Плазменная обработка поверхности с использованием диэлектрических барьерных разрядов

Иллюстрации

Показать все

Изобретение относится к плазменной обработке поверхности частиц с помощью диэлектрических барьерных разрядов. Способ включает подачу порошкового материала в виде частиц в горелку диэлектрического барьерного разряда в сборе и модифицирование свойств поверхности частиц в полете. Устройство для реализации способа содержит горелку диэлектрического барьерного разряда. При этом горелка включает в себя электродную структуру, содержащую оболочечный электрод, имеющий пару полуцилиндрических электродов, впуск для подачи в упомянутую горелку плазменного газа, впуск для подачи в упомянутую горелку порошкового материала в виде частиц и разрядную камеру для обработки упомянутого порошкового материала в виде частиц. Причем упомянутая разрядная камера содержит упомянутую электродную структуру, расположенную на ее внешней поверхности. Плазменный разряд создается путем пропускания плазмообразующего газа через упомянутую разрядную камеру. Технический результат - расширение технологических возможностей способа и устройства. 4 н. и 27 з.п. ф-лы, 26 ил., 7 табл.

Реферат

Область техники, к которой относится изобретение

[0002] Настоящее изобретение относится к плазменной обработке поверхности микро- и наночастиц с помощью диэлектрических барьерных разрядов. Более конкретно, но не исключительно, настоящее изобретение относится к способу нанесения покрытия на микро- и наночастицы с помощью горелки диэлектрического барьерного разряда (ГДБР), работающей при атмосферных давлениях или в условиях низкого вакуума. Настоящее изобретение также относится к устройству для нанесения покрытия на микро- и наночастицы, причем устройство содержит горелку диэлектрического барьерного разряда (ГДБР), работающую при атмосферном давлении или в условиях низкого вакуума.

Предпосылки изобретения

[0003] Нанопорошки обладают уникальными физическими свойствами, которые напрямую связаны с их маленьким размером и высокой удельной площадью поверхности. Нанопорошки проявляют характерную склонность агломерироваться, приводящую к увеличению их кажущегося размера частиц. Агломерация оказывает непосредственное влияние на функциональные свойства нанопорошков, такие как их оптические и магнитные характеристики, а также каталитические и проводящие свойства.

[0004] Благодаря их высокой удельной площади поверхности нанопорошки являются очень реакционно-способными и сложными в обращении. Осаждение тонкопленочного или другого материала покрытия на внешнюю поверхность индивидуальных частиц предупреждает их агломерацию и обеспечивает безопасное обращение с ними без подвергания риску их уникальных свойств.

[0005] Выбор материала покрытия, т.е. полимерного или другого типа, обеспечивает селективный контроль над характеристиками поверхности порошка. Гидрофильность порошка может быть модифицирована, в дополнение к контролированию других присущих ему свойств, путем обработки поверхности порошка и/или путем правильного выбора материала покрытия. Стабильный пирофорный нанопорошок алюминия (легко воспламеняющийся при температуре окружающей среды) может быть создан путем нанесения тонкой полимерной пленки, покрывающей поверхность частиц. Такое покрытие обеспечивает стабильный порошок при более низких температурах, не оказывая отрицательного влияния на его высокую теплоту сгорания при более высоких температурах.

[0006] Раньше плазменную обработку поверхности использовали в качестве методики модификации поверхности для увеличения гидрофобности, гидрофильности, адгезии и устойчивости к коррозии большого количества подложек, включая полимерные пленки. Также она нашла широкое применение при чистке и травлении.

[0007] Были разработаны методики плазменного осаждения и плазменной полимеризации для нанесения тонких покрытий, например, полимерных пленок, на множество разнообразных подложек. Большинство этих методик работают при довольно низких давлениях (меньше чем 100 Па).

[0008] Ранее сообщалось, что покрытие тонкой пленкой изменяет свойства поверхности нанопорошков, уменьшая их агломерацию и улучшая их дисперсионные характеристики. О покрытии нанопорошков (~130 нм) диоксида циркония (ZrO2) пленкой полиэтилена, используя высокочастотную (ВЧ) плазменную горелку (27 МГц), работающую при низком давлении (30 Па), сообщалось Хе (He) и др. (1).

[0009] О покрытии наночастиц (~10-150 нм) глинозема (Al2O3) пленкой полипиррола, используя высокочастотную (ВЧ) плазменную горелку (13,56 МГц), работающую при низком давлении (25 Па), сообщалось Shi и др. (2). Тонкую пленку полипиррола осаждали при мощности разряда в 10 Вт. Для введения нанопорошка глинозема использовали псевдоожиженный слой, находящийся под вакуумом (0,16 г/мин). Также Shi и др. сообщали об осаждении пленки полистирола на наноуглеродные трубки, используя подобный способ (3).

[0010] О покрытии наночастиц глинозема (Al2O3) полимерным слоем на основе этана с толщиной примерно 1,5 нм, используя высокочастотную (ВЧ) плазменную горелку (13,56 МГц), работающую при низком давлении (1 кПа), сообщалось Schallehn и др. (4). Покрытые наночастицы глинозема (Al2O3) получали со скоростью 0,5-1 г/ч и с выходами примерно 40%.

[0011] О микроволновой (МВ) плазменной горелке, работающей на высокой частоте (2,45 ГГц) и при низком давлении (1-5 кПа), для нанесения покрытия на нанопорошки оксидов, таких как диоксид циркония (ZrO2), глинозем (Al2O3), оксид вольфрама (WO2, WO3), оксид гафния (HfO2), оксид олова (SnO, SnO2) и оксид железа (Fe2O3), сообщалось Vollath и др. (5, 6). Покрытие пленкой достигали, используя метилметакрилат в качестве предшественника полимера. Мономер вводили на выходе разряда плазменной горелки и полимеризовали под действием УФ-излучения, испускаемого от плазмы.

[0012] О получении и покрытии наночастиц серебра полимерным слоем, используя МВ плазменную горелку, работающую на высокой частоте (2,45 ГГц) и при низком давлении, сообщалось Lik Hang Chau и др. (7). Тем же автором также сообщалось о получении и покрытии наночастиц кобальта слоем карбида кремния, используя МВ плазменную горелку (8). CoCl2 и SiCl4/гексан были предшественниками соответственно для получения и нанесения покрытия.

[0013] Покрытие порошков мелкодисперсного кремнезема в диапазоне размеров от 30-80 нм, используя емкостную плазменную горелку (13,6 МГц), работающую при низком давлении (1-5 кПа), описано Kouprine и др. (9). Мощность плазменного разряда устанавливали на уровне 700-1500 Вт, а плазменный газ состоял из смеси аргона и метана или этана. Для введения подаваемого материала в виде порошка кремнезема использовали псевдоожиженный слой.

[0014] О синтезе и покрытии углеродом наночастиц железа с помощью лазерного пиролиза, используя CO2 лазер непрерывного действия, работающий при установленной мощности 120 Вт, длине волны (λ) 10,6 микрометра и давлении 700 мбар, сообщалось Dumitrache и др. (10). Карбонил железа и ацетилен были предшественниками соответственно при синтезе и покрытии порошка.

[0015] О синтезе и покрытии углеродом частиц алюминия, используя плазменную горелку дугового разряда постоянного тока (1-50 В; 30-150 А), работающую при атмосферном давлении, сообщалось Ermoline и др. (11). Как сообщалось, катод состоял из меди, в то время как анод состоял из расходуемого алюминиевого прутка. Абляцию анода проводили в импульсном режиме с получением покрытых частиц наноалюминия. Покрытие углеродом достигали, используя природный газ.

[0016] О покрытии пористых гранулированных частиц кремнезема (~150 мкм) тонкой пленкой полимеризованного в плазме тетрафторэтилена (TFE), используя тлеющий разряд атмосферного давления (APGD) в специально сконструированной горелке плазменного разряда (15 кГц; 100 кПа; 10 Вт), сообщалось Sawada и др. (12). Плазменный подаваемый газ состоял из гелия и TFE (1%). Сообщалось, что частицы кремнезема рециркулировали несколько раз через область плазмы.

[0017] О покрытии углеродом наночастиц меди, используя ДБР-горелку, работающую при атмосферном давлении, сообщалось Lei и др. (13). Наночастицы меди получали, используя метод потоковой левитации, при котором медную проволоку нагревали высокочастотными электромагнитными катушками. Полученные наночастицы меди впоследствии покрывали углеродом in situ с помощью ДБР-горелки, использующей аргон, водород и метан и работающей при атмосферном давлении.

[0018] Bretagnol и др. (19) изучили модификацию поверхности порошка полиэтилена низкой плотности (ПЭНП) в ВЧ плазме низкого давления, работая при 13,56 МГц и используя азот и аммиак в качестве технологического газа. Этот порошок рециркулировали в реактор с псевдоожиженным слоем. Были необходимы времена пребывания порядка 300 секунд для изменения смачиваемости частиц.

[0019] Порошки полиэтилена также обрабатывали так, как описано Leroy и др. (20). Плазменный разряд сопрягали с реактором с псевдоожиженным слоем и обрабатывали порошок в области послесвечения плазмы. Технологический газ представлял собой смесь кислорода и азота. Использовали микроволновую плазму с частотой 2450 МГц и работали при низких давлениях от 0,1 до 20 мбар.

[0020] Настоящее изобретение ссылается на ряд документов, содержание которых включено сюда путем ссылки во всей их полноте.

Сущность изобретения

[0021] Настоящее изобретение относится к способу получения микро- и/или наночастиц с обработанной поверхностью. В одном варианте осуществления настоящее изобретение относится к способу получения микро- и/или наночастиц с обработанной поверхностью, используя горелку диэлектрического барьерного разряда, работающую при атмосферных давлениях или в условиях низкого вакуума. В типичном варианте осуществления обработки поверхности настоящее изобретение относится к способу, в котором химию поверхности микро- и/или наночастиц модифицируют посредством реакции с плазменным разрядом. В еще одном типичном варианте осуществления обработки поверхности настоящее изобретение относится к способу, в котором химию поверхности микро- и/или наночастиц модифицируют посредством осаждения материала покрытия.

[0022] В одном варианте осуществления настоящее изобретение относится к способу получения покрытых микро- и наночастиц, в котором можно преимущественно контролировать толщину нанесенного покрытия (т.е. пленки). Толщина покрытия обычно находится в диапазоне от менее одного нанометра до сотен нанометров.

[0023] Более конкретно, как широко заявлено, настоящее изобретение относится к способу обработки поверхности частиц порошка посредством горелки диэлектрического барьерного разряда, работающей при атмосферных давлениях или в условиях низкого вакуума, содержащему: (а) введение порошкового подаваемого материала в горелку диэлектрического барьерного разряда; (b) модифицирование химии поверхности порошкового подаваемого материала посредством реакции с плазменным разрядом; и (c) сбор частиц с обработанной поверхностью.

[0024] Более конкретно, как широко заявлено, настоящее изобретение относится к способу обработки поверхности частиц порошка, содержащему (а) подачу порошкового материала в виде частиц в горелку диэлектрического барьерного разряда в сборе; (b) модифицирование в полете свойств поверхности частиц в горелке диэлектрического барьерного разряда с получением частиц с обработанной поверхностью; и (c) сбор частиц с обработанной поверхностью. В варианте осуществления настоящего изобретения модифицирование в полете содержит реагирование поверхности частиц с плазменным разрядом. В еще одном варианте осуществления настоящего изобретения модифицирование в полете содержит генерирование материала покрытия посредством инжекции предшественника материала покрытия в горелку диэлектрического барьерного разряда в сборе и осаждение материала покрытия на поверхность частиц, с получением покрытых частиц.

[0025] Более конкретно, как широко заявлено, настоящее изобретение относится к способу обработки поверхности частиц порошка посредством горелки диэлектрического барьерного разряда, работающей при атмосферных давлениях или в условиях низкого вакуума, содержащему: (а) введение порошкового подаваемого материала в горелку диэлектрического барьерного разряда; (b) введение по меньшей мере одного обрабатывающего поверхность материала в горелку диэлектрического барьерного разряда, причем этот материал дает частицы порошка с обработанной поверхностью; и (c) сбор частиц с обработанной поверхностью.

[0026] Более конкретно, как широко заявлено, настоящее изобретение относится к способу обработки поверхности частиц порошка посредством горелки диэлектрического барьерного разряда, работающей при атмосферных давлениях или в условиях низкого вакуума, содержащему: (а) введение по меньшей мере одного предшественника обрабатывающего поверхность материала в горелку диэлектрического барьерного разряда с получением вещества покрытия; (b) контактирование вещества покрытия с порошковым подаваемым материалом; и (c) сбор частиц порошка с обработанной поверхностью.

[0027] Более конкретно, как широко заявлено, настоящее изобретение относится к способу обработки поверхности порошков посредством горелки диэлектрического барьерного разряда, работающей при атмосферных давлениях или в условиях низкого вакуума, содержащему: (а) введение распыленного жидкого подаваемого материала, содержащего диспергированный порошок и по меньшей мере один предшественник обрабатывающего поверхность материала, в горелку диэлектрического барьерного разряда; и (c) сбор частиц порошка с обработанной поверхностью.

[0028] В одном варианте осуществления настоящее изобретение относится к устройству, содержащему горелку диэлектрического барьерного разряда, работающую при атмосферных давлениях или в условиях низкого вакуума, для получения микро- и/или наночастиц с обработанной поверхностью.

[0029] В одном варианте осуществления настоящее изобретение относится к устройству для обработки в полете поверхности частиц порошка, содержащему:

[0030] горелку диэлектрического барьерного разряда, включающую в себя: (i) первый впуск для подачи в горелку плазменного газа; (ii) второй впуск для подачи в горелку порошкового материала в виде частиц; и (iii) разрядную камеру для обработки порошкового материала в виде частиц, причем реакционная камера содержит расположенную на ее внешней поверхности электродную структуру; и

[0031] средства для сбора частиц с обработанной поверхностью;

[0032] в котором плазменный разряд создают путем пропускания плазмообразующего газа через разрядную камеру; этот плазменный разряд вызывает модификацию в полете свойств поверхности частиц.

[0033] Настоящее изобретение также относится к микро- и/или наночастицам с обработанной поверхностью. В одном варианте осуществления настоящее изобретение относится к микро- или наночастицам, содержащим органическое покрытие. В одном варианте осуществления настоящее изобретение относится к микро- или наночастицам, содержащим неорганическое покрытие. В одном варианте осуществления настоящее изобретение относится к микро- или наночастицам, содержащим металлическое покрытие. В типичном варианте осуществления настоящее изобретение относится к микро- или наночастицам, содержащим оксидное покрытие. В еще одном типичном варианте осуществления настоящее изобретение относится к микро- или наночастицам, содержащим нитридное покрытие. В еще одном типичном варианте осуществления настоящее изобретение относится к микро- или наночастицам, содержащим карбидное покрытие.

[0034] Настоящее изобретение также относится к микро- и наночастицам, содержащим покрытие, полученное посредством горелки диэлектрического барьерного разряда, работающей при атмосферных давлениях или в условиях низкого вакуума.

[0035] Настоящее изобретение также относится к микро- и/или наночастицам с обработанной поверхностью, в которых обработка поверхности достигнута посредством горелки диэлектрического барьерного разряда, работающей при атмосферных давлениях или в условиях низкого вакуума.

[0036] Настоящее изобретение также относится к горелке диэлектрического барьерного разряда, работающей при атмосферных давлениях или в условиях низкого вакуума, для обработки поверхности микро- и/или наночастиц. В одном варианте осуществления настоящее изобретение относится к горелке диэлектрического барьерного разряда, работающей при атмосферных давлениях или в условиях низкого вакуума, для модифицирования химии поверхности микро- и/или наночастиц. В одном варианте осуществления настоящее изобретение относится к горелке диэлектрического барьерного разряда, работающей при атмосферных давлениях или в условиях низкого вакуума, для покрытия микро- и/или наночастиц органическим покрытием. В одном варианте осуществления настоящее изобретение относится к горелке диэлектрического барьерного разряда, работающей при атмосферных давлениях или в условиях низкого вакуума, для покрытия микро- и/или наночастиц неорганическим покрытием. В одном варианте осуществления настоящее изобретение относится к горелке диэлектрического барьерного разряда, работающей при атмосферных давлениях или в условиях низкого вакуума, для покрытия микро- и/или наночастиц металлическим покрытием. В одном варианте осуществления настоящее изобретение относится к горелке диэлектрического барьерного разряда, работающей при атмосферных давлениях или в условиях низкого вакуума, для получения микро- и/или наночастиц, имеющих окисленную поверхность.

[0037] Наконец, в одном варианте осуществления настоящее изобретение относится к применению горелки диэлектрического барьерного разряда для обработки в полете поверхности частиц порошка.

[0038] Вышеизложенные и другие цели, преимущества и признаки настоящего изобретения станут более ясными при чтении следующего неограничительного описания иллюстративных вариантов его осуществления, приведенных лишь в качестве примера со ссылкой на сопутствующие чертежи.

Краткое описание чертежей

[0039] На приложенных чертежах:

[0040] ФИГ. 1 (а-j) иллюстрирует блок-схемы различных конфигураций для обработки поверхности и/или покрытия микро- и наночастиц в соответствии с настоящим изобретением.

[0041] ФИГ. 2 (а-d) иллюстрирует различные конфигурации электродов для генерации диэлектрических барьерных разрядов для обработки поверхности и/или покрытия микро- и наночастиц в соответствии с настоящим изобретением; (а) концентрическая конфигурация электродов; (b) соосная конфигурация электродов; (c) конфигурация с оболочечными электродами; и (d) конфигурация с многоступенчатыми электродами в шахматном порядке.

[0042] ФИГ. 3 показывает: (а) фотографию горелки диэлектрического барьерного разряда в сборе, имеющей концентрическую конфигурацию электродов, в работе для получения микро- или наночастиц, либо содержащих и оксидный слой, либо органическое покрытие, в соответствии с одним вариантом осуществления настоящего изобретения; (b) схематичный вид в вертикальном разрезе горелки диэлектрического барьерного разряда в сборе в соответствии с настоящим изобретением; и (c) схематичный вид в вертикальном разрезе наконечника горелки, иллюстрирующий центральный зонд инжекции предшественника обрабатывающего поверхность или порошок материала и высоковольтный и заземленный электроды.

[0043] ФИГ. 4 показывает: (а) фотографию горелки диэлектрического барьерного разряда в сборе, имеющей конфигурацию с охлаждаемыми водой многоступенчатыми оболочечными электродами в шахматном порядке, в работе, в соответствии с одним вариантом осуществления настоящего изобретения; (b) иллюстрацию горелки диэлектрического барьерного разряда в сборе, имеющей конфигурацию с охлаждаемыми водой многоступенчатыми оболочечными электродами в шахматном порядке, в соответствии с одним вариантом осуществления настоящего изобретения; и (c) схематичный вид в вертикальном разрезе горелки диэлектрического барьерного разряда в сборе, имеющей конфигурацию с охлаждаемыми водой многоступенчатыми оболочечными электродами в шахматном порядке, иллюстрирующий различные инжекционные отверстия и каналы водяного охлаждения.

[0044] ФИГ. 5 показывает схематичный вид в вертикальном разрезе горелки диэлектрического барьерного разряда в сборе, содержащей множественные водоохлаждаемые оболочечные электроды, в соответствии с одним вариантом осуществления настоящего изобретения. Горелка в сборе включает в себя входную секцию, содержащую пару модулей, предназначенных для зарядки микро- или наночастиц, и выходную секцию, содержащую последовательность модулей, предназначенных для нанесения покрытия на заряженные микро- или наночастицы.

[0045] ФИГ. 6 (а-c) показывает микрофотографии в просвечивающем электронном микроскопе (ПЭМ) порошка наночастиц кремнезема.

[0046] ФИГ. 7 (а-c) показывает микрофотографии в просвечивающем электронном микроскопе (ПЭМ) покрытых полиэтиленом наночастиц кремнезема, полученных с использованием горелки диэлектрического барьерного разряда в сборе в соответствии с одним вариантом осуществления настоящего изобретения, показывающие по существу гомогенное полиэтиленовое покрытие, имеющее толщину примерно 10 нм.

[0047] ФИГ. 8 (а-b) показывает микрофотографии в просвечивающем электронном микроскопе (ПЭМ) покрытых полиизопреном наночастиц кремнезема, полученных с использованием горелки диэлектрического барьерного разряда в сборе в соответствии с одним вариантом осуществления настоящего изобретения, показывающие по существу гомогенное полиизопреновое покрытие, имеющее толщину примерно 5 нм.

[0048] ФИГ. 9 (а-b) показывает микрофотографии в просвечивающем электронном микроскопе (ПЭМ) покрытых полибутадиеном наночастиц кремнезема, полученных с использованием горелки диэлектрического барьерного разряда в сборе в соответствии с одним вариантом осуществления настоящего изобретения, показывающие по существу гомогенное полибутадиеновое покрытие, имеющее толщину примерно 5 нм.

[0049] ФИГ. 10 (а-c) показывает микрофотографии в сканирующем электронном микроскопе (СЭМ) металлических макрочастиц алюминия.

[0050] ФИГ. 11 (а-c) показывает микрофотографии в сканирующем электронном микроскопе (СЭМ) макрочастиц алюминия, содержащих кремнеземоподобное (SiOxCyHz) покрытие (тетраэтилоксисиликан был предшественником этого покрытия), полученное с использованием горелки диэлектрического барьерного разряда в сборе в соответствии с одним вариантом осуществления настоящего изобретения, показывающие по существу гомогенное кремнеземоподобное покрытие.

[0051] ФИГ. 12 (а-b) показывает микрофотографии в микроскопе с автоэмиссионной пушкой (FEG) наночастиц алюминия.

[0052] ФИГ. 13 (а-b) показывает микрофотографии в микроскопе с автоэмиссионной пушкой (FEG) наночастиц алюминия, содержащих кремнеземоподобное (SiOxCyHz) покрытие (диэтилдиметилсилоксан был предшественником этого покрытия), полученное с использованием горелки диэлектрического барьерного разряда в сборе в соответствии с одним вариантом осуществления настоящего изобретения, показывающие по существу гомогенное кремнеземоподобное покрытие.

[0053] ФИГ. 14 (а-b) показывает микрофотографии в просвечивающем электронном микроскопе (ПЭМ) наночастиц глинозема.

[0054] ФИГ. 15 (а-b) показывает микрофотографии в просвечивающем электронном микроскопе (ПЭМ) наночастиц глинозема, содержащих кремнеземоподобное (SiOxCyHz) покрытие (диэтилдиметилсилоксан был предшественником этого покрытия), полученное с использованием горелки диэлектрического барьерного разряда в сборе в соответствии с одним вариантом осуществления настоящего изобретения, показывающие по существу гомогенное кремнеземоподобное покрытие.

[0055] ФИГ. 16 (а-c) показывает микрофотографии с автоэмиссионной пушкой (FEG) наночастиц титаната бария.

[0056] ФИГ. 17 (а-c) показывает микрофотографии в микроскопе с автоэмиссионной пушкой (FEG) наночастиц титаната бария, содержащих неорганическое покрытие из оксида диспрозия (Dy2O3), полученное с использованием горелки диэлектрического барьерного разряда в сборе в соответствии с одним вариантом осуществления настоящего изобретения, показывающие по существу гомогенное покрытие из оксида диспрозия.

[0057] ФИГ. 18 (а-c) показывает микрофотографии в сканирующем электронном микроскопе (СЭМ) магнитных металлических макрочастиц.

[0058] ФИГ. 19 (а-c) показывает микрофотографии в сканирующем электронном микроскопе (СЭМ) магнитных металлических макрочастиц, содержащих железоподобное покрытие (ферроцен был предшественником этого покрытия), полученное с использованием горелки диэлектрического барьерного разряда в сборе в соответствии с одним вариантом осуществления настоящего изобретения, показывающие по существу гомогенное железоподобное покрытие.

[0059] ФИГ. 20 показывает микрофотографию в сканирующем электронном микроскопе (СЭМ) магнитных металлических макрочастиц, содержащих кобальтоподобное покрытие (кобальтоцен был предшественником покрытия), полученное с использованием горелки диэлектрического барьерного разряда в сборе в соответствии с одним вариантом осуществления настоящего изобретения, показывающую по существу гомогенное кобальтоподобное покрытие.

[0060] ФИГ. 21 показывает энергодисперсионное спектральное (EDS) отображение покрытых кобальтом магнитных частиц, показывающее (голубым цветом) кобальтовое покрытие и (серым цветом) магнитные частицы.

[0061] ФИГ. 22 (а-b) показывает микрофотографии в сканирующем электронном микроскопе (СЭМ) макрочастиц алюминия.

[0062] ФИГ. 23 (а-b) показывает микрофотографии в сканирующем электронном микроскопе (СЭМ) макрочастиц алюминия, содержащих полиацетиленовое покрытие (ацетилен был предшественником этого покрытия), полученное с использованием горелки диэлектрического барьерного разряда в сборе в соответствии с одним вариантом осуществления настоящего изобретения.

[0063] ФИГ. 24 показывает энергодисперсионное спектральное (EDS) отображение покрытых полиацетиленом макрочастиц алюминия, показывающее (красным цветом) алюминиевые частицы и (бело-зеленым цветом) полиацетиленовое покрытие.

[0064] ФИГ. 25 показывает график термического гравиметрического анализа (ТГА), иллюстрирующий потерю массы для покрытых полиэтиленом высокой плотности частиц алюминия, под атмосферой аргона, при температурах в диапазоне от примерно 100°C до примерно 800°C и увеличении температуры со скоростью 10°C/мин; потеря массы при температурах ниже 550°C по существу соответствует количеству полимерного покрытия, добавленного во время процесса нанесения покрытия; наблюдаемое увеличение веса при более высоких температурах соответствует нарастанию оксидного слоя.

[0065] ФИГ. 26 показывает графики термического гравиметрического анализа (ТГА), иллюстрирующие потерю массы для покрытых полиэтиленом (а), полибутадиеном (b) и полиизопреном (c) частиц кремнезема, под атмосферой воздуха, при температурах, находящихся в диапазоне от примерно 100°C до примерно 600°C; потеря массы по существу соответствует количеству полимерного покрытия, добавленного во время процесса нанесения покрытия; наблюдаемое увеличение веса при более высоких температурах соответствует нарастанию оксидного слоя.

Подробное описание иллюстративных вариантов осуществления

[0066] Для того чтобы обеспечить ясное и непротиворечивое понимание терминов, использованных в настоящем описании, ниже предусмотрен ряд определений. Более того, если не определено иное, все используемые здесь технические и научные термины имеют то же значение, которое обычно подразумевается средним специалистом в той области техники, к которой относится данное изобретение.

[0068] Используемые в данном описании и формуле изобретения слова «содержащий» (и любая форма от «содержащий», такая как «содержат» и «содержит»), «имеющий» (и любая форма от «имеющий», такая как «имеют» и «имеет»), «включающий в себя» (и любая форма от «включающий в себя», такая как «включают в себя» и «включает в себя») или «содержащий в своем составе» (и любая форма от «содержащий в своем составе», такая как «содержат в своем составе» и «содержит в своем составе») являются охватывающими или означающими открытое множество и не исключают дополнительных, неперечисленных элементов или стадий способа.

[0069] Термин «примерно» использован для того, чтобы указать, что значение включает разброс из-за ошибки, характерной для прибора или способа, используемого для определения этого значения.

[0070] Используемый в данном описании термин «атмосферные давления или условия низкого вакуума» относится к давлениям, находящимся в диапазоне от примерно 5 атмосфер вплоть до примерно 50 мм рт.ст.

[0071] Используемый в данном описании термин «более низкие частоты» относится к частоте 1 МГц или менее.

[0072] Используемый в данном описании термин «обработка поверхности» относится либо к процессу, в котором поверхность частицы подвергают реакции с газообразной средой (т.е. плазменным разрядом), либо к процессу, в котором материал покрытия осаждают на поверхность частицы. Материал покрытия обычно имеет отличающийся от частицы химический состав. Неограничивающий пример процесса, в котором поверхность частицы подвергают реакции с газообразной средой, содержит процесс окисления. Такой процесс обычно приводит к образованию оксидного слоя. Процессы, в которых поверхность частицы подвергают реакции с газообразной средой, обычно приводят к изменениям в физических и химических свойствах поверхности. Неограничивающие примеры эффектов «обработки поверхности» включают в себя повышенную устойчивость к окислению и/или возгоранию (т.е. пассивацию поверхности), модифицированные гидрофильные и гидрофобные свойства и пониженную склонность к агломерации порошка.

[0073] Используемый в данном описании термин «металлический» относится ко всем содержащим в своем составе металл материалам. Он включает, но не ограничивается ими, чистые металлы, металлоиды, сплавы металлов и подобные комбинации, которые были бы очевидными для квалифицированного специалиста.

[0074] Используемый в данном описании термин «покрытие» относится ко всем типам покрытий. Он включает, но не ограничивается ими, пористые (например, содержащие полости, свободные от покрытия) и непористые покрытия. При непористом покрытии такое покрытие обычно наносят по всей поверхности частицы полностью непрерывным образом, в результате чего никакая первоначальная поверхность частицы не остается открытой. При пористом покрытии поверхность частицы покрыта по меньшей мере частично.

[0075] Взаимозаменяемо используемые в данном описании термины «по существу однородный» или «по существу гомогенный», при их использовании для описания покрытия, означают, что существует мало незначительных локальных вариаций в покрытии.

[0076] Настоящее изобретение относится к способу обработки поверхности частиц порошка посредством горелки диэлектрического барьерного разряда, работающей при атмосферных давлениях или в условиях низкого вакуума. В одном варианте осуществления настоящего изобретения частицы порошка содержат полимерные микро- и наночастицы, металлические микро- и наночастицы или их комбинации. В еще одном варианте осуществления настоящего изобретения частицы порошка содержат микро- и наночастицы оксида металла. Обработка поверхности приводит к модификации химии поверхности этих микро- и наночастиц или, альтернативно, дает покрытые частицы, содержащие слой покрытия в диапазоне толщины от менее чем примерно 1 нм до примерно 50 нм. В одном варианте осуществления настоящего изобретения покрытие содержит полимерный материал. В еще одном дополнительном варианте осуществления настоящего изобретения покрытие содержит металлическое, оксидное, нитридное или карбидное покрытие. Другие покрытия, не ограничиваясь кремнеземоподобными покрытиями, известны в данной области техники и находятся в рамках компетенции квалифицированного специалиста.

[0077] Диэлектрические барьерные разряды обычно характеризуются наличием по меньшей мере одного диэлектрического барьера (т.е. изолятора) и разрядного пространства, расположенных в промежутке между парой электродов. Более того, диэлектрические барьерные разряды ранее были описаны как способные разрушать химические связи, возбуждать атомные и молекулярные частицы и генерировать активные частицы, такие как свободные радикалы. Неограничивающие примеры активных частиц в рамках контекста настоящего изобретения включают атомы, такие как He, Ar и Ne, либо в их основном электронном состоянии, либо в возбужденном состоянии; молекулы, такие как N2, либо в их основном электронном состоянии, либо в возбужденном состоянии, такие как N2, N2*, N2+; и молекулярные фрагменты, такие как CH3, CH2, CH, NH2 и NH. Другие активные частицы известны в данной области техники и находятся в рамках компетенции квалифицированного специалиста. Диэлектрические барьерные разряды могут принимать множество различных форм, в диапазоне от структурированной (т.е. нитевидной структуры) до регулярной и по всей видимости гомогенной структуры (14, 15).

[0078] Горелки диэлектрического барьерного разряда классифицируют как нетермические системы (т.е. неравновесные системы) или системы с холодной плазмой. Термические плазмы имеют электроны и тяжелые частицы при одной и той же температуре (т.е. они находятся в тепловом равновесии друг с другом). Вместе с тем, нетермические плазмы обычно характеризуются как содержащие ионы и незаряженные частицы (тяжелые частицы) при более низких температурах, чем электроны. Поскольку температуры тяжелых частиц в плазме остаются относительно низкими, исключая любое нежелательное разложение полимера, горелки диэлектрического барьерного разряда были описаны как подходящие для процессов полимеризации и осаждения. Присущее горелкам диэлектрического барьерного разряда преимущество над другими обычными горелками с термической плазмой заключается в том, что условия нетермической плазмы можно легко установить при атмосферных давлениях или около них (т.е. атмосферных давлениях или условиях низкого вакуума). Работа при давлении выше или около атмосферного обеспечивает дополнительное преимущество, заключающееся в отсутствие нужды в каком-либо дорогом и сложном оборудовании для поддержания вакуума, особенно при работе в запыленных условиях.

[0079] Типичные примеры промышленных применений, содержащих технологию диэлектрического барьерного разряда, включают в себя генераторы озона и плазменные индикаторные панели (15-17). Рабочие частоты обычно находятся в диапазоне от частоты напряжения сети питания до нескольких ГГц, чаще всего от 1 кГц до 500 кГц.

[0080] Горелка диэлектрического барьерного разряда по настоящему изобретению работает при атмосферных давлениях или в условиях низкого вакуума и может быть легко интегрирована в процесс получения порошка. В соответствии с одним вариантом осуществления настоящего изобретения электрический разряд инициируют в кольцевом пространстве между двумя концентрическими цилиндрическими кварцевыми (т.е. из плавленого кварца, кварцевого стекла) или керамическими трубками (пример ФИГ. 2a). В соответствии с одним вариантом осуществления настоящего изобретения электрический разряд инициируют между парой коаксиальных электродов-втулок, расположенных на поверхности цилиндрической диэлектрической трубки (например, кварцевой или керамической трубки). В соответствии с еще одним вариантом осуществления настоящего изобретения электрический разряд инициируют в цилиндрической кварцевой или керамической трубке между парой полуцилиндрических оболочечных электродов. Керамические трубки являются особенно пригодными в качестве диэлектрических барьеров. В соответствии с еще одним вариантом осуществления настоящего изобретения электрический разряд инициируют между двумя параллельными кварцевыми (т.е. из плавленого кварца, кварцевого стекла) или керамическими пластинами. Другие конфигурации разряда находятся в рамках компетенции квалифицированного специалиста.

[0081] Электроды могут быть охлаждаемыми водой, в зависимости от варианта осуществления горелки диэлектрического барьерного разряда в сборе. Охлаждаемые водой электроды обычно используют для горелок диэлектрического барьерного разряда в сборе, производящих микро- или наночастицы, содержащие органическое покрытие. Охлаждаемый водой электрод обычно гарантирует хорошее охлаждение разряда и воспроизводимость испытания.

[0082] В соответствии с одним вариантом осуществления настоящего изобретения внешний заземленный электрод обычно содержит металлическую пластину или фольгу, металлическую проволочную сетку или металлизированную краску (например, платиновую), наложенную или нанесенную на наружную поверхность внешней кварцевой или керамической трубки (в случае коаксиальной конфигурации) и прокаленную при температуре по меньшей мере 700°C. В соответствии с еще одним вариантом осуществления настоящего изобретения внешний заземленный электрод обычно содержит металлическую пластину или фольгу, металлическую проволочную сетку или металлизированную краску (например, платиновую), наложенную или нанесенную на наружную повер