Способ высокотемпературной полимеризации полиэтилена в растворе
Иллюстрации
Показать всеИзобретение относится к способу полимеризации этилена и одного или нескольких С3-30 α-олефинов или диолефинов в условиях непрерывной полимеризации в растворе с получением высокомолекулярного полимера. Способ включает осуществление полимеризации в присутствии композиции катализатора, содержащей сокатализатор и комплекс циркония или гафния поливалентного арилоксиэфира, соответствующего формуле:
где М3 представляет собой Hf или Zr, предпочтительно Zr; Ar4 соответствует формуле:
где R11 независимо в каждом случае представляет собой водород, гидрокарбил, содержащий до 50 атомов, не считая водорода, при условии, что, по меньшей мере, в одном случае R11 является пространственно объемным; Т4 независимо в каждом случае представляет собой группу С2-20 алкилен; R21 независимо в каждом случае представляет собой водород, гидрокарбил, содержащий до 50 атомов, не считая водород; R3 независимо в каждом случае представляет собой водород, гидрокарбил, содержащий до 50 атомов; RD представляет собой гидрокарбильную группу, содержащую до 20 атомов, не считая водорода. При этом, по меньшей мере, две группы R3, расположенные на разных ариленоксигруппах, являются пространственно объемными. Полимеры имеют молекулярно-массовое распределение (Mw/Mn) менее чем или равное 3,0, содержание сомономера дает плотности полимера от 0,850 до 0,950, и полимер имеет свойства I10 и I2, удовлетворяющие равенству I10/I2≤10,32 (MI)-0,0814 для значений MI в пределах от 0,01 до 50. Также предложен комплекс металла поливалентного арилоксиэфира. Изобретение позволяет получить полимеры с пониженным значением I10/I2. 2 н. и 18 з.п. ф-лы, 1 ил., 3 табл., 8 пр.
Реферат
Перекрестная ссылка
Настоящая заявка заявляет приоритет от предварительной патентной заявки США 60/801182, поданной 17 мая 2006 года.
Область, к которой относится изобретение
Способы полимеризации олефинов, осуществляемые в растворе при высоких температурах, являются чрезвычайно желательными из-за их высокой производительности, меньшей энергии, необходимой для обработки, ведущей к потере летучести и меньшему отравлению катализатора, что является возможным при таких повышенных температурах. Хотя системы катализатора Циглера-Натта можно коммерчески использовать при высоких температурах, эти катализаторы имеют такие недостатки, как низкая эффективность и низкое включение сомономера при повышенных температурах. Кроме того, полимеры, получаемые с использованием катализаторов Циглера-Натта при повышенных температурах, имеют более широкое молекулярно-массовое распределение, что ограничивает их пригодность для разных применений. Традиционные катализаторы Циглера-Натта обычно состоят из многих видов каталитических групп, которые имеют разную степень окисления и разное координационное окружение с лигандами. Примеры таких гетерогенных систем известны и включают галогениды металлов, активированные металлоорганическим сокатализатором, такие как хлорид титана на носителе из хлорида магния, активированный алюморганическим и алюморганогалогенидным сокатализаторами. Поскольку эти системы содержат более чем одну каталитическую разновидность, они имеют центры полимеризации с разными активностями и различной способностью включения сомономера в полимерную цепь. Последствием такой включающей несколько центров химии является продукт с низким контролем архитектуры полимерной цепи. Более того, разница в индивидуальных каталитических центрах дает полимеры с высокой молекулярной массой по одним центрам и низкой молекулярной массой по другим, приводя к полимеру с широким молекулярно-массовым распределением и гетерогенной композиции. Из-за такой гетерогенности механические и другие свойства полимеров могут быть ниже желаемых.
Совсем недавно было показано, что композиции катализаторов на основе хорошо известных комплексов металлов, в частности комплексов переходных металлов, такие как катализаторы со стесненной геометрией (CGCs), металлоцены и пост-металлоцены, дают продукты с высоким включением сомономеров и узким молекулярно-массовым распределением. Однако эти катализаторы часто обладают низкой стабильностью при высоких температурах и также являются низкоэффективными при повышенных температурах полимеризации. Кроме того, молекулярная масса полимеров, образованных из этих катализаторов, часто существенно снижается с повышением температуры, особенно для полимеров, содержащих значительные количества сомономера (низкая плотность). Таким образом, способность большинства катализаторов полимеризации олефинов включать большее количество α-олефинов в этилен/α-олефиновый coполимер снижается с повышением температуры полимеризации из за того, что константа сополимеризации, r1, зависит от температуры полимеризации.
Константы сополимеризации катализаторов можно получить известными метoдами, например методом, описанным в "Linear Method for Determining Monomer Reactivity Ratios in Copolymerization", M. Fineman and S. D. Ross, J. Polymer Science, 5, 259 (1950) или "Copolymerization", F. R. Mayo and C. Walling, Chem. Rev., 46, 191 (1950). Одна из широкоиспользуемых моделей coполимеризации основана на следующих уравнениях:
где Mi относится к молекуле мономера, которая произвольно обозначена как "i", где i=1, 2; и M2* относится к растущей полимерной цепи, к которой мономер i был только что присоединен.
Величины kij представляют собой константы скорости для указанных реакций. Например, в coполимеризации этилена/пропилена kij представляют собой скорость, при которой этиленовое звено включается в растущую полимерную цепь, в которой ранее включенное мономерное звено также представляет собой этилен. Константы сополимеризации, представленные как: r1=k11/k12 и r2=k22/k21, где k11, k12, k22 и k21 представляют собой константы скорости присоединения этилена (1) или пропилена (2) к каталитическому центру, где последним полимеризующимся мономером является этилен (k1χ) или пропилен (k2χ).
Композиции некоторых пост-металлоценовых катализаторов, основанных на комплексах металлов Группы 3-6 или Лантанидов, предпочтительно комплексах металлов Группы 4 связанных мостиковой связью двухвалентных ароматических лигандов, содержащих двухвалентную хелатообразующую группу основания Льюиса, раскрыты для использования в полимеризации олефинов в патенте США № 6827976 и US 2004/0010103. Как правило, эти комплексы металлов полезны для использования в полимеризации в растворе при повышенных температурах. Однако их использование при более высоких реакционных температурах для получения этилен/α-олефиновых сополимеров часто приводит к полимерам с высоким отношением I10/I2, как считают, из-за высоких уровней включения длинноцепочечных мономеров, образуемых in situ в используемых условиях полимеризации (образование длинноцепной разветвленности). Для многих применений присутствие такой длинноцепной разветвленности может привести к образованию полимерных продуктов, обладающих выгодными свойствами, благодаря улучшенной обрабатываемости и прочности до обжига, с сохранением при этом узкого молекулярно-массового распределения. Однако для некоторых других применений, таких как пленки, волокна и адгезивы, высокие уровни длинноцепной разветвленности могут быть нежелательными. В частности, более низкую прочность на разрыв пленок, полученных из таких полимеров, более низкие свойства к волокнообразованию и вытягиванию и ухудшенную клейкость в горячем состоянии можно соотнести с повышенными значениями I10/I2. Соответственно, желательно было бы обеспечить пост-металлоценовые катализаторы, обладающие способностью обеспечения сополимеров этилена и одного или нескольких C3-20 α-олефинов с более низкими значениями I10/I2 с сохранением при этом хороших высокотемпературных рабочих условий.
Кроме того, растворимость этого класса пост-металлоценовых металлических комплексов в алифатических или циклоалифатических углеводородных растворителях часто ниже, чем это является желательным. Растворимость катализатора является весьма важной с точки зрения промышленного применения, в целях оптимизации эффективности катализатора и снижения объемов поставки катализаторов. Чем большее количество комплекса металла можно растворить в данном объеме растворителя, тем большее снижение затрат можно получить, связанных с хранением и перевозками. Кроме того, отравление катализатора из-за естественного присутствия примесей в растворителе становится значительно более проблематичным с ограничением концентраций. Больший объем катализатора утрачивается или теряется из-за отравления.
Следовательно, выбор композиций катализатора, способных к образованию этилен/α-олефиновых сополимеров с повышенной эффективностью при повышенных реакционных температурах, и получение полимеров с уменьшенным или низким значением I10/I2, является чрезвычайно желательным. Также чрезвычайно желательным является использование катализаторов, имеющих повышенную растворимость в алифатических или циклоалифатических углеводородах.
В US 2005/0215737 A1 раскрывается непрерывный способ полимеризации олефинов в растворе для получения этилен-бутеновых и этилен-пропиленовых сополимеров при высокой конверсии этилена.
Для промышленного получения высокомолекулярных полиолефинов, в частности непрерывным способом в растворе, особенно желательно осуществление реакции полимеризации в условиях относительно высокой температуры в реакторе, с высокой конверсией олефиновых мономеров в полимер в реакторе с высоким количеством твердых частиц - все это при высокой эффективности катализатора. Такое сочетание требований к процессу сильно ограничивает выбор комплекса металла, который может быть подходящим для использования. Комплексы металлов, которые являются подходящими для использования в менее строгих условиях, в действительности могут быть неприемлемыми для использования в коммерческих условиях переработки. Комплексы металлов, которые являются относительно хорошими агентами включения сомономера в широких температурных пределах с ограниченной способностью включения более длинноцепочечных сомономеров, являются особенно желательными.
В WO 99/45041 раскрывается другой непрерывный способ полимеризации олефинов в растворе с использованием связанных мостиковой связью гафноценовых комплексов с некоординирующими анионными сокатализаторами. Хотя полученные полимеры содержали значительные количества сомономера, эффективность катализаторов была относительно низкой и молекулярная масса полимеров, даже в отсутствие агента цепной передачи, была меньше, чем это желательно.
В WO 03/102042 раскрывается способ высокотемпературной полимеризаци олефинов в растворе с использованием комплексов переходных металлов с инденоиндолилом для получения полиолефинов при температурах выше чем около 130°C. В одном примере coполимеризацию этилена и 1-гексена осуществляли при 180°C с получением полимера, имеющего более низкое включение сомономеров (плотность = 0,937 г/см3) при относительно низкой эффективности катализатора.
Авторами настоящего изобретения было обнаружено, что некоторые комплексы металлов можно использовать в способах полимеризации в растворе для получения относительно высокомолекулярного этилена, содержащего сополимеры, содержащие относительно высокие количества C3-8 α-олефинового сомономера, включенного в них, с сохранением при этом относительно низких значений I10/I2, что указывает на пониженное образование длинноцепной разветвленности. Более того, было обнаружено, что растворимость таких комплексов металлов в алифатических или циклоалифатических углеводородах (измеренная как растворимость при 20°C в метилциклогексане, гексане или смеси гексанов) является исключительно и непредсказуемо высокой. Следовательно, обеспечивается способ получения таких олефиновых полимерных продуктов, особенно высокомолекулярных полиэтиленовых сополимеров, имеющих пониженные значения I10/I2, при очень высокой эффективности катализатора.
Сущность изобретения
В соответствии с настоящим изобретением предлагаются некоторые комплексы металлов, которые можно использовать в высокоэффективном способе полимеризации в растворе для получения этилен/α-олефиновых сополимеров, в частности сополимеров этилена с 1-бутеном, 1-гексеном или 1-октеном. Кроме того, обеспечиваются некоторые комплексы металлов, отличающиеся высокой эффективностью полимеризации и высокой производительностью, благодаря их повышенной растворимости в алифатических или циклоалифатических углеводородах. В конечном варианте воплощения настоящего изобретения обеспечивается улучшенный непрерывный способ высокотемпературной полимеризации в растворе для получения указанных выше этиленовых сополимеров, обладающих желательным спектром физических свойств, прежде всего пониженным значением I10/I2.
Более конкретно в соответствии с настоящим изобретением можно получать сополимеры, имеющие относительно высокую молекулярную массу (с соответствующе низкими индексами расплава) и высокими уровнями включения сомономеров (низкие плотности), имеющих относительно низкое значение I10/I2. Полимеры можно получить в условиях высоких температур, высокой конверсии, при высокой эффективности катализатора.
Настоящее изобретение является особенно выгодным для использования в условиях непрерывной полимеризации в растворе, где реакционную смесь, включающую комплекс металла, активирующий сокатализатор, необязательно агент цепной передачи и, по меньшей мере, один C2-20 α-олефин, непрерывно добавляют в реактор, работающий в условиях полимеризации в растворе, и полимерный продукт непрерывно или полунепрерывно извлекают из реактора. В одном варианте воплощения настоящее изобретение используют для получения сополимеров этилена и, по меньшей мере, одного C3-8 α-олефина, предпочтительно этилена и 1-бутена, этилена и 1-гексена или этилена и 1-октена, имеющих низкое значение I10/I2 и уменьшенную длинноцепную разветвленность. Кроме того, такой способ может включать использование композиций катализатора, включающих более чем один комплекс или соединение металла, и/или несколько реакторов, необязательно в сочетании с агентом цепной передачи.
Настоящее изобретение является особенно подходящим для получения смол, которые используют в изоляционном слое электрических проводов и кабелей, особенно в среде и для применений в условиях высокого напряжения, в пленках, включая многослойные и однокомпонентные пленки, в волокнах и других экструдированных изделиях, и в качестве компонентов адгезивов.
Краткое описание чертежей
На фиг.1 представлены значения I10/I2 для этилен/октеновых сополимеров, как функция от температуры реактора, для некоторых комплексов металлов.
Подробное описание изобретения
Все ссылки на Периодическую Таблицу Элементов, имеющиеся в настоящей заявке, должны относиться к Периодической Таблице Элементов, которая опубликована и на которую сохраняются авторские права CRC Press, Inc., 2003. Также любые ссылки на Группу или Группы относятся к Группе или Группам, отраженным в этой Периодической Таблице Элементов, с использованием системы IUPAC для нумерации групп. Если не указано иное, не следует из контекста или не является общепринятым в уровне техники, все части и проценты приведены на основании массы и все методы испытаний используются в настоящее время, как они были заявлены на момент их подачи. В соответствии с патентной практикой США содержание любого патента, патентной заявки или публикации, на которые ссылаются в настоящей заявке, включено в настоящую заявку посредством ссылки во всей полноте (или эквивалентная версия США включена таким образом посредством ссылки), особенно это касается раскрытия способов синтеза, определений (при условии, что они не противоречат какому-либо определению, представленному в настоящей заявке) и общих знаний, известных из уровня техники.
Термин "включающий" и его производные не исключает присутствия какого-либо дополнительного компонента, стадии или процедуры, независимо от того раскрыты они в настоящей заявке или нет. Во избежание каких-либо сомнений все композиции, заявленные в настоящей заявке, через использование термина "включающий" могут включать любую дополнительную добавку, адъювант или соединение, полимерного или иного типа, если не указано иное. В отличие от этого термин "состоящий по существу из” исключает из объема какого-либо последующего перечисления любой другой компонент, стадию или процедуру, за исключением тех, которые не являются существенными для работы. Термин "состоящей из” исключает любой другой компонент, стадию или процедуру, которые конкретно не обозначены или не перечисляются. Термин "или", если не указано иное, относится к перечисленным членам как индивидуально, так и в любом сочетании.
Как это использовано в настоящей заявке в отношении химического соединения, если конкретно не указано иное, единственное число включает все изомерные формы и наоборот (например, "гексан" включает все изомеры гексана, индивидуально или вместе). Термины "соединение" и "комплекс" используются взаимозаменяемым образом в настоящей заявке и относятся к органическим, неорганическим и металлоорганическим соединениям. Термин "атом" относится к наименьшей составляющей элемента независимо от ионного состояния, а именно независимо от того несет ли она заряд или частичный заряд или является связанной с другим атомом. Термин "гетероатом" относится к атому, отличному от углерода или водорода. Предпочтительные гетероатомы включают: F, Cl, Br, N, O, P, B, S, Si, Sb, Al, Sn, As, Se и Ge. Термин "аморфный" относится к полимеру, не имеющему точки плавления кристаллического вещества, как определено методом дифференциальной сканирующей калориметрии (DSC) или эквивалентными методами.
Термин "гидрокарбил" относится к одновалентным заместителям, содержащим только атомы водорода и углерода, включая разветвленные или неразветвленные, насыщенные или ненасыщенные, циклические, полициклические или нециклические группы. Примеры включают группы алкил-, циклоалкил-, алкенил-, алкадиенил-, циклоалкенил-, циклоалкадиенил-, арил- и алкинил-. "Замещенный гидрокарбил" относится к углеводородной группе, которая замещена одной или несколькими неуглеводородными группами заместителей. Термины "содержащий гетероатом углеводород" или "гетерогидрокарбил" относятся к одновалентным группам, в которых присутствует, по меньшей мере, один атом, отличный от водорода или углерода, вместе с одним или несколькими углеродными атомами и одним или несколькими водородными атомами. Термин "гетерокарбил" относится к группам, содержащим один или несколько углеродных атомов и один или несколько гетероатомов, но не содержащим атомов водорода. Связь между углеродным атомом и любым гетероатомом, а также связи между любыми двумя гетероатомами могут представлять собой простую или множественную ковалентную связь или координационную или другую донорную связь. Так, алкильная группа, замещенная группой гетероциклоалкил-, арил- замещенный гетероциклоалкил-, гетероарил-, алкил-замещенный гетероарил-, алкокси-, арилокси-, дигидрокарбилборил-, дигидрокарбилфосфино-, дигидрокарбиламино-, тригидрокарбилсилил-, гидрокарбилтио- или гидрокарбилселено-, охватывается термином гетероалкил. Примеры конкретных гетероалкильных групп включают группы цианометил-, бензоилметил-, (2-пиридил)метил- и трифторметил-.
Как это использовано в настоящей заявке, термин "ароматический" относится к многоатомным, циклическим, сопряженным кольцевым системам, содержащим (4δ+2) π-электронов, где δ представляет собой целое число, больше чем или равное 1. Термин "конденсированный", как это использовано в настоящей заявке в отношении кольцевых систем, содержащих два или более многоатомных циклических колец, означает, что в отношении, по меньшей мере, двух из этих колец, по меньшей мере, одна пара смежных атомов является включенной в оба кольца. Термин "арил" относится к одновалентному ароматическому заместителю, который может представлять собой одно ароматическое кольцо или несколько ароматических колец, которые являются конденсированными вместе, связанными ковалентно или связанными общей для них группой, такой как метиленовая или этиленовая группа. Примеры ароматического кольца(колец) включают, среди прочих, фенил, нафтил, антраценил и бифенил.
"Замещенный арил" относится к арильной группе, в которой один или несколько атомов водорода, связанных с любым углеродом, замещены одной или несколькими функциональными группами, такими как алкил, замещенный алкил, циклоалкил, замещенный циклоалкил, гетероциклоалкил, замещенный гетероциклоалкил, галоген, алкилгалогены (например, CF3), гидрокси, амино, фосфидо, алкокси, амино, тио, нитро, и как насыщенные, так и ненасыщенные циклические углеводороды, которые являются конденсированными с ароматическим кольцом(кольцами), связаны ковалентно или связаны общей для них группой, такой как метиленовая или этиленовая группа. Общая связывающая группа также может представлять собой карбонил, как в бензoфеноне, или кислород, как в дифениловом эфире, или азот, как в дифениламине.
Термин "пространственно объемный" относится к заместителям, занимающим значительный объем, который не находится в плоскости группы арил- или группы арилен-, с которыми они связаны (некопланарный). Группы, которые считаются пространственно объемными, в целях настоящего изобретения могут быть идентифицированы на основании теоретических расчетов в соответствии с известными методами. Один подходящий метод, известный как QSAR анализ, раскрыт в C. Hansch and A. Leo: "Exploring QSAR Fundamentals and Applications in Chemistry and Biology" Chapter 3 (ACS Professional Reference Book, Washington, D.C. (1995)). В соответствии с этим методом можно рассчитать некоторые пространственные параметры, указанные как Es, что является показателем пространственной объемности заместителя в трехмерном пространстве, и B1, что является показателем пространственной объемности заместителя в двухмерном пространстве. В целях настоящего изобретения трехмерная объемность является наиболее значимым показателем эффективности, и, следовательно, Es значения предпочтительно используют для указания пространственной объемности. Предпочтительные группы пространственно объемных лигандов имеют значения B1, равные 1,75 или выше, предпочтительно 1,90 или выше и наиболее предпочтительно 2,50 или выше. Наиболее предпочтительные группы пространственно объемных лигандов имеют значения Es -1,70 или меньше, предпочтительно -2,30 или меньше и наиболее предпочтительно -2,50 или меньше.
Варианты воплощения настоящего изобретения обеспечивают новый способ в растворе для получения олефиновых полимеров с использованием композиции катализатора, включающей комплекс переходного металла, при высокой температуре и высокой эффективности катализатора, где получаемые полимеры имеют различную плотность (из-за разных количеств сомономера, включенного в полимер) и относительно низкое отношение I10/I2. Особый интерес представляет возможность получения высокомолекулярных этилен/α-олефиновых сополимеров при температуре реакции от 130 до 200°C, в условиях высокой конверсии, при очень высокой эффективности катализатора. Желательно, чтобы эти полимеры имели узкое молекулярно-массовое распределение (Mw/Mn), меньше чем или равное 3,0, предпочтительно чем или равное 2,7 и наиболее предпочтительно чем или равное 2,4, при этом содержание сомономера дает плотность полимера от 0,850 до 0,950, более предпочтительно от 0,860 до 0,930 и наиболее предпочтительно от 0,865 до 0,920, и I10/I2 < 10, более предпочтительно I10/I2 от 6,0 до 10,0. Такие полимеры пригодны для использования там, где желательны улучшенные эктрузионные свойства, например в полимерах для формования и экструзии, особенно для получения пленок, волокон или для изоляции электрических проводов и кабелей.
Термин "полимер", как это использовано в настоящей заявке, относится к макромолекулярному соединению, полученному полимеризацией одного или нескольких мономеров. Полимер относится к гомополимерам, сополимерам, тройным сополимерам, сополимерам и т.д. Термин "сополимер(copolymer)" используют в настоящей заявке взаимозаменяемо с термином coполимер(interpolymer), и он относится к полимерам, включающим в полимеризованной форме, по меньшей мере, два coполимеризуемых мономера или включающим длинноцепную разветвленность в результате in situ реакций обрыва цепи/образования олефинов и повторного включения образованного in situ олефина. Следовательно, сополимеры могут быть результатом полимеризации одного мономера в правильно выбранных рабочих условиях. Наименее превалирующий мономер в полученном coполимере обычно обозначают термином "сомономер". Длина цепи длинноцепных разветвлений, указанных выше, в результате длиннее, чем длина углеродной цепи, полученной полимеризацией какого-либо специально выбранного добавленного сомономера, и в частности больше чем 6 атомов углерода. Присутствие длинноцепной разветвленности можно определить по повышенной чувствительности полимера к разрыву, как раскрыто в ЕР-А-608369, и в других документах. Предпочтительно для использования в настоящем изобретении длинноцепная разветвленность очень низкая. Предпочтительные полимеры в соответствии с настоящим изобретением имеют Отношение Индекса Расплава (MIR), которое представляет собой отношение вязкостей расплава полимера, измеренных при разных нагрузках, в частности значения I21/I2 меньше чем 30 или значения I10/I2 меньше чем 10. Кроме того, способ и получаемые полимеры могут быть охарактеризованы взаимосвязью между индексом расплава полимера (MI), удовлетворяющей уравнению: I10/I2≤10,32 (MI)-00814 для значений MI в пределах от 0,01 до 50, предпочтительно от 0,1 до 30 и наиболее предпочтительно от 0,3 до 10.
Способ, описанный в настоящей заявке, можно использовать для получения сополимеров этилена и С3-8 α-олефина, в частности сополимеров этилена с 1-бутеном, 1-гексеном или 1-октеном, а также сополимеров этилена, пропилена и несопряженного диена, например EPDM сополимеров. Предпочтительными сополимерами являются этилен/1-октеновые сополимеры, содержащие от 2 до 20, предпочтительно от 3 до 12 мольных процентов октенового сомономера.
Условия полимеризации обычно относятся к температуре, давлению, содержанию мономера (включая концентрацию сомономера), концентрации катализатора, концентрации сокатализатора, конверсии мономера, или другим условиям, которые влияют на свойства получаемого полимера. При работе способа в соответствии описанными в настоящем изобретении условиями полимеризации можно получить высокомолекулярные полимеры, имеющие относительно высокое включение сомономеров, с высокой активностью катализатора, низким использованием сокатализатора и высоким значением I10/I2 или MIR. В частности возможны активности (в расчете на массу полимера к массе переходного металла) больше чем 0,5 г/мкг, предпочтительно больше чем 0,55 г/мкг и даже больше чем 0,6 г/мкг. Растворимость комплексов металлов, желательно, составляет, по меньшей мере, 5 массовых процентов, предпочтительно, по меньшей мере, 6 массовых процентов, измеренная при 20°C в гексане или метилциклогексане или смеси гексанов (гидрированные пропиленовые димеры коммерчески доступны как Isopar EТМ от фирмы ExxonMobil Chemicals Inc.).
Среднемассовую молекулярную массу полимера (Mw) измеряют при помощи гель-проникающей хроматографии, один метод которой описан в патенте США № 5272236. Альтернативно индекс расплава I2, I10 или I21 измеренный, например, в соответствии с ASTM D-1238, можно использовать как показатель молекулярной массы. Как правило, индекс расплава находится в обратной зависимости от молекулярной массы полимера. Чем выше молекулярная масса, тем ниже индекс расплава, хотя взаимозависимость необязательно является линейной.
Один вариант воплощения настоящего изобретения представляет способ, который включает контактирование этилена и одного или нескольких C3-8 α-олефинов и необязательно сопряженного диена в непрерывном способе полимеризации в растворе. Способ по настоящему изобретению особенно выгоден для использования в условиях полимеризации, где реакционную смесь, включающую комплекс металла, сокатализатор, этилен и, по меньшей мере, один C3-8 α-олефиновый сомономер и необязательный диолефин (или отдельные такие компоненты), непрерывно или периодически добавляют в реактор, работающий в условиях полимеризации в растворе, необязательно при дополнительном присутствии агента цепной передачи, и полимеризованный продукт непрерывно или полунепрерывно извлекают из реактора. Этот способ предпочтительно включает полимеризацию этилена и одного или нескольких C3-8 α-олефинов и или диолефинов с использованием комплекса циркония и сокатализатора, примерно имеющего формулу [(C14-18H27-35)CH3N]+[B(C6F5)4]-, и необязательно алюмоксанового акцептора, в условиях непрерывной полимеризации в растворе, при температуре от 100 до 200°C, предпочтительно от 120 до 190°C, в условиях высокой конверсии этилена (>85 процентов, предпочтительно >90 процентов), который дает полимер с плотностью в пределах от 0,850 до 0,950 г/см3, предпочтительно в пределах от 0,860 до 0,930 г/см3 и наиболее предпочтительно в пределах от 0,865 до 0,920 г/см3, индексом расплава (I2) от 0,01 до 50,0, предпочтительно от 0,1 до 30,0 и наиболее предпочтительно от 0,3 до 10,0, узким молекулярно-массовым распределением (Mw/Mn < 3,0, предпочтительно <2,7, особенно предпочтительно <2,5), с эффективностью катализатора больше чем 0,5 гполимера/мкгметалла и концентрацией агента цепной передачи от 0,0 до 2,5 мольных процентов, предпочтительно от 0,01 до 2,0 мольных процентов.
Когда используют агент цепной передачи, используют количество, достаточное для того, чтобы получить существенное снижение молекулярной массы (>10 процентов) по сравнению со сравнительной полимеризацией без использования агента цепной передачи. Чрезвычайно желательно регулирование используемого количества агента цепной передачи таким образом, чтобы получить полимер, имеющий Mn, по меньшей мере, 50000. Наиболее предпочтительным агентом цепной передачи является водород.
К удивлению, комплексы металлов согласно настоящему изобретению способны к образованию полимеров с чрезвычайно высокой молекулярной массой в различных условиях полимеризации, сохраняя при этом узкое молекулярно-массовое распределение (<3,0) и эффективность катализатора больше чем 0,5 гполимера/мкгметалла, делая, таким образом, возможным использование агента цепной передачи для контроля молекулярной массы. Особенно удивительным является тот факт, что плотность (содержание сомономера) относительно не зависит от влияния температуры полимеризации, и длинноцепная разветвленность сводится к минимуму по сравнению с другими катализаторами представленного типа, содержащими другие заместители. Это делает возможным получение этилен/α-олефиновых сополимеров с разными уровнями сомономера, связанными с относительно низким I10/I2.
КОМПЛЕКСЫ МЕТАЛЛОВ
Подходящие комплексы металлов для использования в соответствии с настоящим изобретением включают соединения, соответствующие формуле:
где M3 представляет собой Hf или Zr, предпочтительно Zr;
Ar4 независимо в каждом случае представляет собой замещенную C9-20 арильную группу, в которой заместители, независимо в каждом случае, выбраны из группы, состоящей из алкильных; циклоалкильных и арильных групп; и их галоген-, тригидрокарбилсилил- и галогенгидрокарбил-замещенных производных, при условии, что заместитель не должен обладать копланарностью с арильной группой, с которой он связан;
T4 независимо в каждом случае представляет собой C2-20 алкиленовую, циклоалкиленовую или циклоалкениленовую группу или их инертно-замещенное производное;
R21 независимо в каждом случае представляет собой водород, галоген, гидрокарбил, тригидрокарбилсилил, тригидрокарбилсилилгидрокарбил, алкокси или ди(гидрокарбил)аминогруппу, содержащих до 50 атомов, не считая водорода;
R3 независимо в каждом случае представляет собой группу водород, галоген, гидрокарбил, тригидрокарбилсилил, тригидрокарбилсилилгидрокарбил, алкокси или амино, содержащих до 50 атомов, не считая водорода, или две R3 группы на одном и том же ариленовом кольце вместе, или группа R3 и R21 на одном и том же или на разных ариленовых кольцах вместе образуют двухвалентную группу лиганда, связанную с ариленовой группой в двух положениях, или связывают вместе два различных ариленовых кольца; и
RD независимо в каждом случае представляет собой галоген или гидрокарбил или тригидрокарбилсилильную группу, содержащих до 20 атомов, не считая водорода, или 2 RD группы вместе представляют собой гидрокарбилен, гидрокарбадиил, диен или поли(гидрокарбил)силиленовую группу.
Авторы настоящего изобретения обнаружили, что каждая из групп Ar4 должна быть замещенной, по меньшей мере, одной пространственно объемной группой и предпочтительно замещенной двумя такими группами для получения полимеров с отношением I10/I2 в желаемых пределах в условиях реакции, раскрытых в настоящем изобретении. Более желательно, чтобы, по меньшей мере, одна группа R3 и предпочтительно две такие группы R3 на различных ариленовых кольцах также являлись пространственно объемными. По существу эквивалентную растворимость комплекса металла можно получить за счет несколько повышенного отношения I10/I2, когда группы R3, расположенные на ариленоксигруппе, представляют собой линейные алкильные группы. Наиболее предпочтительно, чтобы группы заместителей R3, расположенные в обоих 4-положениях ариленовых групп в комплексе металла, являлись пространственно объемными.
Более предпочтительно группы Ar4 соответствуют формуле:
где R11, независимо в каждом случае, представляет собой водород, галоген, гидрокарбил, тригидрокарбилсилил, тригидрокарбилсилилгидрокарбил, алкокси или ди(гидрокарбил)аминогруппу, содержащих до 50 атомов, не считая водорода, или две группы R11 вместе представляют собой часть кольца, связанную с арильной группой в двух положениях, при условии, что, по меньшей мере, в одном случае группа R11 или двухвалентное производное двух таких групп R11 является пространственно объемной и/или не должна обладать копланарностью с арильным кольцом, с которым она связана.
Желательно, чтобы заместители R11 и R3 представляли собой пространственно объемные моновалентные группы лигандов, не копланарные с фениленовым кольцом, с которым они связаны, особенно группы третичного алкила, втор-алкила, циклоалкила, арила, тригидрокарбилсилила, три(гидрокарбил)силилгидрокарбила или (гидрокарбил)арила, содержащие от 3 до 20 неводородных атомов. Примеры включают: трет-бутил, втор-бутил, трет-октил (2,4,4-триметилпентан-2-ил), 1-фенилэтил, 2,3-диметил-бут-2-ил, тритил (трифенилметил), кумил(2-фенилпроп-2-ил), трет-амил(1,1-диметилпропил), фенил, циклогексил, триметилсилил, триметилсилилметил, изопропил, 2,4,6-триметилфенил, 2,6-диметилфенил, 3,5-ди(изопропил)фенил и 3,5-ди(трет-бутил)фенил.
Более предпочтительные примеры подходящих комплексов металлов соответствуют формуле:
где M3 представляет собой Zr;
Ar4 представляет собой 3,5-ди(трет-бутил)фенил, 3,5-ди(изопропил)фенил, 3,5-ди(изобутил)фенил, 3,5-ди(трет-октил)фенил, 3,5-ди(2,4,6-триметилфенил)фенил, 3,5-ди(2,6-диметилфенил)фенил, 3,5-ди(2,4,6-три-изопропилфенил)фенил, 3,5-ди(3,5-ди-трет-бутилфенил)фенил, 1,2,3,4,6,7,8,9-октагидроантрацен-5-ил, 3,6-ди(трет-бутил)-9H-карбазол-9-ил, 3,6-ди(трет-октил)-9H-карбазол-9-ил;
R21, независимо в каждом случае, представляет собой метил или трет-бутил;
R3, независимо в каждом случае, представляет собой разветвленный алкил, циклоалкил, замещенный арил или другую пространственно объемную группу;
T4 представляет собой пропан-1,3-диил, бутан-1,4-диил, циклогексан-1,2-диил или циклогексан-1,2-диметилен; и
RD, независимо в каждом случае, представляет собой галоген или гидрокарбил или тригидрокарбилсилильную группу, содержащих до 20 атомов, не считая водорода, или 2 RD группы вместе представляют собой группу гидрокарбилен, гидрокарбадиил, 1,4-дигидрокарбил-замещенный 1,3-бутадиен или поли(гидрокарбил)силилен.
В наиболее предпочтительном варианте воплощения, по меньшей мере, одна группа R11 на каждом кольце Ar4, наиболее предпочтительно 2 такие группы R11 в положениях 3 и 5 фенильного кольца Ar4, и, по меньшей мере, две группы R3 на разных ариленовых кольцах представляют собой разветвленный алкил, циклоалкил, гидрокарбил-замещенный арил или поли(гидрокарбил)-замещенные силильные группы, содержащие от 3 до 20 углеродов, предпочтительно от 4 до 12 углеродов. Самые предпочтительные пространственно объемные группы R11 и R3 представляют собой группы третичного бутила и третичного октила. Наиболее предпочтительный комплекс металла представляет собой комплекс циркония приведенной выше формулы, где обе группы Ar4 представляют собой 3,5-ди-трет-бутилфенил или 3,5-ди-трет-октилфенил, одна группа R3 в положении 4- или 5- каждого фениленокси лиганда представляет собой трет-бутил или трет-октил, и каждая группа R21 представляет собой водород и