за мономером α-олефина. Длинноцепочечные разветвленные или линейные углеводородные остатки обусловливают, как правило, формирование гребнеподобных структур.

В качестве разветвленных, а в особенности линейных 1-олефинов с 6-50 атомами углерода для синтеза сополимеров α-олефина и имида малеиновой кислоты компонента (В) можно использовать, например, 1-гексен, 1-гептен, 1-октен, 1-нонен, 1-децен, 1-ундецен, 1-додецен, 1-тридецен, 1-тетрадецен, 1-пентадецен, 1-гексадецен, 1-гептадецен, 1-октадецен, 1-нонадцецен, 1-эйкозен, 1-генэйкозен, 1-докозен, 1-трикозен, 1-тетракозен, 1-триаконтен, 1-тетраконтен, 1-пентаконтен или их смеси. Особо предпочтительны линейные 1-олефины с 12-30, в особенности с 16-24 атомами углерода и их смеси.

Радикальную полимеризацию 1-олефинов с ангидридом малеиновой кислоты проводят обычными методами. Для этого используют обычные радикальные стартеры, в частности таковые на основе пероксидов или азосоединений, например ди-трет-бутилпероксид, трет-бутилпероксипивалат или азобисизобутиронитрил, работают в обычных диапазонах температуры или давления, например при 50-150°С и при нормальном давлении, а преобразования осуществляют в обычных растворителях, например ароматических углеводородах. В качестве растворителей предпочтительно использовать высококипящие органические растворители компонента (D) настоящего изобретения.

По завершении полимеризации проводят реакцию полученных сополимеров α-олефина с ангидридом малеиновой кислоты с одним или несколькими алифатическими полиаминами с образованием соответствующего имида. Для формирования имида необходимы полиамины с первичной аминогруппой, а для основного атома азота - по меньшей мере, с еще одной первичной, вторичной или третичной аминогруппой. Для этого пригодны, например, короткоцепочечные диамины, например этилендиамин, 1,3-пропилендиамин, 3-(N,N-диметиламино)-пропил-амин ("DMAPA") или бис[3-(N,N-диметиламино)пропил]амин ("бис-DMAPA"), или длинноцепочечные диамины, например N-(стеарин)-1,3-диаминопропан. Остальные условия этой реакции образования имидов известны специалисту. Если при образовании имидов применяют растворители, то предпочтительно использовать высококипящие органические растворители компонента (D) настоящего изобретения.

Типичные примеры сополимеров α-олефина с ангидридом малеиновой кислоты, прошедших реакцию с алифатическими полиаминами, - это имеющие гребневидную структуру продукты реакции сополимеров α-олефина с ангидридом малеиновой кислоты, имеющих 20/24 атома углерода, и 3-(N,N-диметиламино)-пропиламина ("DMAPA") или бис[3-(N,N-диметиламино)пропил]амина ("бис-DMAPA").

Описанные сополимеры α-олефина и имида малеиновой кислоты по меньшей мере с одним основным атомом азота компонента (В) обычно характеризуются средневесовой молекулярной массой Mw в 500-50000, в особенности 1000-10000. Типичный сополимер α-олефина и имида малеиновой кислоты - это прошедший реакцию с N-(стеарин)-1,3-диамино-пропаном с образованием имида сополимер α-олефина и ангидрида малеиновой кислоты со средневесовой молекулярной массой Mw в пределах 1000-10000.

Растворимая в масле кислота компонент (С) - это предпочтительно органическая сульфоновая кислота, причем целесообразно, чтобы в целях растворимости в масле она имела длинноцепочечный или объемный нециклический углеводородный остаток, в особенности с 6-40, прежде всего с 8-32, особо предпочтительно с 10-24 атомами углерода. В качестве таких нециклических углеводородных остатков можно применять линейные или разветвленные алкиловые или алкениловые остатки, например н-гексил, н-гептил, н-октил, 2-этилгексил, н-нонил, н-децил, 2-пропилгептил, н-ундецил, н-додецил, н-тридецил, изо-тридецил, н-тетрадецил, н-пентадецил, н-гексадецил, н-гептадецил, н-октадецил, н-нонадецил, н-эйкозил, н-генэйкозил, н-докозил, н-трикозил, н-тетракозил, олеил, линолил или линоленил, циклоалкиловые остатки, например циклогексил, метилциклогексил или диметилциклогексил, ариловые остатки, например фенил или нафтил, аралкиловые остатки, например бензил или 2-фенилэтил, или особо предпочтительно алкариловые остатки, в особенности замещенные линейными или разветвленными алкиловыми группами с 1-18 атомами углерода фенил или нафтил, например толил, ксилил, н-нонилфенил, н-децилфенил, н-додецилфенил, изо-тридецилфенил, н-нонилнафтил, ди-н-нонилнафтил, н-децилнафтил, ди-н-децилнафтил, н-додецил-нафтил, ди-н-додецилнафтил, изо-тридецилнафтил или ди-изо-тридецилнафтил. В случае указанных последними монозамещенных фениловых остатков алкиловые группы могут относительно группы сульфоновой кислоты занимать орто-, мета- или пара-положение, причем пара-положение предпочтительно. Таким образом, типичные примеры компонента (С) - это н-нонилбензолсульфоновая кислота, н-децилбензолсульфоновая кислота, н-додецилбензолсульфоновая кислота, изо-тридецилбензолсульфоновая кислота, н-нонилнафтилсульфоновая кислота, ди-н-нонилнафтилсульфоновая кислота, н-децилнафтилсульфоновая кислота, ди-н-децилнафтилсульфоновая кислота, н-додецилнафтилсульфоновая кислота, ди-н-додецилнафтилсульфоновая кислота, изо-три-децилнафтилсульфоновая кислота и ди-изо-тридецилнафтилсульфоновая кислота.

Кроме указанных органических сульфоновых кислот в качестве компонента (С), в принципе, можно применять и растворимые в масле органические сульфиновые кислоты или органические фосфоновые кислоты, причем также целесообразно, чтобы они несли длинноцепочечный или объемный нециклический углеводородный остаток, в особенности с 6-40, прежде всего с 8-32, особо предпочтительно с 10-24 атомами углерода.

Хотя высококипящий органический растворитель компонента (D) в рецептуре добавки для придания антистатических качеств неживому органическому материалу и улучшения его электропроводности согласно изобретению не является действующим компонентом как таковым, благодаря взаимодействию с компонентами (А), (В) и (С) он поддерживает и усиливает их действие, способствует термической стабильности рецептуры и обеспечивает ее высокую температуру вспышки. Кроме того, компонент (D) также предназначен для облегчения задания желательной вязкости присадочной композиции согласно изобретению, каковая вязкость является важным критерием применимости этой рецептуры.

В предпочтительной форме исполнения компонент (D) по меньшей мере на 80% мас., прежде всего, по меньшей мере на 90% мас., состоит из высококипящего ароматического углеводорода с 9-30 атомами углерода или из смеси таких высококипящих ароматических углеводородов. Крайне предпочтительно, чтобы компонент (D) представлял собой, по меньшей мере, на 80% мас., в особенности, по меньшей мере, на 90% мас., а прежде всего на 100% мас., смесь высококипящих ароматических углеводородов с 9-20 атомами углерода, в особенности - с 9-14 атомами углерода. Подобные ароматические углеводороды - это, в частности, двух-, трех- или многоядерные ароматические соединения, например нафталин, дифенил, антрацен или фенантрен, или одно-, двух-, трех- или многоядерные ароматические соединения с алифатическими боковыми цепями, например замещенные бензолы с алкильными боковыми цепями с 7-14 атомами углерода, в особенности - с алкильными боковыми цепями с 7-12 атомами углерода, как то: н-додецилбензол или н-тетрадецилбензол, но в первую очередь, однако, с алкильными боковыми цепями с 1-6 атомами углерода, например н-пропилбензол, изо-пропилбензол, этилметилбензолы, триметилбензолы, этилдиметилбензолы, диэтилбензолы, н-бутилбензол, изо-бутилбензол, втор-бутилбензол, трет-бутилбензол, н-пентилбензол, трет-пентилбензол, н-гексилбензол, метилнафталины, диметилнафталины или алкилнафталины с 2-6 атомами углерода (в алкильной цепи). При нормальном давлении температура кипения всех ароматических углеводородов составляет более 150°С, как правило, она при нормальном давлении находится в пределах 150-330°С.

Смеси упомянутых ароматических углеводородов с 9 или более атомами углерода представлены в торговле в виде технических фракций растворителей и распространяются, например, фирмой ExxonMobil Chemical под торговыми наименованиями Solvesso® 100 (фракция ароматических соединений с 9-10 атомами углерода), Solvesso® 150 (фракция ароматических соединений с 10-11 атомами углерода) и Solvesso® 200 (фракция ароматических соединений с 10-14 атомами углерода); такую фракцию ароматических соединений с 10-11 атомами углерода также называют "тяжелый сольвент-нафта" ("Solvent Naphta Heavy").

Помимо указанных ароматических углеводородов с 9 или более атомами углерода, компонент (D) в описанной предпочтительной форме исполнения может содержать от 0 до менее 20% мас. неароматических компонентов органических растворителей, и/или алициклических соединений, и/или гетероциклических соединений, точка кипения которых в каждом случае превышает 100°С, в особенности составляет более 130°С, и/или ароматических компонентов растворителей менее чем с 9 атомами углерода (например, толуол или ксилолы).

Присадочную композицию согласно изобретению целесообразно изготавливать из компонентов (А), (В), (С) и (D) путем смешивания. В принципе, получить присадочную композицию согласно изобретению можно при любой возможной последовательности смешивания. В отношении практической осуществимости смешивания оказалось, однако, предпочтительно сначала в присутствии, по меньшей мере, части высококипящего органического растворителя (D) соединять друг с другом компоненты (А) и (С) с образованием гомогенной смеси, а затем вводить компонент (В). Кроме того, может быть выгодно осуществлять смешивание при несколько повышенной температуре, примерно 20-80°С, в особенности при 25-50°С. В особо предпочтительной форме исполнения сначала, в присутствии, по меньшей мере, части высококипящего органического растворителя (D), соединяют друг с другом компоненты (А) и (С) при 30-60°С, в особенности при 40-55°С, с образованием гомогенной смеси, а затем вводят компонент (В), причем смесь компонентов (А) и (С) и части высококипящего органического растворителя (D) предпочтительно выдерживать в течение, по меньшей мере, 1 минуты, в особенности 1-120 минут, прежде всего 1-30 минут, при температурах, находящихся в указанном диапазоне, прежде чем вводить компонент (В). Также может быть целесообразно полностью или частично реализовывать процессы смешивания в вакууме, предпочтительно при 100 мбар - менее 1 бар, в особенности при 10 мбар - менее 1 бар. Можно применять все обычные технологии и механизмы смешивания.

Присадочную композицию согласно изобретению в смысле настоящего изобретения применяют для придания антистатических качеств неживому органическому материалу и улучшения его электрической проводимости, а также для воспрепятствования формированию электрического заряда при химических и физических процессах.

Для этого присадочную композицию согласно изобретению вводят в неживой органический материал, которому необходимо придать антистатические свойства и таким образом улучшить его электропроводность, во время его изготовления или после такового либо же смешивают ее с этим материалом и добиваются по возможности гомогенного распределения. Концентрация присадочной композиции согласно изобретению в неживом органическом материале, как правило, составляет 0,01-2000 мас.-м.д., предпочтительно 0,1-1000 мас.-м.д., прежде всего 0,5-500 мас.-м.д., в особенности 1-350 мас.-м.д., относительно неживого органического материала. В частности, при использовании в топливе концентрация присадочной композиции согласно изобретению может быть ниже, в этом случае обычные уровни дозировки составляют 0,01-1000 мас.-м.д., предпочтительно 0,1-500 мас.-м.д., прежде всего 0,5-100 мас.-м.д., в особенности 1-10 мас.-м.д., относительно топлива.

Под неживым органическим материалом подразумевают, в частности, косметические препараты, как то: мази и лосьоны, лекарственные рецептуры, например пилюли и свечи, фоторегистрирующие материалы, как, например фотографические эмульсии, лакокрасочные материалы, пластмассы, воски, растворители, а также продукты переработки минеральных масел и горюче-смазочных материалов, в частности дизельное топливо, котельное топливо, топливо для бензиновых двигателей, авиационный бензин и горючее для турбин, а также смазочные материалы, т.е. моторные масла, смазку, гидравлические жиры, масла для турбин, регуляторов, трансмиссионные масла для ручных и автоматических коробок переключения передач, масла для каландров, масла-теплоносители, масла для металлообработки, масла для амортизаторов, и густые смазки.

В качестве примеров пластмасс, которым с помощью присадочной композиции согласно изобретению можно придать антистатические качества, следует назвать:

полимеры моно- или диолефинов, как то: полиэтилен низкой или высокой плотности, полипропилен, линейный полибутен-1, полиизопрен, полибутадиен, а также сополимеризаты моно- или диолефинов или смеси указанных полимеров;

полистирол, а также сополимеры стирола или альфа-метилстирола с диенами и/или акриловые производные, например стирол-бутадиен, стирол-акрилнитрил (SAN), стирол-этилметакрилат, стирол-бутадиен-этилакрилат, стирол-акрилнитрил-метакрилат, акрилнитрил-бутадиен-стирол (ABS) или метилметакрилат-бутадиен-стирол (MBS);

галогенсодержащие полимеры, например поливинилхлорид, поливинилфторид, поливинилиденфторид, а также их сополимеры;

полимеры, происходящие от α,β-ненасыщенных кислот и их производных, как то: полиакрилаты, полиметакрилаты, полиакриламиды и полиакрилнитрилы.

полимеры, образованные на основе ненасыщенных спиртов и аминов или их ацильных производных или ацеталей, например поливиниловый спирт и поливинилацетат;

полиуретаны (например, материал для обувных подошв), в особенности термопластичные полиуретаны, полиамиды, полимочевины, простые полифениленэфиры, сложные полиэфиры, поликарбонаты, полисульфоны, простые полиэфирсульфоны, простые полиэфиркетоны, а также сополимеры этилена и винилацетата (например, также материал для обувных подошв).

К лакокрасочным материалам, которым можно придать антистатические свойства с помощью присадочной композиции согласно изобретению, относятся в числе прочего лаки, как, например лаки на основе алкидных смол, дисперсионные лаки, лаки на основе эпоксидных смол, полиуретановые лаки, лаки на основе акриловых смол и целлюлозно-нитратные лаки, либо же лессирующие краски, например, для защиты дерева.

К воскам, которым можно придать антистатические свойства с помощью присадочной композиции согласно изобретению, относятся в числе прочего воски на основе сополимеров этилена и винилацетата.

В качестве примеров растворителей, которым с помощью присадочной композиции согласно изобретению можно придать антистатические качества и таким образом улучшить их электропроводность, следует назвать: алканы, например н-пентан, н-гексан или н-гептан, алкены, как то: гексен, гептен, октен, нонен, децен, ундецен или додецен, ароматические соединения, как то: толуол или ксилол, нафтены, спирты, как то: метанол, этанол, изопропанол или трет-бутанол, альдегиды, например ацетальдегид, пропионовый альдегид или бутиральдегид, кетоны, как то: ацетон или бутанон, карбоновые кислоты, например муравьиная, уксусная или пропионовая кислота, эфиры карбоновых кислот, например метиловый эфир уксусной кислоты или этиловый эфир уксусной кислоты, амиды карбоновых кислот, например N,N-диметилформамид, а также их смеси.

Присадочную композицию согласно изобретению особо удобно применять для придания антистатических свойств горючему для турбин (jet fuels) и улучшения его электропроводности. Турбинное горючее применяют прежде всего для авиационных турбин.

Обычный состав турбинного топлива содержит в основном жидкое турбинное горючее, причем речь идет, например, об обычном для гражданской или военной авиации турбинном горючем. К разновидностям такого турбинного горючего относятся, например, материалы, обозначаемые как Jet Fuel A, Jet Fuel A-1, Jet Fuel В, Jet Fuel JP-4, JP-5, JP-7, JP-8 и JP-8+100. Jet А и Jet A-1 представляют собой имеющееся в торговле турбинное горючее в соответствии со спецификацией на основе керосина. Применяемые нормативы - это ASTM D 1655, а также DEF STAN 91-91. Jet В - это также топливо на основе фракций нафты и керосина. JP-4 эквивалентно Jet В. JP-5, JP-7, JP-8 и JP-8+100 представляют собой "военные" виды турбинного топлива, которые применяют, например, в ВМС и ВВС. Некоторые из этих нормативов обозначают рецептуры, уже содержащие другие добавки, как то: ингибиторы коррозии, ингибиторы обледенения, другие антистатические средства, например диссипаторы статического электричества и т.д.

Присадочную композицию согласно изобретению можно добавлять в турбинное горючее или в рецептуру турбинного горючего в сочетании с другими добавками, известными как таковые. К надлежащим добавкам, которые могут входить в состав рецептуры турбинного горючего, обычно относятся детергенты, ингибиторы коррозии, антиоксиданты, как то: стерически затрудненные трет-бутилфенолы, N-бутил-фенилендиамины или N,N'-дифениламин и их производные, деактиваторы металлов, например N,N'-дизалициклиден-1,2-диаминопропан, средства, способствующие растворению, прочие распространенные на рынке антистатики, например Stadis® 450, биоциды, средства, препятствующие обледенению, например диэтиленгликольметилэфир, а также смеси указанных добавок.

Предпочтительные добавки для турбинного горючего или рецептуры турбинного горючего - это перечисленные ниже конкретные классы соединений (Е), (F) и (G).

Предпочтительные добавки (Е) - это соединения, являющиеся производными ангидрида янтарной кислоты и имеющие длинноцепочечные углеводородные остатки, как правило, с 15-700, прежде всего, с 30-200 атомами углерода. Эти соединения могут иметь прочие функциональные группы, которые предпочтительно выбраны из гидроксигрупп, аминогрупп, амидных и/или имидных групп. Предпочтительные добавки - это соответствующие производные ангидрина полиалкенилянтарной кислоты, которые получают, например, реакцией полиалкиленов с ангидридом малеиновой кислоты термическим способом или опосредованно - через хлорированные углеводороды. Среднечисленная молекулярная масса длинноцепочечных углеводородных остатков предпочтительно находится в пределах около 200-10000, особо предпочтительно 400-5000, в особенности 600-3000, а в частности 650-2000. Предпочтительно данные длинноцепочечные углеводородные остатки происходят от традиционных и в особенности от вышеназванных реакционно-способных полиизобутенов. Особый интерес в качестве добавок (Е) представляют производные ангидридов