Способ извлечения никеля и кобальта из силикатных никель-кобальтовых руд
Изобретение относится к выщелачиванию силикатных никель-кобальтовых руд методом кучного выщелачивания или методом подземного выщелачивания на месте их залегания с использованием продуктов неполного окисления серы. Способ включает сооружение непроницаемого основания, формирование на нем штабеля руды, монтаж системы орошения и дренирования, а в случае подземного выщелачивания - сооружение закачных и откачных выработок на месте залегания руды, орошение штабеля руды или подачу в закачные выработки выщелачивающего реагента, содержащего раствор кислоты или раствор кислоты в присутствии восстановителя, с получением продукционных растворов, содержащих никель, кобальт, железо, алюминий, магний, их переработку с извлечением никеля и кобальта, доукрепление маточных растворов выщелачивающим реагентом и возврат их на выщелачивание. В качестве выщелачивающего реагента используют продукты неполного окисления серы, подаваемые в количестве, достаточном для перевода и удержания в растворе никеля и кобальта, а также конверсии ионов Fe3+ в Fe2+ в продукционном растворе, величину рН которого поддерживают в интервале значений 1,5-4,5, а значение ОВП - не более 350 мВ, при этом извлечение никеля и кобальта ведут методами сорбции, экстракции, осаждения с последующей рекультивацией отработанного штабеля руды и оборотных растворов или вовлеченных в оборот подземных вод. Технический результат - повышение эффективности извлечения никеля и кобальта, снижение расхода кислоты, упрощение технологической схемы. 2 н. и 14 з.п. ф-лы, 3 табл., 3 пр.
Реферат
Изобретение относится к горному делу, а именно к геотехнологическим способам переработки руд цветных металлов.
Геотехнологические методы переработки рудного сырья являются наиболее перспективными, позволяющими без нанесения существенного урона окружающей среде отрабатывать рудные залежи и техногенные образования, где содержание ценных компонентов невелико, а отработка их традиционными методами нерентабельна.
В настоящее время основными способами добычи никеля и кобальта из силикатных руд являются пирометаллургический и гидрометаллургический.
Известны способы пирометаллургической переработки силикатных руд (патенты РФ №№2161658, 2267547), включающие обжиг руды при температурах 300-700°С и 400-600°С, соответственно, в присутствии водяного пара с последующим выщелачиванием продуктов обжига растворами серной кислоты. Общим недостатком этих способов является повышенные энергозатраты и недостаточная экологичность.
Известны способы гидрометаллургической переработки руд, основанные на сернокислотном автоклавном выщелачивании, обеспечивающие высокую степень извлечения целевых компонентов (патенты РФ №№2224036, 2221064; US №№6379636, 4044096). Недостатком их является дорогое и сложное в эксплуатации аппаратурное оформление, а также ограниченное применение (только для руд с низким содержанием оксида магния).
Известны способы аммиачно-карбонатного выщелачивания после предварительного восстановления руды, что является их существенным недостатком (И.Д.Резник, Г.Г.Ермаков, Я.М.Шнеерсон. Никель. Т.2. - М.: ООО «Наука и технология», 2003].
Известен способ переработки окисленных никель-кобальтовых руд (патент РФ №2207391), включающий гидросульфидирование и извлечение флотацией полученных сульфидов металлов, причем руду перед гидросульфидированием спекают с восстановителем с последующим измельчением в присутствии серы и сульфита натрия и обработкой в автоклаве. Способ характеризуется повышенными энергетическими затратами.
По патентам РФ №№2245932, 2245933, 2287597 окисленную никель-кобальтовую руду гранулируют с серной кислотой, сульфатизируют при температурах 200-450°С и выщелачивают полученные сульфаты водой с последующим извлечением металлов известными методами. Недостатками этих способов являются многостадийность процесса и значительные энергетические затраты.
Согласно способу извлечения никеля и кобальта (заявка РФ №98100271) извлечение целевых компонентов осуществляют под давлением в присутствии кислоты, кислорода и ионов галогенида меди с получением из образованной суспензии щелока, содержащего никель и кобальт, их селективного осаждения в виде гидроксидов, отделением гидроксидов с последующим их аммиачным растворением и переработкой. Недостаток способа - многостадийность, сложность обслуживания.
Известен способ извлечения никеля из Ni-Fe-Mg-латеритной руды с высоким содержанием магния (патент РФ №2149910), согласно которому руду обрабатывают минеральными кислотами из ряда: HCl, H2SO4 и HNO3. Полученные продукционные растворы контактируют с ионообменной смолой, избирательно сорбирующей никель, а маточный раствор сорбции подвергают пирогидролизу с получением оксидов железа и магния и свободной HCl, которую используют для выщелачивания. По вариантам способа корректируют величину рН в интервале 1-3 добавлением оксида магния, последовательно осаждают железо и никель в виде гидроксидов добавлением оксида магния, а концентрированный раствор магния направляют на пирогидролиз с получением оксида магния и соляной кислоты, вновь используемых в технологическом процессе.
Способ кучного выщелачивания никеля, кобальта и других неблагородных металлов из латеритных руд (патент РФ №2355793) включает стадии формирования штабеля руды и выщелачивания. Причем последняя стадия является непрерывной противоточной системой кучного выщелачивания с двумя или более стадиями, состоящими из двух фаз, и которые движутся в противоположных направлениях.
Известен способ подземного выщелачивания руд цветных металлов (патент РФ №2293844). Способ включает создание закачных и откачных выработок, подачу выщелачивающих растворов кислоты в закачные выработки, отработку рудного тела, вывод продуктивного раствора через откачные выработки и переработку раствора, при этом закисление кислыми растворами с их выстаиванием ведут при рН не более 1,5, а выводят продуктивные растворы при рН не более 1,0.
Известен патент RU 2234550 «СПОСОБ ИЗВЛЕЧЕНИЯ УРАНА ИЗ РУД», согласно которому выщелачивание урана ведут смесью диоксида серы и кислородсодержащего газа, что позволяет окислить ионы двухвалентного железа по реакции;
при этом соотношение концентраций ионов трех- и двухвалентного железа поддерживают равным или более 0,5 с целью увеличения извлечения урана.
Наиболее близким по технической сущности к заявляемому способу извлечения никеля и кобальта из силикатных никель-кобальтовых руд, принятым за прототип является «Геотехнологический способ выщелачивания силикатных никель-кобальтовых руд» (заявка на изобретение РФ №2006115189), согласно которому руду в случае кучного или подземного выщелачивания обрабатывают кислотой. При выщелачивании кислоту подают в количестве, достаточном для перевода в раствор никеля и кобальта и обеспечивающем их удержание в продукционном растворе. Величину рН продукционного раствора поддерживают в интервале 2,5-4,0, а значение ОВП - не ниже 450 мВ. По вариантам способа выщелачивание ведут в присутствии восстановителей или фторсодержащих соединений, а для сохранения фильтрационных свойств руды в выщелачивающий раствор вводят оксиэтилированные жирные кислоты.
Задачей, на решение которой направлено изобретение, является разработка способа извлечения никеля и кобальта из силикатных никель-кобальтовых руд методами кучного и подземного выщелачивания.
Техническим результатом предполагаемого технического решения является вовлечение в отработку бедных силикатных никель-кобальтовых руд, снижение энергетических затрат, использование более широкого диапазона значений рН, числа сорбентов и экстрагентов для извлечения никеля и кобальта из продукционных растворов и улучшение экологической обстановки на месте производства работ.
Технический результат достигается тем, что по способу извлечения никеля и кобальта из силикатных никель-кобальтовых руд - способу кучного выщелачивания - сооружают непроницаемое основание, формируют на нем штабель руды, монтируют системы орошения и дренирования, орошают штабель продуктами неполного окисления серы, осуществляют сбор продукционных растворов, а по способу извлечения никеля и кобальта из силикатных никель-кобальтовых руд - способу подземного выщелачивания - сооружают закачные и откачные выработки на месте залегания рудного тела, подают в закачные выработки продукты неполного окисления серы, поднимают на поверхность через откачные выработки продукционные растворы - и далее перерабатывают получаемые по обоим способам продукционные растворы методами сорбции, экстракции, осаждения и возвращают их после доукрепления на выщелачивание, при этом продукты неполного окисления серы подают в количестве, достаточном для перевода и удержания в растворе никеля и кобальта, а также конвертирования ионов Fe3+ в Fe2+ в продукционном растворе, величину рН которого поддерживают в интервале 1,5-4,5, с последующей рекультивацией отработанного штабеля руды и вовлеченных в оборот вод.
В качестве продуктов неполного окисления серы используют водные растворы ее диоксида, сульфитов, гидросульфитов, а также газообразный диоксид серы.
По другим вариантам способа выщелачивание ведут в присутствии серной или соляной кислот или чередуют подачу продуктов неполного окисления серы и кислоты при выщелачивании руды.
При кучном выщелачивании возможен вариант, когда при формировании штабеля в руду вводят соли или обрабатывают ее растворами сульфитов, гидросульфитов или их комбинаций с последующей подачей на сформированный штабель раствора кислоты.
Предлагаемый способ осуществляется следующим образом.
При кучном выщелачивании силикатных никель-кобальтовых руд сооружают непроницаемое основание, формируют на нем штабель руды и подают в него водный раствор диоксида серы или газообразный диоксид серы, водные растворы диоксида серы, сульфитов, гидросульфитов в присутствии серной или соляной кислот, собирают и перерабатывают продукционные растворы, доукрепляют маточные растворы переработки выщелачивающими реагентами и возвращают их на выщелачивание штабеля руды. При этом подачу газообразного диоксида серы совмещают с орошением штабеля руды маточными растворами или маточными растворами в присутствии кислоты.
При подземном выщелачивании силикатных никель-кобальтовых руд рудное тело вскрывают системой закачных и откачных выработок, подают в закачные выработки водный раствор диоксида серы или газообразный диоксид серы, водные растворы диоксида серы, сульфитов, гидросульфитов в присутствии серной или соляной кислот, поднимают на поверхность продукционные растворы, извлекают из них никель и кобальт, доукрепляют маточные растворы переработки выщелачивающими реагентами и возвращают их на выщелачивание руды. При этом подачу газообразного диоксида серы совмещают с подачей в закачные выработки маточных растворов или маточных растворов в присутствии кислоты.
Продукты неполного окисления серы по вариантам способа подают в количестве, достаточном для перевода и удержания в растворе никеля и кобальта, а также конвертирования ионов Fe3+ в Fe2+ в продукционном растворе. Необходимую концентрацию и расход выщелачивающих реагентов устанавливают опытным путем и корректируют таким образом, чтобы продукционные растворы на выходе из штабеля и откачных выработок при использовании диоксида серы, водных растворов диоксида серы, сульфитов и гидросульфитов в присутствии серной или соляной кислот имели значение рН в интервале 1,5-4,5 и ОВП - не более 350 мВ.
При выщелачивании силикатных никель-кобальтовых руд особенно нежелательными в продукционных растворах, осложняющими и резко снижающими извлечение никеля и кобальта, являются ионы Fe3+ и Al3+.
По способу-прототипу для их максимального осаждения в рудном теле, штабеле руды или из продукционных растворов величину рН поддерживают в интервале 2,5-4,0, а значение ОВП - не менее 450 мВ. После донейтрализации продукционных растворов до величины рН, равной 4,0, последние направляют на сорбционную или экстракционную переработку. Переработка продукционных растворов в указанных интервалах значений рН и ОВП усложняет технологическую схему их дальнейшей переработки за счет необходимости предварительного осаждения ионов трехвалентного железа и алюминия перед сорбционным извлечением никеля и кобальта. Кроме того, выведение этих ионов сопровождается потерями никеля и кобальта, достигающими 10-15%, что требует их дополнительной отмывки из образовавшихся осадков и выведения последних в шламохранилище.
Другим недостатком способа-прототипа является невозможность применения экстракционного способа переработки никель-кобальтовых продукционных растворов вследствие преимущественной экстракции ионов Fe3+ и окисляемости экстрагента в их присутствии, что требует предварительного выделения и удаления ионов трехвалентного железа.
Основным отличием заявляемого способа извлечения никеля и кобальта от способа-прототипа является использование продуктов неполного окисления серы при выщелачивании руды с получением продукционных растворов с рН в интервале 1,5-4,5 и ОВП - не более 350 мВ, что приводит к конвертированию ионов Fe3+, переходящих в раствор из силикатных никель-кобальтовых руд, в ионы Fe2+. Это позволяет, не удаляя Fe2+, выделять никель и кобальт из продукционного раствора при значениях рН в интервале 1,5-2,0 с использованием ионитов бис-(2-пиколил)-аминового, N-(2-гидроксиэтил-2-гидроксипропил)-аминового типа, наноструктурированных импрегнированных сорбентов, а при значениях рН более 3,0 - с использованием карбоксильных, аминокарбоксильных или иминодиацетатных ионитов или использовать экстрагенты из класса фосфиновых кислот при значениях рН продукционного раствора менее 2,0.
Кроме того, использование сорбентов и экстрагентов, работающих в интервале значений рН продукционного раствора менее 2,0, устраняет необходимость повышения рН до минимальных значений по способу-прототипу.
Вариантами заявляемого способа является то, что подачу продуктов неполного окисления серы ведут в присутствии серной или соляной кислоты или чередуют с подачей серной или соляной кислоты.
В зависимости от условий выщелачивания и состава рудовмещающих пород возможны комбинации предложенных вариантов выщелачивания силикатных никель-кобальтовых руд.
Выбор того или иного варианта определяется конкретными условиями выщелачивания и способом дальнейшей переработки продукционных растворов. По окончании отработки проводят рекультивацию рудного штабеля и вод, вовлеченных в оборот.
Возможность осуществления предлагаемого технического решения иллюстрируют следующие примеры,
Возможность выщелачивания силикатной никель-кобальтовой руды продуктами неполного окисления серы по предлагаемому способу иллюстрирует пример 1.
Пример 1
В фильтрационные колонки помещали навески руды состава, %: Ni - 1,0; Со - 0,04; Fe2O3 - 24,1-31; Al2O3 - 2,8; MgO - 7,6; FeO - 0,6 и выщелачивали водным раствором диоксида серы, водными растворами диоксида серы, сульфитов, гидросульфитов в присутствии кислоты или газообразным диоксидом серы. При использовании газообразного диоксида серы чередовали его подачу с подачей воды. Концентрацию выщелачивающих реагентов и алгоритм их изменения для создания заданных интервалов рН и ОВП продукционных растворов на выходе из колонок и величину необходимого отношения Ж:Т определили в предварительных опытах. Растворы на выходе из колонок анализировали на содержание никеля, кобальта, алюминия, железа, а также определяли значение ОВП раствора и приведенный расход кислоты путем пересчета израсходованного количества диоксида серы на образование серной кислоты. Выщелачивание водным и газообразным диоксидом серы вели соответственно до извлечения по никелю не менее 60, а в остальных случаях не менее 70%.
Таблица 1 | |||||||
Результаты выщелачивания силикатных никель-кобальтовых руд продуктами неполного окисления серы | |||||||
Контролируемые показатели | Значение pH раствора на выходе из колонки | ||||||
1,0 | 1,5 | 2,5 | 3,0 | 4,0 | 4,5 | 5,0 | |
По предлагаемому способу | |||||||
По способу-прототипу | |||||||
Водный раствор SO2 | |||||||
Концентрация, мг/дм3 | |||||||
Ni2+ | |||||||
Со2+ | |||||||
Fe3+ | следы | следы | следы. | оследы | |||
3244 | 1123 | 440 | 126 | ||||
Fe2+ | |||||||
Al3+ | |||||||
ОВП, мВ | |||||||
Приведенный расход H2SO4, кг/кгNi |
Степень извлечения Ni, % | |||||||
Водные растворы SO2 и H2SO4 | |||||||
Концентрация, мг/дм3 | |||||||
Ni2+ | |||||||
Со2+ | |||||||
Fe3+ | следы | ||||||
151 | |||||||
Fe2+ | |||||||
Al3+ | |||||||
ОВП, мВ | |||||||
Приведенный расход H2SO4, кг/кгNi | |||||||
Степень извлечения Ni, % | |||||||
Водные растворы сульфита натрия (Na2SO3) и H2SO4 | |||||||
Концентрация, мг/дм3 | |||||||
Ni2+ | |||||||
Со2+ | |||||||
Fe3+ | следы | ||||||
122 |
Fe2+ | |||||||
Al3- | |||||||
ОВП, мB | |||||||
Приведенный расход H2SO4, кг/кгNi | |||||||
Степень извлечения Ni, % | |||||||
Водные растворы гидросульфита натрия (NaHSO3) и H2SO4 | |||||||
Концентрация, мг/дм3 | |||||||
Ni2+ | |||||||
Со2+ | |||||||
Fe3+ | следы | ||||||
116 | |||||||
Fe2+ | |||||||
Al3+ | |||||||
ОВП, мВ | |||||||
Приведенный расход H2SO4, кг/кгNi | |||||||
Степень извлечения Ni, % |
Подача газообразного диоксида серы | |||||||
Концентрация, мг/дм3 | |||||||
Ni2+ | 931 | 881 | 832 | 808 | 755 | 646 | 313 |
- | - | - | - | - | - | - | |
Со2+ | 41 | 40 | 38 | 37 | 35 | 30 | 19 |
- | - | - | - | - | - | - | |
Fe3+ | 2900 | 542 | 80 | Следы | следы | следы | следы |
- | - | - | - | - | - | - | |
Fe2+ | 3944 | 6302 | 6764 | 2846 | 2640 | 2482 | 2326 |
- | - | - | - | - | - | - | |
Al3+ | 462 | 460 | 420 | 286 | 44 | 28 | 16 |
- | - | - | - | - | - | - | |
ОВП, мВ | 310 | 246 | 240 | 240 | 208 | 206 | 206 |
- | - | - | - | - | - | - | |
Приведенный | 43.0 | 42.9 | 42.6 | 42.0 | 41.0 | 41.0 | 40.0 |
расход H2SO4, кг/кгNi, | - | - | - | - | - | - | - |
Степень | 63.3 | 61.7 | 61.6 | 61,4 | 60.4 | 60.1 | 46.9 |
извлечения Ni, % | - | - | - | - | - | - | - |
Как видно из данных таблицы 1, в интервале значений рН продукционных растворов больше или равно 1,5 и меньше или равно 4,5 достигают заданного значения извлечения никеля. При величине рН менее 1,5 концентрация иона Fe3+ значительна, что не позволяет использовать без проведения дополнительных операций методы сорбции или экстракции, а при величине рН более 4,5 извлечение никеля ниже задаваемого значения. При этом время выщелачивания, а соответственно и затраты на проведение процесса существенно возрастают.
В аналогичных условиях показатели выщелачивания по способу-прототипу ниже, чем по предлагаемому способу.
Зависимость конверсии ионов Fe3+ в Fe2+ от величины ОВП в продукционном растворе иллюстрирует пример 2.
Пример 2
В продукционный раствор, содержащий 14,7 г/дм3 ионов Fe3+ при значениях рН и ОВП, равных 1,06 и 538 мВ, соответственно, вводили восстановитель, в качестве которого использовали сульфит натрия, и, поддерживая значения рН, равные 1,0; 1,5; 2,0; 3,0; 4,0; 4,5 соответственно, фиксировали значения ОВП и замеряли концентрацию ионов Fe3+ и Fe2+. Для поддержания заданных значений рН использовали серную кислоту или карбонат натрия соответственно. Результаты определений приведены в таблице 2.
Таблица 2 | |||||
Зависимость полноты конверсии ионов Fe3+ в Fe2+ от величины ОВП продукционного раствора | |||||
ОВП, мВ | 500 | 450 | 350 | 250 | 200 |
Концентрация, г/дм3 | |||||
рН 1,0 | |||||
Fe3+ | 12,6 | 7,0 | 1,3 | 1,0 | 0,8 |
Fe2+ | 2,1 | 7,7 | 13,4 | 13,7 | 13,9 |
рН 1,5 | |||||
Fe3+ | 12,0 | 6,2 | 1,0 | 0,3 | 0,3 |
Fe2+ | 2,5 | 8,5 | 13,7 | 14,2 | 14,2 |
рН 2,0 | |||||
Fe3+ | 11.3 | 5,0 | 0,7 | 0,2 | 0,1 |
Fe2+ | 3.4 | 12,6 | 14,0 | 14,4 | 14,5 |
рН 3,0 | |||||
Fe3+ | 3,4 | 1,0 | 0,1 | следы | следы (ОВП=220 мВ) |
Fe2+ | 5,3 | 6,6 | 7,4 | 7,7 | 7,7 |
pH 4,0 | |||||
Fe3+ | 0,2 | 0,1 | следы | следы | - |
Fe2+ | 7,2 | 7,6 | 7,8 | 8,3 | - |
pH=4,5 |
Fe3+ | 0,08 | 0,04 | следы | следы | - |
Fe2+ | 8,0 | 8,2 | 8,4 | 8,6 | - |
Как видно из таблицы 2, при снижении величины ОВП, что характеризует смену окислительной среды на восстановительную, в продукционном растворе происходит увеличение концентрации ионов Fe2+ и уменьшение концентрации ионов Fe3+. Особенно резкий скачок изменения концентраций ионов Fe3+ и Fe2+ происходит при ОВП, равном 350 мВ. Снижение суммарной концентрации железа при значении рН более 3,0 вызвано гидратообразованием ионов Fe3+. Оставшиеся невысокие концентрации ионов Fe3+ практически не влияют на сорбционное извлечение с использованием карбоксильных, аминокарбоксильных или аминодиацетатных ионитов. Аналогичная зависимость получена и при использовании других восстановителей по вариантам способа.
Возможность чередования подачи продуктов неполного окисления серы и кислоты иллюстрирует пример 3.
Пример 3
В фильтрационные колонки помещали навески руды состава по примеру 1 и выщелачивали продуктами неполного окисления серы и серной кислоты, чередуя их подачу. В другую часть колонок одновременно подавали растворы продуктов неполного окисления серы и серной кислоты. Опыты проводили при значениях величины рН, равных 2,5. Растворы на выходе из колонок анализировали на содержание никеля и кобальта и определяли приведенный расход кислоты путем пересчета израсходованного количества диоксида серы на образование серной кислоты. Частоту и длительность подачи и концентрации выщелачивающих растворов при их раздельной подаче определили в предварительных опытах.
Результаты определений приведены в таблице 3.
Таблица 3 | |
Влияние чередования подачи продуктов неполного окисления серы и кислоты на выщелачивание никеля и кобальта из силикатной никель-кобальтовой руды | |
Измеряемый показатель | Параметры выщелачивания |
Одновременная подача водного раствора диоксида | Попеременная подача раствора диоксида серы и |
серы и серной кислоты | раствора серной кислоты | |
Концентрация, мг/дм3 | ||
Ni2+ | 1349 | 1484 |
Со2+ | 51 | 56 |
Приведенный расход кислоты, кг/кгNi | 45.2 | 40,2 |
Как видно из данных таблицы 3, чередование подачи водных растворов диоксида серы и серной кислоты способствует увеличению содержаний в растворе никеля и кобальта и снижает приведенный расход серной кислоты.
Аналогичные результаты получены при использовании других реагентов по вариантам предлагаемого способа.
Таким образом, приведенные примеры показывают преимущества и возможность осуществления предлагаемого способа извлечения и кобальта из силикатных никель-кобальтовых руд.
1. Способ извлечения никеля и кобальта из силикатных никель-кобальтовых руд, включающий сооружение непроницаемого основания, формирование на нем штабеля руды, монтаж системы орошения и дренирования, орошение штабеля руды выщелачивающим реагентом, содержащим раствор кислоты или раствор кислоты в присут