Система связи с множеством входов и множеством выходов (mimo), имеющая детерминированные каналы, и способ
Иллюстрации
Показать всеИзобретение относится к системам связи с множеством входов и множеством выходов (MIMO), имеющим детерминированные каналы, в которой конфигурация MIMO применена к каналам, работающим в пределах прямой видимости. Технический результат - увеличение пропускной способности канала связи. Система связи MIMO, работающая в пределах прямой видимости, имеющая множество каналов, содержит блок обработки по вычислению канальной матрицы на стороне передачи, или на стороне приема, или на обеих сторонах: на стороне передачи и на стороне приема. Блок обработки по вычислению канальной матрицы обновляет матрицу формирования ортогональных каналов в соответствии с флуктуацией местоположения передающей антенны или местоположения приемной антенны или в соответствии с флуктуацией каналов, при этом матрица формирования ортогональных каналов получена из канальной матрицы множества каналов, а канальная матрица определена посредством относящихся к местоположению геометрических параметров множества каналов. 4 н. и 26 з.п. ф-лы, 20 ил.
Реферат
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к способу мультиплексирования с пространственным разделением (ниже именуемому MIMO ("с множеством входов и множеством выходов)" и, в частности, к системе связи MIMO, надлежащим образом примененной к системе микроволновой связи между стационарными точками, находящимися в пределах прямой видимости.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
За последние годы метод c использованием MIMO стал популярным в области техники беспроводной связи, и сами системы MIMO больше не являются новой технологией. Обычные технологии, в которых используют MIMO, в основном, сосредоточены на мобильной связи, и применение MIMO для стационарной связи не было полностью исследовано. В радиоканалах мобильной связи радиоволна, исходящая из передающей антенны, отражается или рассеивается в соответствии с окружающим ландшафтом и доходит до приемника в виде группы волн, что приводит к возникновению явления замирания, которое являлось препятствием для достижения высококачественной связи. Технология MIMO в мобильной связи не считает явление замирания устрашающим, но рассматривает его как ресурсы окружающей среды с большими потенциальными возможностями, которые свойственны распространению радиоволн при мобильной связи. В этом отношении технологию MIMO расценивают как революционную технологию.
Несмотря на наличие меньшего количества примеров, чем в случае мобильной связи, в непатентном документе 1 раскрыты последствия применения такой технологии MIMO для стационарной радиосвязи в пределах прямой видимости в тех случаях, когда каналы радиосвязи являются детерминированными.
Как описано выше, в мобильной связи каналы рассматривают как вероятностную матрицу. С другой стороны, в случае стационарной радиосвязи в пределах прямой видимости каналы радиосвязи необходимо рассматривать как детерминированные каналы радиосвязи, где взаимное геометрическое расположение передающей и приемной антенн является неизменным.
В вышеупомянутом непатентном документе 1 описано, как изложено ниже, какое влияние оказано на канальную матрицу Н, устанавливающую каналы между передающими и приемными антеннами, в результате увеличения расстояния, на которое разнесены антенны, на обеих сторонах: на стороне передачи и на стороне приема.
[Формула 1]
где n - количество антенн, Нн - транспонированная эрмитова матрица Н, а I - единичная матрица.
Согласно непатентному документу 1 поворот фазы сигнала относительно i-той передающей антенны и k-той приемной антенны, которые расположены линейно таким образом, что являются обращенными друг к другу, между стороной передачи и стороной приема, задают согласно приведенной ниже формуле, и в силу этого передающие и приемные антенны могут быть сформированы посредством линейных антенн.
[Формула 2]
.
Соответственно, когда n=2, то канальная матрица H представлена приведенной ниже формулой:
[Формула 3]
,
где j - символ, представляющий собой мнимое число.
В этом случае возможна конфигурация антенн, удовлетворяющая условию из формулы (1). В непатентном документе 1 описано, что когда удовлетворено условие из формулы (1), то пропускная способность канала связи в конфигурации MIMO становится максимальной при H max.
Таким образом, увеличение пропускной способности канала связи на основании конфигурации MIMO может ожидаться не только в среде мобильной связи, в которой имеет место отражение или рассеяние, но также и в среде детерминированной связи в пределах прямой видимости.
С другой стороны, в системе микроволновой связи между стационарными точками используют диапазон частот от нескольких ГГц до нескольких десятков ГГц, который соответствует длинам волн от нескольких мм до нескольких см. Следовательно, может произойти существенный поворот фазы вследствие движения в направлении антенны, имеющей высокую чувствительность к малозаметному изменению погодных условий, таких как, например, ветер или температура окружающей среды. В такой ситуации трудно обеспечить детерминированную канальную матрицу.
Следует отметить, что теоретический анализ, описание которого приведено ниже, аналитически выявляет, что вышеупомянутое увеличение пропускной способности канала связи может быть достигнуто даже тогда, когда происходит такое смещение в направлении высокочувствительной антенны.
В технологии MIMO множество независимых сигналов передают/принимают в одном и том же диапазоне частот. Следовательно, необходимо разделение/обнаружение сигналов. В качестве средства реализации этого имеется известный способ (ниже, именуемый способом CP (SVD)), основанный на матричных вычислениях с использованием унитарной матрицы, которая получена путем сингулярного разложения (CP). Предполагают, что в идеальном случае в способе CP информация для построения унитарной матрицы может быть передана от стороны приема к стороне передачи. В этом случае, даже когда имеет место вышеупомянутое смещение в направлении высокочувствительной антенны, унитарная матрица действует таким образом, что компенсирует это смещение. В результате этого на основании конфигурации MIMO может быть реализована микроволновая связь между стационарными точками с большой пропускной способностью.
Непатентный документ 1: IEEE TRANSACTIONS ON COMMUNICATIONS, VOL.47, NO. 2, FEBRUARY 1999. P. 173-176, On the Capacity Formula for Multiple Input-Multiple Output Wireless Channels: A Geometric Interpretation.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
ЗАДАЧИ, РЕШАЕМЫЕ ИЗОБРЕТЕНИЕМ
Однако вышеупомянутая информация, передаваемая по линии обратной связи, может привести к увеличению непроизводительных издержек в системе из-за передачи служебных сигналов. Кроме того, необходимо подготовить обратный канал для обмена информацией, передаваемой по линии обратной связи. Следует отметить, что при моделировании канальной матрицы H, описание которой приведено ниже, выполняют анализ, включающий в себя учет смещения в направлении высокочувствительной антенны.
При выполнении сингулярного анализа для постоянных каналов, работающих в пределах прямой видимости, когда эти каналы являются детерминированными, существует положение между антеннами, в котором собственное значение является условием множественности для генерации сингулярной точки. Несмотря на то что сингулярное значение однозначно определено, сингулярные векторы не являются однозначно определенными. Это состояние, которое вызывает особые затруднения с аналитической точки зрения, может вызвать существенную трансформацию сингулярных векторов.
Однако при использовании этого явления возможны различные конфигурации. Описание различных примеров конфигураций, в которых целесообразно используют эти характеристики, приведено ниже.
Главной проблемой в детерминированной конфигурации MIMO в пределах прямой видимости является проблема, заключающаяся в том, что в вышеупомянутом обычном способе должна быть достигнута синхронизация по несущей между антеннами на стороне передачи или на стороне приема. То есть разность фаз между множеством антенн на стороне передачи или на стороне приема должна быть одинаковой, или разность фаз должна быть постоянной.
С другой стороны, в системе микроволновой связи между стационарными точками расстояние, на которое разнесены антенны, должно быть увеличено из-за используемой частоты. Соответственно, вблизи антенн установлены устройства радиосвязи, содержащие гетеродины. То есть проблема необходимости достижения синхронизации по несущей между антеннами накладывает строгое ограничение на построение системы микроволновой связи между стационарными точками.
Следовательно, задачей настоящего изобретения является создание системы связи MIMO, имеющей детерминированные каналы, в которой конфигурация MIMO применена к каналам, работающим в пределах прямой видимости, которые имеют неизменное взаимное геометрическое расположение, для увеличения пропускной способности канала связи, и соответствующего ей способа.
Другой задачей настоящего изобретения является создание системы связи MIMO, способной обеспечивать функционирование, эквивалентное обычному способу CP, без информации, передаваемой по линии обратной связи, которую необходимо передавать от стороны приема к стороне передачи для построения унитарной матрицы в способе СР.
Кроме того, главной задачей настоящего изобретения является создание системы связи MIMO, в которой решена проблема необходимости достижения синхронизации по несущей между антеннами, налагающая строгое ограничение на построение системы микроволновой связи между стационарными точками.
Еще одной задачей настоящего изобретения является создание системы связи с множеством входов и множеством выходов (MIMO), способной обеспечивать функционирование, эквивалентное способу СР, даже при условии сложности обеспечения детерминированной канальной матрицы вследствие существенного поворота фазы, вызванного движением в направлении антенны, имеющей высокую чувствительность к малозаметному изменению погодных условий, таких как, например, ветер или температура окружающей среды.
Конфигурация MIMO согласно настоящему изобретению представляет собой такую связь в пределах прямой видимости, что имеется некоторая корреляция между сигналами множества антенн, и этим она отличается от конфигурации MIMO, используемой в обычной мобильной связи. То есть обычная система мобильной связи или система беспроводной локальной сети, предназначенная для работы в помещении, реализована на основании предположения о том, что какая-либо корреляция между сигналами множества антенн отсутствует. Следовательно, следует отметить, что в отличие от конфигурации MIMO согласно настоящему изобретению обычная конфигурация MIMO не работает в том состоянии, когда имеется некоторая корреляция между антеннами.
СРЕДСТВА РЕШЕНИЯ ЗАДАЧ
Согласно настоящему изобретению для решения вышеупомянутых задач предложена система связи в пределах прямой видимости MIMO, содержащая множество каналов, которая отличается тем, что содержит: блок обработки по вычислению канальной матрицы на стороне передачи, или на стороне приема, или на обеих сторонах: на стороне передачи и на стороне приема, в которой блок обработки по вычислению канальной матрицы обновляет матрицу формирования ортогональных каналов в соответствии с флуктуацией местоположения передающей антенны (которой является, например, передающая антенна, светоизлучающее устройство, громкоговоритель и т.п., используемые при распространении электрических волн) или приемной антенны (которой является, например, приемная антенна, светоприемное устройство, микрофон и т.п., используемые при распространении электрических волн) или в соответствии с флуктуацией каналов.
Для формирования виртуальных ортогональных каналов геометрические параметры каналов устанавливают таким образом, чтобы собственное значение канальной матрицы стало условием множественности, и на одной из сторон: на стороне передачи или на стороне приема выполняют вычисление унитарной матрицы, сформированной на основании собственного вектора, полученного из собственного значения, или собственного вектора, полученного из линейной суммы собственных векторов.
Система связи MIMO представляет собой систему микроволновой связи между стационарными точками, в которой используют множество антенн и которая сформирована с использованием гетеродинов, которые предоставляются независимо для соответствующих антенн на одной из сторон или на обеих сторонах: на стороне передачи и на стороне приема.
Система связи MIMO содержит средство обнаружения флуктуации местоположения передающей антенны или местоположения приемной антенны или флуктуации каналов, и на основании результата обнаружения, полученного из этого средства, производят обновление матрицы формирования виртуальных ортогональных каналов.
ПРЕИМУЩЕСТВА НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ
Система связи MIMO согласно настоящему изобретению содержит множество каналов. Кроме того, система содержит блок обработки по вычислению канальной матрицы на стороне передачи, или на стороне приема, или на обеих сторонах: на стороне передачи и на стороне приема. Блок арифметической обработки канальной матрицы обновляет матрицу формирования ортогональных каналов в соответствии с флуктуацией местоположения передающей антенны или местоположения приемной антенны или в соответствии с флуктуацией каналов. При использовании этой конфигурации имеется возможность демпфирования флуктуации местоположения передающей антенны или местоположения приемной антенны или флуктуации каналов, создавая, тем самым, систему связи MIMO, способную обеспечивать максимальную пропускную способность системы связи.
Кроме того, для формирования виртуальных ортогональных каналов геометрические параметры каналов установлены таким образом, чтобы собственное значение канальной матрицы являлось условием множественности, и вычисление унитарной матрицы, сформированной на основании собственного вектора, полученного из собственного значения, или собственного вектора, полученного из линейной суммы собственных векторов, выполняют на одной из сторон: на стороне передачи или на стороне приема. Это обеспечивает возможность гибкой конструкции системы и возможность реализации конфигурации, в которой отсутствует необходимость использования обратного канала для обмена информацией, передаваемой по линии обратной связи, и конфигурации, в которой выполняют только обработку передач.
Кроме того, система связи MIMO представляет собой систему микроволновой связи между стационарными точками, в которой используют множество антенн и которая сформирована с использованием гетеродинов, которые предоставляются независимо для соответствующих антенн на одной из сторон или на обеих сторонах: на стороне передачи и на стороне приема. При использовании этой конфигурации имеется возможность решить проблему необходимости достижения синхронизации по несущей между антеннами, которая налагает строгое ограничение на построение системы микроволновой связи между стационарными точками.
Кроме того, обработка по вычислению матрицы для формирования виртуальных ортогональных каналов может быть выполнена только на стороне приема. При использовании этой конфигурации может быть создана система связи MIMO, в которой отсутствует необходимость использования обратного канала для периодического и частого обмена информацией, передаваемой по линии обратной связи.
Кроме того, система связи MIMO содержит средство обнаружения флуктуации местоположения передающей антенны или местоположения приемной антенны или флуктуации каналов, и в ней используют результат обнаружения, полученный из этого средства, для обновления матрицы формирования виртуальных ортогональных каналов. При использовании этой конфигурации может быть создана беспроблемная система связи MIMO, имеющая удовлетворительные условия монтажа и жесткую структуру.
Кроме того, система связи MIMO содержит средство передачи контрольных сигналов от стороны передачи к стороне приема, обнаруживает флуктуацию местоположения передающей антенны или местоположения приемной антенны или флуктуацию каналов по контрольным сигналам и производит обновление матрицы формирования виртуальных ортогональных каналов на основании результата обнаружения. При использовании этой конфигурации может быть создана беспроблемная система связи MIMO, имеющая удовлетворительные условия монтажа и жесткую структуру.
Кроме того, система связи MIMO содержит средство передачи контрольных сигналов соответствующих антенн от стороны передачи к стороне приема и на основании контрольных сигналов выполняет обработку по вычислению матрицы для формирования виртуальных ортогональных каналов только на стороне приема. При использовании этой простой обработки может быть создана система связи MIMO, в которой отсутствует необходимость использования обратного канала для периодического и частого обмена информацией, передаваемой по линии обратной связи.
Кроме того, контрольные сигналы, подлежащие передаче от стороны передачи к стороне приема, генерируют до обработки, выполняемой гетеродинами. При использовании этой конфигурации фазовый шум между гетеродинами, сгенерированный на стороне передачи, может быть обнаружен на стороне приема, и сгенерированный фазовый шум может быть скомпенсирован путем обновления матрицы.
Кроме того, обнаружение контрольных сигналов, которые были переданы от стороны передачи к стороне приема, выполняют после обработки, выполненной гетеродинами на стороне приема. При использовании этой конфигурации фазовый шум между гетеродинами, сгенерированный на стороне приема, может быть обнаружен на стороне приема, и сгенерированный фазовый шум может быть скомпенсирован путем обновления матрицы.
Кроме того, контрольные сигналы, переданные от стороны передачи к стороне приема, являются ортогональными между передающими антеннами. При использовании этой конфигурации фазовый шум между гетеродинами и смещение в направлении высокочувствительной антенны, вызванное погодными условиями, могут быть обнаружены простым коррелятором, и обнаруженный фазовый шум или обнаруженное смещение могут быть скомпенсированы путем обновления матрицы.
Кроме того, в качестве каналов, работающих в пределах прямой видимости, могут быть использованы оптические каналы или акустические каналы, а также каналы электрических волн. В этом случае также может быть создана система связи MIMO.
Кроме того, один или оба параметра, которыми являются расстояние, на которое разнесены антенны из множества передающих антенн или из множества приемных антенн, и направление множества передающих антенн или множества приемных антенн, делают изменяемыми. При использовании этой конфигурации может быть создана система связи MIMO, в которой всегда может быть достигнута максимальная пропускная способность системы связи путем регулирования одного или обоих из расстояния, на которое разнесены передающие антенны или приемные антенны, и осевого направления передающих антенн или приемных антенн, вне зависимости от типа геометрической формы каналов, работающих в пределах прямой видимости.
В настоящем изобретении вышеупомянутые эффекты необязательно должны быть достигнуты одновременно, но может быть достигнут, по меньшей мере, один из эффектов.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
На Фиг. 1 показан пример конфигурации системы MIMO, работающей в пределах прямой видимости, в которой использован способ СР, в котором расстояние, на которое разнесены антенны, установлено произвольно и учтена флуктуация местоположения антенны в направлении высокочувствительной антенны;
на Фиг. 2 показан первый пример (первый пример конфигурации) системы MIMO, работающей в пределах прямой видимости, согласно настоящему изобретению, в котором вычисление матрицы на основании унитарной матрицы V выполняют только на стороне передачи;
на Фиг. 3 показан второй пример (второй пример конфигурации) системы MIMO, работающей в пределах прямой видимости, согласно настоящему изобретению, в котором вычисление матрицы на основании унитарной матрицы выполняют только на стороне передачи и в котором виртуальные ортогональные каналы имеют различные значения;
на Фиг. 4 показан третий пример (третий пример конфигурации) системы MIMO, работающей в пределах прямой видимости, согласно настоящему изобретению, в котором вычисление матрицы на основании унитарной матрицы выполняют только на стороне приема и в котором гетеродины предоставлены независимо для соответствующих антенн на стороне передачи;
на Фиг. 5 показан четвертый пример (четвертый пример конфигурации) системы MIMO, работающей в пределах прямой видимости, согласно настоящему изобретению, в котором вычисление матрицы на основании унитарной матрицы выполняют только на стороне приема и в котором гетеродины предоставлены независимо для соответствующих антенн на стороне передачи и на стороне приема;
на Фиг. 6 показан пятый пример (пятый пример конфигурации) системы MIMO, работающей в пределах прямой видимости, согласно настоящему изобретению, в котором вычисление матрицы на основании унитарной матрицы выполняют только на стороне приема, в котором виртуальные ортогональные каналы имеют различные значения и в котором гетеродины предоставлены независимо для соответствующих антенн на стороне передачи и на стороне приема;
на Фиг. 7 показан шестой пример (шестой пример конфигурации) системы MIMO, работающей в пределах прямой видимости, согласно настоящему изобретению, в котором на стороне передачи и на стороне приема установлено соответственно по три антенны и в котором гетеродины предоставлены независимо для соответствующих антенн на стороне передачи и на стороне приема;
на Фиг. 8 показан седьмой пример (седьмой пример конфигурации) системы MIMO, работающей в пределах прямой видимости, согласно настоящему изобретению, в котором на стороне передачи и на стороне приема установлено соответственно по четыре антенны и в котором гетеродины предоставлены независимо для соответствующих антенн на стороне передачи и на стороне приема;
на Фиг. 9 показано сравнение значений отношения сигнал-шум (ОСШ) виртуальных ортогональных каналов, полученных на основании соответствующих способов, в зависимости от расстояния, на которое разнесены антенны;
на Фиг. 10 показан пример конфигурации, в которой значения расстояния, на которое разнесены антенны, отличаются друг от друга на стороне передачи и на стороне приема;
на Фиг. 11 показано моделирование каналов из Фиг. 10;
на Фиг. 12 показана пропускная способность системы связи в случае из Фиг. 10, в котором значения расстояния, на которое разнесены антенны, отличаются друг от друга на стороне передачи и на стороне приема;
на Фиг. 13 показан пример конфигурации, в которой схема расположения антенн между стороной передачи и стороной приема выполнена имеющей ромбовидную форму;
на Фиг. 14 показан пример конфигурации, в котором схема расположения антенн между стороной передачи и стороной приема выполнена имеющей ромбовидную форму и в котором вычисление матрицы на основании унитарной матрицы выполняют только на стороне приема;
на Фиг. 15 показан случай, в котором схема расположения антенн между стороной передачи и стороной приема выполнена имеющей произвольную геометрическую форму;
на Фиг. 16 показан пример, в котором в качестве детерминированных каналов используют оптические каналы;
на Фиг. 17 показан пример, в котором в качестве детерминированных каналов используют акустические каналы;
на Фиг. 18 показан пример конфигурации антенн, используемой в конфигурации, в которой схема расположения антенн между стороной передачи и стороной приема выполнена имеющей произвольную геометрическую форму;
на Фиг. 19 показаны собственные значения виртуальных ортогональных каналов; и
на Фиг. 20 показан пример применения конфигурации, в которой вычисление матрицы выполняют только на стороне передачи.
ПОЯСНЕНИЕ ССЫЛОЧНЫХ ПОЗИЦИЙ
101, 201: блок обработки по вычислению матрицы на основании унитарной матрицы V;
102, 108, 402, 502, 510, 602, 610: блок преобразования частоты;
103, 105, 109, 111, 403, 407, 503, 507, 511, 515, 603, 607, 611, 615: смеситель;
104, 110, 404, 405, 504, 505, 512, 513, 604, 605, 612, 613: гетеродин;
106, 107, 202, 203, 302, 303, 408, 409, 508, 509, 608, 609: блок стационарных антенн;
112, 410, 517: блок обработки по вычислению матрицы на основании унитарной матрицы U;
301: блок обработки по вычислению матрицы на основании матрицы V;
401, 501, 601: блок генерации контрольных сигналов;
406, 506, 514, 606, 614: моделирование фазового шума, вызванного отсутствием синхронизации между несущими;
516, 616: блок обнаружения контрольных сигналов;
617: блок обработки по вычислению матрицы на основании матрицы U;
1601: лазерный диод (ЛД);
1602: фотоприемник (ФП);
1701: генератор ультразвуковых волн;
1702: ультразвуковой микрофон;
1801, 1802: элемент антенны;
1803: соединительная шина;
1804: шарнир;
2001: передающая станция;
2002: принимающая станция 1;
2003: принимающая станция 2.
ПРИМЕРНЫЙ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Ниже приведено описание варианта осуществления настоящего изобретения, который приведен в качестве примера, со ссылкой на сопроводительные формулы и сопроводительные чертежи. Перед этим приведено объяснение теоретической аргументации того факта, что пропускная способность канала связи в конфигурации MIMO становится максимальной даже при наличии детерминированных каналов, работающих в пределах прямой видимости.
Канальная пропускная способность виртуальных ортогональных каналов, основанных на конфигурации MIMO, представлена собственными значениями соответствующих трактов. Затем выполняют анализ собственных значений для конфигурации, в которой использованы две антенны. При последующем моделировании, для которого конфигурация антенн и символы, на которые приведены ссылки, показаны на Фиг. 1, учтено смещение в направлении высокочувствительной антенны. Несмотря на то что для удобства описан случай, в котором используют две антенны, те же самые вычисления могут быть применены вне зависимости от количества антенн.
Потери при распространении и общий сдвиг фазы с учетом расстояния R от передатчика до приемника не являются существенными, поэтому эти члены игнорируют. Различие каналов между диагональным каналом и прямым каналом представлено формулой (4).
[Формула 4]
.
Поворот фазы α, в основе которого лежит различие каналов, представлен формулой (5).
[Формула 5]
.
Предполагая, что радиочастота=30 ГГц, R=5000m, а расстояние, на которое разнесены антенны, dT=dR=5 м, α удовлетворяет следующему уравнению.
[Формула 6]
.
Следовательно, канальная матрица H с учетом сдвига Φ фазы, в основе которого лежит флуктуация местоположения передающей антенны, предназначенной для передачи сигнала s2, которой является одна из двух передающих антенн для передачи сигналов s1 и s2, имеющихся на стороне передачи, представлена формулой (7).
[Формула 7]
.
Следовательно, удовлетворено условие из формулы (8).
[Формула 8]
.
В результате, собственные значения λ1 и λ2, представляющие собой значения пропускной способности канала для виртуальных ортогональных каналов, могут быть вычислены согласно приведенной ниже формуле. В приведенной ниже формуле H H - транспонированная эрмитова матрица канальной матрицы H.
[Формула 9]
.
Результат вычисления по формуле (9) показан на Фиг. 19. Числовой результат на Фиг. 19 показывает случай, в котором через каждую одну антенну передают единичную мощность, и, следовательно, пропускная способность канала связи увеличена в два раза в соответствии с количеством антенн. Здесь следует отметить, что при моделировании, используемом в вышеупомянутых вычислениях, учтено смещение в направлении высокочувствительной антенны. Несмотря на это компонент смещения не появляется в результате для собственного значения, представляющем собой результирующую пропускную способность канала связи. То есть увеличение пропускной способности канала связи посредством конфигурации MIMO возможно даже в случае стационарной радиосвязи в пределах прямой видимости, где каналы радиосвязи являются детерминированными. Пропускная способность канала связи определяется расстоянием, на которое разнесены антенны, не имеющим отношения к смещению высокочувствительной антенны.
Выше был описан случай, в котором используют две антенны. Ниже приведено описание случая, в котором используют три или более антенн.
Поворот фазы между передающей антенной и приемной антенной, имеющими линейную схему расположения, в основании которого лежит различие каналов между ортогональным каналом и прямым каналом, получают из формулы 5. Предполагая, что расстояние, на которое разнесены антенны, имеет общее значение, равное d, поворот фазы представлен формулой (10).
[Формула 10]
.
[Формула 11]
.
Таким образом, когда d и расстояние R от передатчика до приемника заданы таким образом, что удовлетворяется приведенная выше формула (11), и рассматривается конфигурация, в которой использованы три антенны, может быть получена канальная матрица H 3, представленная формулой (12).
[Формула 12]
.
Следовательно, удовлетворяется формула (13).
[Формула 13]
.
Таким образом, можно понять, что все три собственных значения, соответствующих пропускной способности канала связи для виртуальных ортогональных каналов, равны "3" и что полная пропускная способность канала связи увеличена в три раза в соответствии с количеством антенн.
[Формула 14]
.
Аналогичным образом, когда d и расстояние R от передатчика до приемника заданы таким образом, что рассматривается конфигурация, в которой используют четыре антенны, может быть получена канальная матрица H 4, представленная формулой (15).
[Формула 15]
.
Следовательно, удовлетворяется формула (16).
[Формула 16]
Таким образом, можно понять, что все четыре собственных значения, соответствующих пропускной способности канала связи для виртуальных ортогональных каналов, равны "4" и что полная пропускная способность канала связи увеличена в четыре раза в соответствии с количеством антенн.
То есть можно понять, что даже в том случае, когда количество антенн превышает 2, канальная пропускная способность детерминированных каналов, работающих в пределах прямой видимости, увеличивается в степени, соответствующей количеству антенн, которая является эквивалентной максимальной пропускной способности системы MIMO. Следует отметить, что хотя в приведенных ниже примерах для удобства описан случай, в котором используют две антенны, само собой разумеется, что это равным образом применимо и для случая, в котором количество антенн превышает 2.
Ниже приведено описание способа (ниже именуемого способом CP), основанного на вычислении матрицы с использованием унитарной матрицы, которая получена путем сингулярного разложения (CP), в качестве способа разделения/обнаружения сигналов в системе MIMO. В способе CP требуется вычисление матрицы с использованием унитарной матрицы V на стороне передачи и вычисление матрицы с использованием унитарной матрицы U на стороне приема. Для выполнения вычисления матрицы с использованием унитарной матрицы V необходимо передать информацию для построения унитарной матрицы, передаваемую по линии обратной связи от стороны приема к стороне передачи.
Ниже приведено подробное описание варианта осуществления настоящего изобретения, который приведен в качестве примера, со ссылкой на сопроводительные формулы и сопроводительные чертежи.
Как показано на Фиг.1, передаваемые сигналы, обработанные блоком 101 обработки по вычислению матрицы на стороне передачи (на стороне передатчика), на основании унитарной матрицы V, подвергают преобразованию частоты, преобразуя их в радиочастотные сигналы блоком 102 преобразования частоты на стороне передачи, который содержит гетеродин 104, смеситель 103 и смеситель 105, а затем производят их передачу из блока 106 стационарных антенн, содержащего множество антенн, обозначенных как s1 и s2. Система обозначений s1 и s2 основана на эквивалентном представлении полосы частот исходных сигналов.
Здесь следует отметить, что синхронизация по несущей между антеннами достигается посредством сигнала гетеродина, подаваемого из одного гетеродина 104 в смесители 103 и 105. Это является следствием ограничения, налагаемого на систему микроволновой связи между стационарными точками, основанную на мультиплексировании с пространственным разделением, состоящего в том, что детерминированные каналы определяют на основании разности фаз между трактами. Однако, как описано ниже, может быть предусмотрено наличие гетеродинов, которые предоставляются независимо для соответствующих антенн.
Переданные таким способом сигналы принимают блоком 107 стационарных антенн на стороне приема (на стороне приемника), который содержит множество антенн, обозначенных как r1 и r2. Система обозначений r1 и r2 основана на эквивалентном представлении полосы частот исходных сигналов. Принятые сигналы r1 и r2 подвергают преобразованию частоты, преобразуя их в сигналы в полосе частот исходных сигналов, блоком 108 преобразования частоты на стороне приема, который содержит гетеродин 110, смеситель 109 и смеситель 111, а затем обрабатывают блоком 112 обработки по вычислению матрицы на стороне приема на основании унитарной матрицы U, завершая, тем самым, разделение/обнаружение сигналов в системе MIMO.
Здесь следует отметить, что синхронизация по несущей между антеннами достигается посредством сигнала гетеродина, подаваемого из гетеродина 110 в смесители 109 и 111. Это является следствием ограничения, налагаемого на систему микроволновой связи между стационарными точками, основанную на мультиплексировании с пространственным разделением, состоящего в том, что детерминированные каналы определяют на основании разности фаз между трактами.
В этом случае, как описано ниже, гетеродины предоставляются независимо для соответствующих антенн, как и в случае стороны передачи. Отсутствуют особые ограничения на используемые антенны, и ими могут являться параболическая антенна или рупорная антенна. Блоки 101 и 112 обработки по вычислению матрицы могут быть реализованы посредством программного управления или могут быть созданы аппаратными средствами, например, посредством специализированной интегральной схемы (ASIC) или аналогичного устройства.
Ниже приведено описание способа вычисления унитарных матриц V и U с использованием приведенной ниже канальной матрицы H с учетом заданного расстояния, на которое разнесены антенны, и смещения высокочувствительной антенны со ссылкой на формулы.
Канальная матрица H для используемых здесь каналов, работающих в пределах прямой видимости, представлена Формулой (17).
[Формула 17]
,
где α = (при dT=dR), а Φ - изменение фазы, вызванное смещением.
Сингулярная ортогональная матрица Λ 1/2, основанная на собственном значении, представлена формулой (18).
[Формула 18]
.
Унитарную матрицу V и унитарную матрицу U вычисляют с использованием приведенной выше канальной матрицы H в упомянутом порядке.
Унитарная матрица V
Сначала приведено описание вычисления унитарной матрицы V. Предполагают, что собственный вектор, соответствующий канальной матрице H, представленной формулой (19), представлен формулой (20).
[Формула 19]
.
[Формула 20]
.
В этом случае удовлетворяется формула (21).
[Формула 21]
.
Таким образом, из формулы (22) может быть получена формула (23).
[Формула 22]
.
[Формула 23]