Растения, характеризующиеся повышенной урожайностью, и способ их получения
Иллюстрации
Показать всеНастоящее изобретение относится к способу повышения семенной продуктивности и/или биомассы корня в растениях по сравнению с таковой в растениях дикого типа, путем трансформирования растения конструкцией на основе нуклеиновой кислоты, кодирующей полипептид транслокации синовиальной саркомы (SYT) или ее гомолога с соответствующей структурой. Описанная конструкция содержит SYT, который содержит от N-конца к С-концу домен SNH, богатый Met домен, богатый QG домен. Раскрыто трансгенное растение, несущее такую конструкцию и его соответствующая часть. Использование изобретения обеспечивает растения, характеризующиеся повышенной урожайностью по сравнению с таковой соответствующих растений дикого типа и может найти применение в сельском хозяйстве. 4 н. и 8 з.п. ф-лы, 8 ил., 9 табл., 3 пр.
Реферат
Настоящее изобретение, главным образом, относится к области молекулярной биологии и касается способа повышения урожайности растений по сравнению с таковой соответствующих растений дикого типа. Более конкретно, настоящее изобретение относится к способу повышения урожайности растений, предусматривающему модулирование экспрессии растением нуклеиновой кислоты, кодирующей полипептид транслокации синовиальной саркомы (synovial sarcoma translocation (SYT) polypeptide) или его гомолог. Настоящее изобретение также относится к растениям, характеризующимся измененной экспрессией нуклеиновой кислоты, кодирующей полипептид SYT или его гомолог, причем растения характеризуются повышенной урожайностью по сравнению с таковой соответствующих растений дикого типа. Изобретение также относится к конструкциям, применимым в соответствии со способами, согласно изобретению.
Постоянно растущее население мира и сокращающийся фонд сельскохозяйственных пахотных земель стимулируют исследования, направленные на повышение эффективности сельского хозяйства. Стандартные средства повышения урожайности сельскохозяйственных и садовых культур включают в себя селекционные методики, основанные на выявлении растений, характеризующихся желаемыми признаками. Однако, таким селекционным методикам присущи некоторые недостатки, а именно, заключающиеся в том, что такие методики, как правило, трудоемки и позволяют получать растения, зачастую содержащие разнородные генные компоненты, которые не всегда обеспечивают передачу желаемого признака от исходных растений. Успехи молекулярной биологии позволили человеку модифицировать генотип животных и растений. Генная инженерия растений основана на выделении и манипуляции генетическим материалом (как правило, в виде ДНК или РНК) и последующем введении этого генетического материала в растение. Такая технология позволяет создавать культуры или растения, характеризующиеся различными улучшенными экономическими, агротехническими и садовотехническими признаками.
Особенно экономически важным признаком является урожайность, а для многих растений семенная продуктивность. Урожайность обычно определяют как количественное выражение экономической ценности культуры. Она может быть определена в количественном и/или качественном выражении. Семена растений являются важным источником питательных веществ для человека и животных. Более половины общей калорийности рациона человечества потребляется с такими культурами, как кукуруза, рис, пшеница, канола и соя, либо при непосредственном потреблении семян как таковых, либо при потреблении мясных продуктов, произведенных на обработанных семенах. Они также являются источником сахаров, масел и различных видов метаболитов, используемых в промышленных процессах. Семена содержат зародыш, источник новых побегов и корней после прорастания, и эндосперм, источник питательных веществ для роста зародыша, на стадии прорастания и на ранних стадиях роста всходов. В процесс развития семян вовлечены многие гены, и для его протекания требуется перенос метаболитов из корней, листьев и стеблей в растущее семя. В частности, эндосперм поглощает метаболические предшественники полимерных углеводов, масла и белки и синтезирует из них запасаемые макромолекулы, заполняющие зерно. Способность повышать семенную продуктивность растений посредством увеличения количества семян, увеличения биомассы семян, ускорения развития семян, усиления налива семян или усиления любого другого относящегося к семенам признака имело бы множество применений в сельском хозяйстве и даже множество несельскохозяйственных применений, таких как применение для биотехнологического получения таких веществ, как фармацевтические средства, антитела или вакцины.
Урожайность также может зависеть от таких факторов, как количество и размер органов, строение растения (например, количество ветвей), семенная продуктивность и т.д. Важными факторами, определяющими урожайность, также могут быть развитие корневой системы, усвоение питательных веществ и стрессоустойчивость. Таким образом, оптимизация этих факторов может способствовать повышению урожайности культур.
Было выявлено, что модулирование экспрессии нуклеиновой кислоты, кодирующей полипептид SYT или его гомолог, в растении позволяет получать растения, характеризующиеся более высокой урожайностью по сравнению с таковой соответствующих растений дикого типа.
SYT представляет собой коактиватор транскрипции, который в растениях образует функциональный комплекс с активаторами транскрипции семейства белков GRF (фактора регуляции роста, growth-regulating factor) (Kim H.J., Kende H. (2004) Proc. Nat. Acad. Sc. 101:13374-9). SYT также называют GIF, т.е. GRF-взаимодействующий фактор (GRF-interacting factor). Активаторы транскрипции GRF содержат структурные домены (в N-концевой области), сходные с белками SWI/SNF хроматин-ремоделирующих комплексов дрожжей (van der Knaap E. et al. (2000) Plant Phys. 122:695-704). Было высказано предположение о том, что коактиваторы транскрипции из этих комплексов вовлечены в рекрутирование комплексов SWI/SNF в энхансерные и промоторные области для осуществления локального ремоделирования хроматина (см. Näär A.M. et al. (2001) Annu. Rev. Biochem. 70:475-501). Изменение локальной структуры хроматина модулирует активацию транскрипции. Точнее говоря, высказано предположение о том, что SYT взаимодействует с комплексом SWI/SNF растения, оказывая влияние на активацию транскрипции гена-мишени(генов-мишеней) GRF (Kim H.J., Kende H. (2004) Proc. Nat. Acad. Sc. 101:13374-9).
SYT принадлежит к семейству генов, состоящему у Arabidopsis из трех членов. Полипептид SYT характеризуется гомологией с SYT человека. Было показано, что полипептид SYT человека является коактиватором транскрипции (Thaete et al. (1999) Hum. Molec. Genet. 8:585-591). Для структуры полипептида SYT млекопитающих характерно наличие трех доменов:
(i) N-концевого домена SNH (N-концевой гомологии SYT, SYT N-terminal homology), консервативного у млекопитающих, растений, нематод и рыб;
(ii) С-концевого богатого QPGY домена, состоящего преимущественно из глицина, пролина, глутамина и тирозина, встречающихся с переменными интервалами;
(iii) богатого метионином (Met-богатого) домена, расположенного между указанными выше двумя доменами.
В полипептидах SYT растений домен SNH высококонсервативен. С-концевой домен богат глицином и глутамином, но содержит мало пролина и тирозина. Таким образом, его назвали богатым QG доменом в отличие от богатого QPGY домена млекопитающих. Как и в случае SYT млекопитающих, богатый Met домен может быть идентифицирован в направлении N-конца от богатого QG домена. Богатый QG домен можно считать по существу С-концом белка (за исключением домена SHN); богатый Met домен, как правило, содержится в пределах первой половины богатого QG домена (от N-конца к С-концу). В полипептидах SYT растений богатый Met домен может предшествовать домену SNH (см. фиг.1).
Сообщалось, что у мутанта с выключенной функцией SYT и трансгенных растений с ослабленной экспрессией SYT развиваются мелкие и узкие листья и лепестки, содержащие меньшее количество клеток (Kim H.J., Kende H. (2004) Proc. Nat. Acad. Sc. 101:13374-9).
В соответствии с настоящим изобретением раскрыт способ повышения урожайности растения, предусматривающий модулирование экспрессии нуклеиновой кислоты, кодирующей полипептид SYT или его гомолог, в растении.
Подразумевается, что в настоящем описании ссылка на "соответствующие растения дикого типа" означает любое подходящее контрольное растение или растения, выбор которого полностью находится в пределах квалификации специалиста в данной области техники и может включать в себя, например, соответствующие растения дикого типа или соответствующие растения, не несущие интересующий ген. Используемый в настоящем описании термин "контрольное растение" относится не только к целым растениям, но также и к частям растений, включая семена и части семян.
Предпочтительно, осуществление способов согласно настоящему изобретению приводит к получению растений, характеризующихся повышенной урожайностью, особенно семенной продуктивностью, по сравнению с таковой соответствующих растений дикого типа.
Подразумевается, что в настоящем описании термин "повышенная урожайность" означает наличие любого одного или нескольких из следующих признаков по сравнению с соответствующими растениями дикого типа: (i) повышенной биомассы (массы) одной или нескольких частей растения, особенно надземных (пригодных для уборки) частей, повышенной биомассы корня или повышенной биомассы любой другой пригодной для уборки части (такой как плоды, орехи и бобы); (ii) повышенной общей семенной продуктивности, что включает в себя повышенную биомассу семян (массу семян), что может заключаться в увеличении массы семян с отдельного растения или в увеличении массы отдельных семян; (iii) повышенного количества (налитых) семян; (iv) повышенного размера семян, что также может сказываться на составе семян; (v) повышенного объема семян, что также может сказываться на составе семян (включая общее содержание и состав масел, белков и углеводов); (vi) повышенной площади поверхности отдельных семян; (vii) повышенных длины или ширины отдельных семян; (viii) повышенного процентного отношения массы урожая к полной массе растений, выражаемого как отношение урожая пригодных для уборки частей, таких как семена, к общей биомассе; и (ix) повышенной массы тысячи зерен (TKW), которую получают путем экстраполяции количества подсчитанных налитых семян и их общей массы. Повышение значения TKW может иметь место благодаря увеличению размера семян и/или массы семян. Повышение значения TKW может иметь место благодаря увеличению размера зародыша и/или размера эндосперма. Увеличение размера семян, объема семян, площади поверхности семян, периметра семян, ширины семян и длины семян может иметь место благодаря увеличению отдельных частей семян, например, благодаря увеличению размера зародыша, и/или эндосперма, и/или алейронового слоя, и/или щитка зародыша, или других частей семян.
На примере кукурузы повышение урожайности может быть определено, помимо прочего, по одному или нескольким следующим признакам: повышение количества растений на один гектар или акр, повышение количества початков на одно растение, повышение количества рядов, количества зерен в ряду, массы зерна, массы тысячи зерен, длины/диаметра початка, повышение скорости налива зерна (рассчитываемой как количество налитых зерен, деленное на общее количество зерен и умноженное на 100). На примере риса повышение урожайности может быть определено, помимо прочего, по повышению одного или нескольких следующих параметров: количества растений на один гектар или акр, количества метелок на одно растение, количества вторичных колосков на одну метелку, количества цветков на один колосок (выраженного как отношение количества налитых семян к количеству метелок), повышению скорости налива зерна (рассчитываемой как количество налитых зерен, деленное на общее количество зерен и умноженное на 100), повышению массы тысячи зерен.
Повышение урожайности также может привести к измененному строению или может быть результатом измененного строения.
В соответствии с предпочтительным вариантом выполнения осуществление способов согласно изобретению позволяет получить растения, характеризующиеся повышенной семенной продуктивностью. Таким образом, в соответствии с настоящим изобретением раскрыт способ повышения семенной продуктивности растения, причем указанный способ предусматривает модулирование экспрессии нуклеиновой кислоты, кодирующей полипептид SYT или его гомолог, в растении.
Поскольку трансгенные растения согласно настоящему изобретению характеризуются повышенной урожайностью, вероятно, что у этих растений наблюдается повышенная скорость роста (по меньшей мере, в течение части их жизненного цикла) по сравнению со скоростью роста соответствующих растений дикого типа на соответствующей стадии их жизненного цикла. Повышение скорости роста может специфично происходить в отношении одной или нескольких частей растения (включая семена) или может иметь место по существу в отношении всего растения. У растений, характеризующихся повышенной скоростью роста, даже может наблюдаться ранее цветение. Повышение скорости роста может иметь место на одной или нескольких стадиях жизненного цикла растения или по существу в течение всего жизненного цикла растения. Повышенная скорость роста на ранних стадиях жизненного цикла растения может свидетельствовать о повышенной жизненности. Повышение скорости роста может изменить цикл урожая растения, что позволяет сеять растения позже и/или убирать позже, что в других обстоятельствах было бы невозможно. Если скорость роста повышена в достаточной степени, это может позволить провести дополнительный посев семян того же вида растения (например, сев и уборка растений риса с последующими севом и уборкой следующих растений риса в течение одного стандартного периода роста). Аналогично, если скорость роста повышена в достаточной степени, это может позволить провести дополнительный посев семян других видов растений (например, сев и уборка растений риса, например, с последующими севом и необязательной уборкой сои, картофеля или любого другого подходящего растения). Также для некоторых сельскохозяйственных культур может оказаться возможной неоднократная уборка урожая с одного корневища. Изменение цикла урожая растения может приводить к увеличению годичного производства биомассы с каждого акра (благодаря увеличению количества возможных циклов (скажем, в течение года) выращивания и уборки урожая каждого конкретного растения). Повышение скорости роста также может позволить культивировать трансгенные растения в более широкой географической зоне, чем их аналоги дикого типа, поскольку территориальные ограничения выращивания культуры зачастую определяются неблагоприятными условиями окружающей среды либо на момент сева (в начале вегетационного периода), либо на момент уборки (в конце вегетационного периода). Таких неблагоприятных условий можно избежать при сокращении продолжительности цикла урожая. Скорость роста может быть определена по различным параметрам кривых роста, такими параметрами, помимо прочих, могут выступать T-Mid (время, необходимое для достижения растениями 50% от их максимального размера) и Т-90 (время, необходимое для достижения растениями 90% от их максимального размера).
Осуществление способов согласно изобретению позволяет получить растения, характеризующиеся повышенной скоростью роста по сравнению с таковой соответствующих растений дикого типа. Таким образом, в соответствии с настоящим изобретением раскрыт способ повышения скорости роста растений, причем указанный способ предусматривает модулирование экспрессии нуклеиновой кислоты, кодирующей полипептид SYT или его гомолог, в растении.
Повышение (семенной) продуктивности и/или скорости роста возникает либо когда растение находится в бесстрессовых условиях, либо когда растение подвергается различным стрессам по сравнению с подходящими контрольными растениями. Растения, как правило, реагируют на стресс замедлением роста. В условиях сильного стресса растение может полностью прекратить рост. С другой стороны, умеренный стресс определяется в настоящем описании как любой стресс, будучи подвергнутым которому, растение не прекращает рост полностью без возможности возобновления роста. Благодаря развитию агротехнических приемов (орошения, внесения удобрений, обработки пестицидами) при культивировании сельскохозяйственных культур сильные стрессы возникают нечасто. В результате вызванный умеренным стрессом нарушенный рост часто является нежелательным явлением в сельском хозяйстве. Умеренные стрессы представляют собой типичные стрессовые воздействия, которым может подвергаться растение. Такие могут представлять собой каждодневные биотические и/или абиотические (средовые) стрессовые факторы, которым подвергается растение. Типичные абиотические, или средовые, стрессовые факторы включают в себя температурные стрессы, вызываемые необычно высокими или холодными температурами/заморозками; солевой стресс; водный стресс (засуха или избыток воды). Химические вещества также могут вызывать абиотические стрессы. Биотические стрессы, как правило, представляют собой стрессы, вызываемые такими патогенами, как бактерии, вирусы, грибы и насекомые.
Предпочтительно, может быть изменена урожайность любого растения.
Используемый в настоящем описании термин "растение" охватывает целые растения, предшественники и потомство растений и части растений, включая семена, побеги, стебли, листья, корни (включая клубни), цветки и ткани и органы, причем все они содержат интересующий трансген. Термин "растение" также охватывает клетки растений, суспензионные культуры, каллюсную ткань, зародыши, меристемы, гаметофиты, спорофиты, пыльцу и микроспоры, причем все они, опять же, содержат интересующий трансген.
Растения, особенно применимые в соответствии со способами согласно изобретению, включают в себя все растения, принадлежащие к надсемейству Viridiplantae, в частности, однодольные и двудольные растения, включающие в себя кормовые, или фуражные, бобовые, декоративные растения, продовольственные культуры, деревья и кустарники, выбранные из перечня, содержащего, помимо прочего. Acacia spp., Acer spp., Actinidia spp., Aesculus spp., Agathis australis, Albizia amara, Alsophila tricolor, Andropogon spp., Arachis spp., Areca catechu, Astelia fragrans. Astragalus cicer, Baikiaea plurijuga, Betula spp., Brassica spp., Bruguiera gymnorrhiza, Burkea africana, Butea frondosa, Cadaba farinosa, Calliandra spp., Camellia sinensis, Canna indica, Capsicum spp., Cassia spp., Centroema pubescens, Chaenomeles spp., Cinnamomum cassia, Coffea arabica, Colophospermum mopane, Coronillia varia, Cotoneaster serotina, Crataegus spp., Cucumis spp., Cupressus spp., Cyathea dealbata, Cydonia oblonga, Cryptomeria japonica, Cymbopogon spp., Cynthea dealbata, Cydonia oblonga, Dalbergia monetaria, Davallia divaricata, Desmodium spp., Dicksonia squarosa, Diheteropogon amplectens, Dioclea spp., Dolichos spp., Dorycnium rectum, Echinochloa pyramidalis, Ehrartia spp., Eleusine coracana, Eragrestis spp., Erythrina spp., Eucalyptus spp., Euclea schimperi, Eulalia villosa, Fagopyrum spp., Feijoa sellowiana, Fragaria spp., Flemingia spp., Freycinetia banksii, Geranium thunbergii, Ginkgo biloba, Glycine javanica, Gliricidia spp., Gossypium hirsutum, Grevillea spp., Guibourtia coleosperma, Hedysarum spp., Hemarthia altissima, Heteropogon contortus, Hordeum vulgare, Hyparrhenia rufa, Hypericum erectum, Hyperthelia dissoluta, Indigo incarnata. Iris spp., Leptarrhena pyrolifolia, Lespediza spp., Lettuca spp., Leucaena leucocephala, Loudetia simplex, Lotonus bainesii, Lotus spp., Macrotyloma axillare, Malns spp., Manihot esculenta, Medicago saliva, Metasequoia glyptostroboides, Musa sapientum, Nicotianum spp., Onobrychis spp., Ornitthpus spp., Oryza spp., Peltophorum africanum, Pennisetum spp., Persea gratissima, Petunia spp., Phaseolus spp., Phoenix canariensis, Phormium cookianum, Photinia spp., Picea glauca, Pinus spp., Pisum sativum, Podocarpus totara, Pogonarthria fleckii, Pogonarthria squarrosa, Populus spp., Prosopis cineraria, Pseudotsuga menziesii, Pterolobium stellatum, Pyrus communis, Quercus spp., Rhaphiolepsis umbellata, Rhopalostylis sapida, Rhus natalensis, Ribes grossularia, Ribes spp., Robinia pseudoacacia, Rosa spp., Rubus spp., Salix spp., Schyzachyrium sanguineum, Sciadopitys verticillata, Sequoia sempervirens, Sequoiadendron giganteum, Sorghum bicolor, Spinacia spp., Sporobolus fimbriatus, Stiburus alopecuroides, Stylosanthos humilis, Tadehagi spp., Taxodium distichum, Themeda triandra, Trifolium spp., Triticum spp., Tsuga heterophylla, Vaccinium spp., Vicia spp., Vitis vinifera, Watsonia pyramidata, Zantedeschia aethiopica, Zea mays, щирицу, артишок, спаржу, брокколи, брюссельскую капусту, капусту, канолу, морковь, цветную капусту, сельдерей, кормовую капусту, лен, браунколь, чечевицу, масличный рапс, бамию, лук, картофель, рис, сою, землянику, сахарную свеклу, сахарный тростник, подсолнечник, томат, тыкву, чай и водоросли. Согласно предпочтительному варианту выполнения настоящего изобретения растение представляет собой сельскохозяйственную культуру. Примеры сельскохозяйственных культур включают в себя, помимо прочего, сою, подсолнечник, канолу, люцерну, рапс, хлопок, томат, картофель или табак. Arabidopsis thaliana обычно не считают сельскохозяйственной культурой. Еще более предпочтительно, растение представляет собой однодольное растение, такое как сахарный тростник. Более предпочтительно, растение представляет собой зерновую культуру, такую как рис, кукуруза, пшеница, ячмень, просо, рожь, сорго или овес.
Используемый в настоящем описании термин "полипептид SYT или его гомолог" относится к полипептиду, содержащему в направлении от N-конца к С-концу: (i) домен SNH, характеризующийся в возрастающем порядке предпочтительности, по меньшей мере, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% идентичностью последовательности по отношению к домену SNH SEQ ID NO:2; и (ii) богатый Met домен; и (iii) богатый QG домен.
Предпочтительно, домен SNH, характеризующийся, по меньшей мере, 40% идентичностью по отношению к домену SNH SEQ ID NO:2, содержит остатки, показанные черным на фиг.2. Более предпочтительно, домен SNH представлен SEQ ID NO:1.
Кроме того, полипептид SYT или его гомолог могут содержать один или несколько из следующего: (a) SEQ ID NO:90; (b) SEQ ID NO:91; и (с) богатого Met домена на N-конце перед доменом SNH.
Полипептид SYT или его гомолог, как правило, взаимодействуют с полипептидами GRF (факторами регуляции роста, growth-regulating factor) в системах дрожжевых двойных гибридов. Анализы взаимодействия дрожжевых двойных гибридов хорошо известны из предшествующего уровня техники (см. Field et al. (1989) Nature 340(6230):245-246). Например, полипептид SYT, представленный SEQ ID NO:4, способен взаимодействовать с AtGRF5 и с AtGRF9. Авторы настоящего изобретения показали, что полипептид SYT или его гомолог повышают урожайность, особенно семенную продуктивность, растений.
Полипептид SYT или его гомолог кодируются нуклеиновой кислотой/геном SYT. Таким образом, используемый в настоящем описании термин "нуклеиновая кислота/ген SYT" относится к любым нуклеиновой кислоте/гену, кодирующим определенные выше полипептид SYT или его гомолог.
Полипептиды SYT или их гомологи могут быть легко идентифицированы в соответствии со стандартными методиками, хорошо известными из предшествующего уровня техники, например, по методу выравнивания последовательностей. Методы выравнивания последовательностей для целей сравнения хорошо известны из предшествующего уровня техники, такие методы включают в себя GAP, BESTFIT, BLAST, FASTA и TFASTA. В GAP для определения выравнивания двух полных последовательностей, максимизирующего количество совпадений и минимизирующего количество пропусков использован алгоритм Needleman и Wunsch ((1970) J. Mol. Biol. 48:443-453). В соответствии с алгоритмом BLAST (Altschul et al. (1990) J. Mol. Biol. 215:403-10) рассчитывается процентная идентичность последовательностей и проводится статистический анализ сходства двух последовательностей. Программное обеспечение для проведения анализа BLAST общедоступно в National Centre for Biotechnology Information. Гомологи SYT, содержащие домен SNH, характеризующийся, по меньшей мере, 40% идентичностью последовательности по отношению к домену SNH SEQ ID NO:2, и/или содержащие SEQ ID NO:90 и/или SEQ ID NO:91, могут быть легко идентифицированы с помощью, например, алгоритма выравнивания множественных последовательностей ClustalW (версия 1.83), доступного по адресу http://clustalw.genome.jp/sit-bin/nph-clustalw, с использованием параметров попарного выравнивания по умолчанию и метода оценки в процентах. Последовательность, характеризующаяся 40% идентичностью по отношению к домену SNH SEQ ID NO:2, достаточна для идентификации последовательности как SYT.
Кроме того, легко может быть также идентифицировано наличие богатого Met домена или богатого QG домена. Как показано на фиг.3, богатый Met домен и богатый QG домен следует за доменом SNH. Богатый QG домен можно считать по существу С-концом белка (за исключением домена SHN); богатый Met домен, как правило, содержится в пределах первой половины богатого QG домена (от N-конца к С-концу). Первичный аминокислотный состав (в %) для определения того, является ли полипептидный домен богатым конкретными аминокислотами, может быть рассчитан с помощью программного обеспечения с сервера ExPASy (Gasteiger E et al. (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31:3784-3788), в частности, с помощью инструмента ProtParam. Состав интересующего белка может быть сравнен со средним аминокислотным составом (в %) в базе данных белковых последовательностей Swiss-Prot. В этой базе данных среднее содержание Met (M) составляет 2,37%, среднее содержание Gln (Q) составляет 3,93% и среднее содержание Gly (G) составляет 6,93%. Как определено в настоящем описании, богатый Met домен или богатый QG домен характеризуются содержанием Met (в %) или содержанием Gln и Gly (в %), превышающим средние значения аминокислотного состава (в %) базы данных белковых последовательностей Swiss-Prot.
Следует понимать, что последовательности, подпадающие под определение "полипептида SYT или его гомолога", не ограничены последовательностями, представленными SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, SEQ ID NO:46, SEQ ID NO:48, SEQ ID NO:50, SEQ ID NO:52, SEQ ID NO:54, SEQ ID NO:56, SEQ ID NO:58, SEQ ID NO:60, SEQ ID NO:62, SEQ ID NO:64, SEQ ID NO:66, SEQ ID NO:68, SEQ ID NO:70, SEQ ID NO:72, SEQ ID NO:74, SEQ ID NO:76, SEQ ID NO:78, SEQ ID NO:80, SEQ ID NO:82, SEQ ID NO:84, SEQ ID NO:86, SEQ ID NO:88, и что любой полипептид, содержащий в направлении от N-конца к С-концу: (i) домен SNH, характеризующийся, по меньшей мере, 40% идентичностью последовательности по отношению к домену SNH SEQ ID NO:2; и (ii) богатый Met домен; и (iii) богатый QG домен, может быть признан подходящим для осуществления способов согласно изобретению.
Примеры нуклеиновых кислот SYT включают в себя без ограничения нуклеиновые кислоты, представленные любой из SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:49, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:55, SEQ ID NO:57, SEQ ID NO:59, SEQ ID NO:61, SEQ ID NO:63, SEQ ID NO:65, SEQ ID NO:67, SEQ ID NO:69, SEQ ID NO:71, SEQ ID NO:73, SEQ ID NO:75, SEQ ID NO:77, SEQ ID NO:79, SEQ ID NO:81, SEQ ID NO:83, SEQ ID NO:85, SEQ ID NO:87. Для осуществления способов согласно изобретению могут подходить нуклеиновые кислоты/гены SYT или их варианты. Варианты нуклеиновых кислот/генов SYT, как правило, представляют собой нуклеиновые кислоты/гены, обладающие той же функцией, что и природные нуклеиновые кислоты/гены SYT, которая может представлять собой ту же биологическую функцию или функцию повышения урожайности при модулировании экспрессии нуклеиновых кислот/генов в растении. Такие варианты содержат участки нуклеиновой кислоты/гена SYT и/или нуклеиновых кислот, способные гибридизоваться с определенными ниже нуклеиновой кислотой/геном SYT.
Используемый в настоящем описании термин "часть" относится к отрезку ДНК, кодирующему полипептид, содержащий в направлении от N-конца к С-концу: (i) домен SNH, характеризующийся в возрастающем порядке предпочтительности, по меньшей мере, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% идентичностью последовательности по отношению к домену SNH SEQ ID NO:2; и (ii) богатый Met домен; и (iii) богатый QG домен. Часть может быть получена, например, путем внесения одной или нескольких делеций в нуклеиновую кислоту SYT. Части могут быть использованы в выделенном виде, либо они могут быть слиты с другими кодирующими (или не кодирующими) последовательностями, например, для того, чтобы продуцировать белок, сочетающий несколько активностей. При слиянии с другими кодирующими последовательностями полученный транслированный полипептид может быть иметь более крупный размер, чем таковой, предсказанный для фрагмента SYT. Предпочтительно, частью является часть нуклеиновой кислоты, представленная любой из SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:49, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:55, SEQ ID NO:57, SEQ ID NO:59, SEQ ID NO:61, SEQ ID NO:63, SEQ ID NO:65, SEQ ID NO:67, SEQ ID NO:69, SEQ ID NO:71, SEQ ID NO:73, SEQ ID NO:75, SEQ ID NO:77, SEQ ID NO:79, SEQ ID NO:81, SEQ ID NO:83, SEQ ID NO:85, SEQ ID NO:87. Наиболее предпочтительно, часть нуклеиновой кислоты представлена SEQ ID NO:3, SEQ ID NO:5 или SED IQ NO:7.
Другим вариантом нуклеиновой кислоты/гена SYT является нуклеиновая кислота, способная гибридизоваться в условиях низкой жесткости, предпочтительно, в жестких условиях с определенными выше нуклеиновой кислотой/геном SYT, причем указанная гибридизующаяся последовательность кодирует полипептид, содержащий в направлении от N-конца к С-концу: (i) домен SNH, характеризующийся в возрастающем порядке предпочтительности, по меньшей мере, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% идентичностью последовательности по отношению к домену SNH SEQ ID NO:2; и (ii) богатый Met домен; и (iii) богатый QG домен. Предпочтительно, гибридизующаяся последовательность представляет собой последовательность, способную гибридизоваться с нуклеиновой кислотой, представленной любой из SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:49, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:55, SEQ ID NO:57, SEQ ID NO:59, SEQ ID NO:61, SEQ ID NO:63, SEQ ID NO:65, SEQ ID NO:67, SEQ ID NO:69, SEQ ID NO:71, SEQ ID NO:73, SEQ ID NO:75, SEQ ID NO:77, SEQ ID NO:79, SEQ ID NO:81, SEQ ID NO:83, SEQ ID NO:85, SEQ ID NO:87, или с частью любой из упомянутых выше определенных в настоящем описании последовательностей. Наиболее предпочтительно, гибридизующаяся последовательность нуклеиновой кислоты представлена SEQ ID NO:3, SEQ ID NO:5 или SEQ ID NO:7.
Используемый здесь термин "гибридизация" относится к процессу, в ходе которого по существу гомологичные комплементарные нуклеотидные последовательности гибридизуются друг с другом. Процесс гибридизации может полностью протекать в растворе, т.е. когда обе комплементарные нуклеиновые кислоты находятся в растворе. Процесс гибридизации также может протекать, когда одна из комплементарных нуклеиновых кислот иммобилизована на матриксе, таком как магнитные бусы, сефарозные бусы или любая другая смола. Кроме того, процесс гибридизации может протекать, когда одна из комплементарных нуклеиновых кислот иммобилизована на твердой подложке, такой как нитроцеллюлозная или найлоновая мембрана, или иммобилизована, например, методом фотолитографии, например, на подложку из кварцевого стекла (последний вариант известен как массивы или микромассивы нуклеиновых кислот или чипы нуклеиновых кислот). Для обеспечения протекания гибридизации молекулы нуклеиновых кислот, как правило, термально или химически денатурируют для плавления двухцепочечной молекулы на две одинарные цепи и/или для удаления шпилек или других вторичных структур из одноцепочечных нуклеиновых кислот. На строгость гибридизации оказывают влияние такие условия, как температура, концентрация солей, ионная сила и состав гибридизационного буфера.
"Жесткие условия гибридизации" и "жесткие условия гибридизационной отмывки" в контексте экспериментов по гибридизации нуклеиновых кислот, таких как саузерн- и нозерн-гибридизации, зависят от последовательностей и различны при разных средовых параметрах. Специалисту в данной области техники известны различные параметры, которые могут быть изменены в ходе гибридизации и отмывки и которые способствуют либо поддержанию, либо изменению условий жесткости.
Тпл представляет собой температуру, при которой при определенных значениях ионной силы и pH 50% последовательности-мишени гибридизуется с полностью соответствующим зондом. Тпл зависит от условий в растворе и нуклеотидного состава и длины зонда. Например, длинные последовательности специфично гибридизуются при более высоких температурах. Максимальный уровень гибридизации достигается приблизительно при температуре от 16°С до 32°С ниже Тпл. Наличие моновалентных катионов в гибридизационном растворе ослабляет электростатическое отталкивание между двумя цепями нуклеиновой кислоты, тем самым способствуя образованию гибрида; этот эффект наблюдается при концентрациях ионов натрия до 0,4 М. Формамид снижает температуру плавления дуплексов ДНК-ДНК и ДНК-РНК на 0,6-0,7°C с каждым процентом концентрации формамида, а добавление 50% формамида позволяет проводить гибридизацию при 30-45°С, хотя уровень гибридизации будет снижен. Несоответствия пар нуклеотидов снижает уровень гибридизации и термальную стабильность дуплексов. В среднем и для крупных зондов Тпл снижается примерно на 1°C с каждым % несоответствия нуклеотидов. Тпл может быть рассчитана в соответствии со следующими уравнениями в зависимости от типов гибридов:
1. Гибриды ДНК-ДНК (Meinkoth and Wahl, Anal. Biochem., 138:267-284, 1984):
Тпл=81,5°С+16,6×log[Na+]a+0,41×%[G/Cb]-500×[Lc]-1-0,61×% формамида
2. Гибриды ДНК-РНК или РНК-РНК:
Тпл=79,8+18,5(log10[Na+]a)+0,58(%G/Cb)+11,8(%G/Cb)2-820/Lc
3. Гибриды олиго-ДНК или олиго-РНКd:
Для <20 нуклеотидов: Тпл=2 (ln)
Для 20-35 нуклеотидов: Тпл=22+1,46 (ln)
а или другого одновалентного катиона, но только строго в диапазоне 0,01-0,4 М.
b %GC только строго в диапазоне от 30% до 75%.
c L = длина дуплекса в парах нуклеотидов.
d Олиго, олигонуклеотид; ln, расчетная длина праймера = 2×(число G/C)+(число А/Т).
Примечание: с каждым 1% формамида Тпл снижается приблизительно на 0,6-0,7°С, тогда как присутствие 6 М мочевины снижает Тпл приблизительно на 30°С.
Специфичность гибридизации, как правило, зависит от постгибридизационных отмывок. Для устранения фона, связанного с неспецифичной гибридизацией, образцы отмывали разбавленными солевыми растворами. Ключевые факторы таких отмывок включают в себя ионную силу и температуру конечного отмывочного раствора: чем ниже концентрация солей и чем выше температура отмывки, тем выше жесткость отмывки. Обычно создают условия отмывки на уровне жесткой гибридизации или ниже. Как правило, условия подходящей жесткости для гибридизационных анализов нуклеиновых кислот или методик детекции амплификации генов соответствуют изложенным выше. Также могут быть выбраны условия большей или меньшей жесткости. Как правило, выбираемые условия низкой жесткости предусматривают температуру приблизительно на 50°С ниже, чем температура плавления (Тпл) для конкретной последовательности при определенных значениях ионной силы и pH. Условия средней жесткости предусматривают температуру на 20°С ниже Тпл, а условия высокой жесткости предусматривают температуру на 10°С ниже Тпл. Например, жесткими условиями являются условия, по меньшей мере, уровня жесткости A-L; а менее жесткими условиями являются условия, по меньшей мере, уровня жесткости M-R. Неспецифическое связывание может быть подавлено в соответствии с одной из ряда известных методик таких как, например, блокирование мембраны белоксодержащими растворами, добавления в гибридизационный буфер гетерологичных РНК, ДНК и SDS и обработка РНКазой. Примеры условий гибридизации и отмывки приведены ниже в таблице 2.
Для отсылки к сведениям, касающимся определения уровня жесткости, можно сослаться на Sambrook et al. (2001) Molecular Cloning: a Laboratory Manual, 3rd Edition, Cold Spring Harbor Laboratory Press, CSH, New York или на Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989).
Нуклеиновая кислота SYT или ее вариант могут быть получены из любого искусственного источника или природного источника, такого как растение, водоросли или животное. Такая нуклеиновая кислота может быть модифицирована из нативной формы в композиции и/или геномном окружении путем произвольных манипуляций исследователя. Нуклеиновая кислота предпочтительно имеет растительное происхождение либо из растения того же вида (например, из вида растения, в которое она должна быть введена), либо из растения другого вида. Предпочтительно, нуклеиновая кислота растительного происхождения кодирует SYT1. Альтернативно, нуклеиновая кислота может кодировать SYT2 или SYT3, которые близкородственны друг другу на уровне полипептидов. Нуклеиновая кислота может быть выделена из двудольных растений, предпочтительно из семейства Brassicaceae, более предпочтительно, из Arabidopsis thaliana. Более предпочтительно, три нуклеиновые кислоты SYT, выделенные из Arabidopsis thaliana, представлены SEQ ID NO:3, SEQ ID NO:5 и SEQ ID NO:7, а три аминокислотные последовательности SYT представлены SEQ ID NO:4, SEQ ID NO:6 и SEQ ID NO:8.
Экспрессия нуклеиновой кислоты, кодирующей полипептид SYT или его гомолог, может быть модулирована путем введения генной модификации (предпочтительно, в локус гена SYT). Используемый в настоящем описании термин "локус гена" означает область генома, содержащую интересующий ген и участок размером 10 т.п.н. левее или правее кодирующей области.
Ге