Система детектирования аномального выходного сигнала для биосенсора

Иллюстрации

Показать все

Изобретение относится к устройствам для анализа биологической текучей среды. Способ детектирования аномального выходного сигнала включает подачу входного сигнала к образцу биологической текучей среды, генерирование выходного сигнала от окислительно-восстановительной реакции анализируемого вещества в образце, измерение и нормирование выходного сигнала от окислительно-восстановительной реакции, где выходной сигнал является ответом на концентрацию анализируемого вещества в образце. После чего проводят сравнение нормированного выходного сигнала с одним контрольным пределом, где он представляет собой переход выходного сигнала от нормального к анормальному, и генерируют сигнал ошибки, когда нормированный выходной сигнал находится не в рамках контрольного предела. Биосенсор для определения концентрации содержит сенсорную полоску, имеющую интерфейс образца на основе, где интерфейс образца соседствует с резервуаром, сформированным посредством основы, и измерительное устройство, имеющее процессор, соединенный с интерфейсом сенсора через генератор сигналов. Использование изобретения позволяет проводить более точное прецизионное детектирование аномальных выходных сигналов от биосенсора. 2 н. и 45 з.п. ф-лы, 3 ил., 4 табл.

Реферат

Перекрестная ссылка на родственные заявки

Настоящая заявка испрашивает приоритет по временной заявке на патент США №60/746771, озаглавленной "Abnormal Output Detection System for a Biosensor", зарегистрированной 8 мая 2006 года, которая включается в качестве ссылки во всей ее полноте.

Уровень техники

Биосенсоры обычно обеспечивают анализ биологической текучей среды, такой как цельная кровь, моча или слюна. Как правило, биосенсор анализирует образец биологической текучей среды для определения концентрации одного или нескольких анализируемых веществ, таких как глюкоза, мочевая кислота, лактат, холестерин или билирубин, в биологической текучей среде. Анализ является пригодным для использования при диагностике и лечении физиологических аномалий. Например, человек, больной диабетом, может использовать биосенсор для определения уровней глюкозы в крови, для подбора диеты и/или лекарственных средств.

Биосенсор может выдавать аномальный выходной сигнал во время анализа биологической текучей среды. Аномальный выходной сигнал может осуществляться в ответ на ошибку во время анализа биологической текучей среды. Ошибка может происходить из-за одного или нескольких факторов, таких как физические характеристики образца, аспекты, связанные с окружающей средой образца, рабочие условия биосенсора, оказывающие влияние вещества, и тому подобное. Физические характеристики образца включают в себя уровень гематокрита, и тому подобное. Аспекты, связанные с окружающей средой образца, включают в себя температуру, и тому подобное. Рабочие условия биосенсора включают в себя условия недостаточного заполнения, когда размер образца является недостаточно большим, медленное заполнение образца, прерывающийся электрический контакт между образцом и одним или несколькими электродами в биосенсоре, и тому подобное. Оказывающие влияние вещества включают в себя аскорбиновую кислоту, ацетаминофен и тому подобное. Могут присутствовать и другие факторы и/или сочетания факторов, которые вызывают ошибку и/или аномальный выходной сигнал.

Биосенсоры могут осуществляться с использованием настольных, портативных и тому подобных устройств. Портативные устройства могут быть ручными. Биосенсоры могут конструироваться для анализа одного или нескольких анализируемых веществ и могут использовать различные объемы биологических текучих сред. Некоторые биосенсоры могут анализировать отдельную каплю цельной крови, например 0,25-15 микролитров (мкл) по объему. Примеры портативных измерительных устройств включают в себя измерители Ascensia Breeze® и Elite® от Bayer Corporation; биосенсоры Precision®, доступные от Abbott, Abbott Park, Illinois; биосенсоры Accucheck®, доступные от Roche in Indianapolis, Indiana; и биосенсоры OneTouch Ultra®, доступные от Lifescan Milpitas, California. Примеры настольных измерительных устройств включают в себя BAS 100B Analyzer, доступный от BAS Instruments, West Lafayette, Indiana; Electrochemical Workstation, от CH Instruments, доступную от CH Instruments, Austin, Texas; Electrochemical Workstation Cypress, доступную от Cypress Systems, Lawrence, Kansas; и EG&G Electrochemical Instrument, доступный от Princeton Research Instruments, Princeton, New Jersey.

Биосенсоры обычно измеряют электрический сигнал для определения концентрации анализируемого вещества в образце биологической текучей среды. Анализируемое вещество, как правило, подвергается реакции окисления/восстановления или окислительно/восстановительной реакции, когда входной сигнал прикладывается к образцу. Фермент или сходные частицы могут добавляться к образцу для усиления окислительно-восстановительной реакции. Входной сигнал обычно представляет собой электрический сигнал, такой как ток или потенциал. Окислительно-восстановительная реакция генерирует выходной сигнал в ответ на входной сигнал. Выходной сигнал обычно представляет собой электрический сигнал, такой как ток или потенциал, который может измеряться и коррелироваться с концентрацией анализируемого вещества в биологической текучей среде.

Многие биосенсоры имеют измерительное устройство и сенсорную полоску. Образец биологической текучей среды вводится в камеру для образца в сенсорной полоске. Сенсорную полоску помещают в измерительное устройство для анализа. Измерительное устройство обычно имеет электрические контакты, которые соединяются с электрическими проводниками в сенсорной полоске. Электрические проводники, как правило, присоединяются к рабочему электроду, к опорному электроду и/или к другим электродам, которые простираются в камере для образца. Измерительное устройство прикладывает входной сигнал через электрические контакты к электрическим проводникам в сенсорной полоске. Электрические проводники переносят входной сигнал через электроды в образец, осажденный в камере для образца. Окислительно-восстановительная реакция анализируемого вещества генерирует выходной сигнал в ответ на входной сигнал. Измерительное устройство определяет концентрацию анализируемого вещества в ответ на выходной сигнал.

Сенсорная полоска может содержать реагенты, которые взаимодействуют с анализируемым веществом в образце биологической текучей среды. Реагенты могут содержать ионизирующий агент для облегчения окисления-восстановления анализируемого вещества, а также медиаторы или другие вещества, которые способствуют переносу электронов между анализируемым веществом и проводником. Ионизирующий агент может представлять собой фермент, специфичный к анализируемому веществу, такой как глюкозаоксидаза или глюкозадегидрогеназа, который катализирует окисление глюкозы в образце цельной крови. Реагенты могут содержать связующее вещество, которое удерживает фермент и медиатор вместе.

Многие биосенсоры содержат одну или несколько систем детектирования ошибки для предотвращения или отсеивания анализов, связанных с ошибкой. Значения концентрации, полученные от анализа с ошибкой, могут быть неточными. Способность предотвращения или отсеивания этих неточных анализов может увеличить точность получаемых значений концентрации. Система детектирования ошибок может детектировать и компенсировать ошибку, такую как температура образца, которая отличается от эталонной температуры. Система детектирования ошибки может детектировать и прекращать анализ биологической текучей среды в ответ на ошибку, такую как условия недостаточного заполнения.

Некоторые биосенсоры имеют систему детектирования ошибки, которая детектирует и компенсирует температуру образца. Такие системы детектирования ошибки, как правило, компенсируют концентрацию анализируемого вещества для конкретной эталонной температуры в ответ на температуру образца. Ряд систем биосенсоров компенсирует температуру посредством изменения выходного сигнала перед вычислением концентрации анализируемого вещества из уравнения корреляции. Другие системы биосенсоров компенсируют температуру посредством изменения концентрации анализируемого вещества, вычисленной посредством уравнения корреляции. Системы биосенсоров, имеющие систему детектирования ошибки для температуры образца, описаны в патентах США №№4431004; 4750496; 5366609; 5395504; 5508171; 6391645 и 6576117.

Некоторые биосенсоры имеют систему детектирования ошибки, которая детектирует, имеются ли условия недостаточного заполнения. Такие системы детектирования ошибки, как правило, предотвращают или отсеивают анализы, связанные с размерами образцов, которые являются недостаточными по объему. Ряд систем детектирования недостаточного заполнения имеют один или несколько индикаторных электродов, которые детектируют частичное и/или полное заполнение камеры для образца в сенсорной полоске. Некоторые системы детектирования недостаточного заполнения имеют третий электрод, в дополнение к опорному и рабочему электродам, используемым для подачи входного сигнала к образцу биологической текучей среды. Другие системы детектирования недостаточного заполнения используют субэлемент опорного электрода для определения того, является ли сенсорная полоска недостаточно заполненной. Системы биосенсоров, имеющие систему детектирования ошибки для условий недостаточного заполнения, описаны в патентах США №№5582697 и 6531040.

Хотя системы детектирования ошибок уравновешивают различные преимущества и недостатки, ни одна из них не является идеальной. Эти системы обычно направлены на детектирование и на реакцию на конкретный тип ошибки. Однако эти системы, как правило, не оценивают или не определяют, является ли выходной сигнал от биосенсора нормальным или аномальным откликом на анализ биологической текучей среды. Как следствие, биосенсор может осуществлять неточный анализ, когда система детектирования ошибки не детектирует ошибки. В дополнение к этому биосенсор может осуществлять неточный анализ, когда система детектирования ошибки не детектирует ошибки от некого сочетания факторов, которые индивидуально не вызывают ошибки.

Соответственно, имеется постоянная потребность в улучшении биосенсоров, в особенности в таком, которое может обеспечить более точное и/или прецизионное детектирование аномальных выходных сигналов от биосенсора. Системы, устройства и способы по настоящему изобретению преодолевают, по меньшей мере, один из недостатков, связанных с обычными биосенсорами.

Сущность изобретения

Настоящее изобретение предусматривает биосенсор с системой детектирования аномального выходного сигнала, которая определяет, имеет ли выходной сигнал от окислительно-восстановительной реакции анализируемого вещества нормальную или аномальную форму или конфигурацию. Выходной сигнал с нормальной формой или конфигурацией может обеспечить точный и/или прецизионный анализ биологической текучей среды. Выходной сигнал с аномальной формой или конфигурацией не может обеспечить точного и/или прецизионного анализа биологической текучей среды. Биосенсор генерирует выходной сигнал в ответ на окислительно-восстановительную реакцию анализируемого вещества. Биосенсор измеряет и нормирует выходной сигнал. Биосенсор сравнивает нормированный выходной сигнал с одним или несколькими контрольными пределами и генерирует сигнал ошибки, когда нормированный выходной сигнал находится не в рамках контрольных пределов.

Способ детектирования аномального выходного сигнала в биосенсоре включает в себя нормирование выходного сигнала от окислительно-восстановительной реакции анализируемого вещества в образце биологической текучей среды, она сравнивает нормированный выходной сигнал, по меньшей мере, с одним контрольным пределом и генерирует сигнал ошибки, когда нормированный выходной сигнал находится не в рамках, по меньшей мере, одного контрольного предела. Способ также может включать в себя определение разницы между одним, по меньшей мере, базовым значением выходного сигнала и, по меньшей мере, одним измеренным на выходе значением выходного сигнала. Выходной сигнал может представлять собой отклик на последовательность импульсов, и, по меньшей мере, одно базовое значение выходного сигнала может представлять собой измеренное на выходе значение выходного сигнала. Способ также может включать в себя деление, по меньшей мере, одного выходного значения импульса выходного сигнала на первое выходное значение импульса выходного сигнала, и выходной сигнал может представлять собой отклик на стробированную амперометрию электрохимической системы. Способ также может включать в себя определение, по меньшей мере, одного контрольного предела по статистическому анализу лабораторных результатов.

Способ может включать в себя генерирование выходного сигнала в ответ на последовательность импульсов, и последовательность импульсов может содержать, по меньшей мере, пять импульсов. Нормированное значение тока четвертого импульса, R 4 , может быть представлено уравнением R 4=i 4,8/i 4,1, где i 4,1 представляет собой первое значение тока в четвертом импульсе, а i 4,8 представляет собой последнее значение тока в четвертом импульсе. R 4 может быть равно или больше чем 0,45, и R 4 может быть равно или меньше чем 0,85. Нормированное значение тока пятого импульса, R 5 , может быть представлено уравнением R 5=i 5,8/i 5,1, где i 5,1 представляет собой первое значение тока в пятом импульсе, а i 5,8 представляет собой последнее значение тока в пятом импульсе. R 5 может быть равно или больше чем 0,45, и R 5 может быть равно или меньше чем 0,85. Отношение нормированного значения тока четвертого импульса к нормированному значению тока пятого импульса может быть представлено уравнением Отношение =(i 4,8 xi 5,1)/(i 4,1 хi 5,8), где i 4,1 представляет собой первое значение тока в четвертом импульсе, i 4,8 представляет собой последнее значение тока в четвертом импульсе, i 5,1 представляет собой первое значение тока в пятом импульсе и i 5,8 представляет собой последнее значение тока в пятом импульсе. Отношение нормированного значения тока четвертого импульса к нормированному значению тока пятого импульса может быть равно или больше чем 0,75 и равно или меньше чем 1,2.

Другой способ детектирования аномального выходного сигнала в биосенсоре включает в себя генерирование выходного сигнала в ответ на окислительно-восстановительную реакцию анализируемого вещества в образце биологической текучей среды, измерение выходного сигнала, нормирование выходного сигнала, сравнение нормированного выходного сигнала, по меньшей мере, с одним контрольным пределом и генерирование сигнала ошибки, когда нормированный выходной сигнал находится не в рамках, по меньшей мере, одного контрольного предела. Способ может включать в себя подачу входного сигнала к образцу биологической текучей среды. Способ может включать в себя измерение выходного сигнала с перерывами и, по меньшей мере, восемь значений тока могут измеряться, по меньшей мере, в одном импульсе выходного сигнала. Способ может включать в себя деление, по меньшей мере, одного выходного значения импульса выходного сигнала на первое выходное значение импульса выходного сигнала. Способ может включать в себя определение, по меньшей мере, одного контрольного предела по статистическому анализу лабораторных результатов.

Выходной сигнал может включать в себя, по меньшей мере, пять импульсов, где нормированное значение тока четвертого импульса, R 4, представлено уравнением R 4=i 4,8/i 4,1, где i 4,1 представляет собой первое значение тока в четвертом импульсе, а i 4,8 представляет собой последнее значение тока в четвертом импульсе. Нормированное значение тока пятого импульса, R 5, может быть представлено уравнением R 5=i 5,8/i 5,1, где i 5,1 представляет собой первое значение тока в пятом импульсе, а i 5,8 представляет собой последнее значение тока в пятом импульсе. Отношение нормированного значения тока четвертого импульса к нормированному значению тока пятого импульса может быть представлено уравнением Отношение =(i 4,8 xi 5,1)/(i 4,1хi 5,8), где i 4,1 представляет собой первое значение тока в четвертом импульсе, i 4,8 представляет собой последнее значение тока в четвертом импульсе, i 5,1 представляет собой первое значение тока в пятом импульсе, а i 5,8 представляет собой последнее значение тока в пятом импульсе.

Входной сигнал может включать в себя последовательность импульсов, может представлять собой отклик на стробированную амперометрию электрохимической системы и/или может включать в себя опрашивающий входной сигнал и анализируемый входной сигнал. Опрашивающий входной сигнал может иметь ширину опрашивающего импульса меньше, примерно, чем 300 мсек, и опрашивающий входной сигнал может иметь интервал опрашивающего импульса меньше, примерно, чем 1 сек. Опрашивающий входной сигнал может иметь ширину опрашивающего импульса в пределах примерно от 0,5 мсек примерно до 75 мсек и интервал опрашивающего импульса в пределах примерно от 5 мсек примерно до 300 мсек. Анализируемый входной сигнал может иметь ширину анализируемого импульса меньше, примерно, чем 5 сек, и интервал анализируемого импульса меньше, примерно, чем 15 сек. Анализируемый входной сигнал также может иметь ширину анализируемого импульса в пределах примерно от 0,1 сек и примерно до 3 сек и интервал анализируемого импульса в пределах примерно от 0,2 сек примерно до 6 сек.

Когда входной сигнал содержит опрашивающий входной сигнал и анализируемый входной сигнал, способ может включать в себя подачу опрашивающего входного сигнала во время периода опроса, где период опроса меньше, примерно, чем 180 сек, и подачу анализируемого входного сигнала во время периода анализа, где период анализа меньше, примерно, чем 180 сек. Когда входной сигнал содержит опрашивающий входной сигнал и анализируемый входной сигнал, способ может включать в себя подачу опрашивающего входного сигнала во время периода опроса, где период опроса находится в пределах, примерно, от 0,1 сек и примерно до 10 сек, и подачу анализируемого входного сигнала во время периода анализа, где период анализа находится в пределах примерно от 1 сек примерно до 100 сек.

Когда входной сигнал содержит опрашивающий входной сигнал и анализируемый входной сигнал, способ может включать в себя подачу опрашивающего входного сигнала к образцу в течение примерно 1,25 сек, где опрашивающий входной сигнал имеет ширину опрашивающего импульса примерно 5-10 мсек и интервал опрашивающего импульса примерно 125 мсек, и подачу анализируемого входного сигнала к образцу в течение примерно 7 сек, где анализируемый входной сигнал имеет ширину анализируемого импульса примерно 1 сек и интервал анализируемого импульса примерно 1,5 сек. Опрашивающий входной сигнал может иметь потенциал примерно 400 мВ, анализируемый входной сигнал может иметь первый импульс с потенциалом примерно 400 мВ, и анализируемый входной сигнал может иметь, по меньшей мере, еще один импульс с потенциалом примерно от 200 мВ. Анализируемый входной сигнал может прикладываться, когда опрашивающий выходной сигнал равен или больше чем порог опроса, и порог опроса может составлять примерно 250 нА.

Биосенсор для определения концентраций анализируемых веществ в биологической текучей среды содержит сенсорную полоску, имеющую интерфейс образца на основе, где интерфейс образца соседствует с резервуаром, сформированным посредством основы, измерительное устройство, имеющее процессор, соединенный с интерфейсом сенсора, где интерфейс сенсора имеет электрическое сообщение с интерфейсом образца, процессор нормирует выходной сигнал от окислительно-восстановительной реакции анализируемого вещества в образце биологической текучей среды, процессор сравнивает нормированный выходной сигнал, по меньшей мере, на один контрольный предел, и процессор генерирует сигнал ошибки, когда нормированный выходной сигнал находится не в рамках, по меньшей мере, одного контрольного предела. Процессор может определять разницу между одним, по меньшей мере, базовым выходным значением и одним, по меньшей мере, измеренным выходным значением выходного сигнала и/или может делить, по меньшей мере, одно выходное значение импульса выходного сигнала на первое выходное значение импульса выходного сигнала. По меньшей мере, один контрольный предел может предварительно задаваться по статистическому анализу лабораторных результатов.

Процессор может прикладывать входной сигнал к образцу биологической текучей среды, где входной сигнал содержит опрашивающий входной сигнал и анализируемый входной сигнал. Опрашивающий входной сигнал может иметь ширину опрашивающего импульса меньше, примерно, чем 300 мсек, и интервал опрашивающего импульса меньше, примерно, чем 1 сек. Анализируемый входной сигнал может иметь ширину анализируемого импульса меньше, примерно, чем 5 сек, и интервал анализируемого импульса меньше, примерно, чем 15 сек. Процессор может прикладывать опрашивающий входной сигнал во время периода опроса меньше, примерно, чем 180 сек, и он может прикладывать анализируемый входной сигнал во время периода анализа меньше, примерно, чем 180 сек. Процессор может прикладывать опрашивающий входной сигнал во время периода опроса в пределах примерно от 0,1 сек примерно до 10 сек и может прикладывать анализируемый входной сигнал во время периода анализа в пределах примерно от 1 сек примерно до 100 сек. Процессор может прикладывать опрашивающий входной сигнал к образцу в течение примерно 1,25 сек, где опрашивающий входной сигнал имеет ширину опрашивающего импульса примерно 5-10 мсек, интервал опрашивающего импульса примерно 125 мсек и потенциал примерно 400 мВ. Процессор может прикладывать анализируемый входной сигнал к образцу в течение примерно 7 сек, где анализируемый входной сигнал имеет ширину анализируемого импульса примерно 1 сек, интервал анализируемого импульса примерно 1,5 сек, первый импульс с потенциалом примерно 400 мВ и, по меньшей мере, еще один импульс с потенциалом примерно 200 мВ. Процессор может прикладывать анализируемый входной сигнал, когда опрашивающий выходной сигнал равен или больше чем порог опроса, примерно 250 нА.

Выходной сигнал биосенсора может содержать, по меньшей мере, пять импульсов, и нормированное значение тока четвертого импульса, R 4 , может быть представлено уравнением R 4=i 4,8/i 4,1 , где i 4,1 представляет собой первое значение тока в четвертом импульсе, а i 4,8 представляет собой последнее значение тока в четвертом импульсе. Нормированное значение тока пятого импульса, R 5, может быть представлено уравнением R 5=i 5,8/i 5,1, где i 5,1 представляет собой первое значение тока в пятом импульсе, а i 5,8 представляет собой последнее значение тока в пятом импульсе. Отношение нормированного значения тока четвертого импульса к нормированному значению тока пятого импульса может быть представлено уравнением Отношение =(i 4,8 xi 5,1)/(i 4,1хi 5,8), где i 4,1 представляет собой первое значение тока в четвертом импульсе, i 4,8 представляет собой последнее значение тока в четвертом импульсе, i 5,1 представляет собой первое значение тока в пятом импульсе, а i 5,8 представляет собой последнее значение тока в пятом импульсе.

Процессор биосенсора может измерять выходной сигнал. Процессор может измерять выходной сигнал с перерывами. Выходной сигнал может представлять собой отклик на последовательность импульсов. Выходной сигнал может представлять собой отклик на стробированную амперометрию электрохимической системы.

Краткое описание чертежей

Настоящее изобретение может быть понято лучше со ссылками на следующие далее чертежи и описание. Компоненты на фигурах необязательно выполнены в масштабе, вместо этого внимание сосредоточено на иллюстрировании принципов настоящего изобретения. Кроме того, на фигурах, сходные ссылочные номера обозначают соответствующие детали на различных видах.

Фиг.1 представляет способ детектирования аномального выходного сигнала биосенсора.

Фиг.2 представляет собой график, иллюстрирующий выходные сигналы по отношению к входным сигналам для электрохимической системы, использующей стробированную амперометрию.

Фиг.3 изображает схематическое представление биосенсора с системой детектирования аномального выходного сигнала.

Подробное описание

Настоящее изобретение предусматривает систему детектирования аномального выходного сигнала для биосенсора. Система детектирования аномального выходного сигнала улучшает точность и прецизионность биосенсора при определении того, имеет ли выходной сигнал форму или конфигурацию, которые не могут обеспечить точный и/или прецизионный анализ биологической текучей среды. Биосенсор генерирует выходной сигнал в ответ на окислительно-восстановительную реакцию анализируемого вещества. Выходной сигнал может измеряться и коррелироваться с концентрацией анализируемого вещества в биологической текучей среде. Биосенсор нормирует выходной сигнал и сравнивает нормированный выходной сигнал с одним или несколькими контрольными пределами. Биосенсор генерирует сигнал ошибки, когда нормированный выходной сигнал находится вне контрольных пределов. Система детектирования аномального выходного сигнала может использоваться отдельно или вместе с другими системами детектирования ошибки. Биосенсор может использоваться для определения концентраций одного или нескольких анализируемых веществ, таких как глюкоза, мочевая кислота, лактат, холестерин, билирубин или что-либо подобное, в биологических текучих средах, таких как цельная кровь, моча, слюна или что-либо подобное.

Фиг.1 представляет способ детектирования аномального выходного сигнала от биосенсора. Нормальный выходной сигнал имеет форму или конфигурацию, которая может обеспечить точный и/или прецизионный анализ биологической текучей среды. Аномальный выходной сигнал имеет форму или конфигурацию, которые не могут обеспечить точного и/или прецизионного анализа биологической текучей среды. В 102 биосенсор генерирует выходной сигнал в ответ на окислительно-восстановительную реакцию анализируемого вещества в образце биологической текучей среды. В 104 биосенсор измеряет выходной сигнал. В 106 биосенсор нормирует выходной сигнал. В 108 биосенсор сравнивает нормированный выходной сигнал с одним или несколькими контрольными пределами. В 110 биосенсор генерирует сигнал ошибки, когда нормированный выходной сигнал находится вне контрольных пределов.

В 102 на Фиг.1 биосенсор генерирует выходной сигнал в ответ на окисление/восстановление или окислительно-восстановительную реакцию анализируемого вещества в образце биологической текучей среды. Выходной сигнал может генерироваться с использованием системы оптических сенсоров, системы электрохимических сенсоров или чего-либо подобного.

Системы оптических сенсоров, как правило, измеряют величину света, поглощаемую или генерируемую посредством взаимодействия химического индикатора с окислительно-восстановительной реакцией анализируемого вещества. Фермент может включаться в химический индикатор для ускорения кинетики реакции. Выходной сигнал или свет от оптической системы может преобразовываться в электрический сигнал, такой как ток или потенциал.

В поглощающих свет оптических системах, химический индикатор производит продукт реакции, который поглощает свет. Может использоваться химический индикатор, такой как тетразолий, вместе с ферментом, таким как диафораза. Тетразолий обычно образует формазан (хромаген) в ответ на окислительно-восстановительную реакцию анализируемого вещества. Падающий входной луч от источника света направляется на образец. Источник света может представлять собой лазер, светодиод или что-либо подобное. Падающий луч может иметь длину волны, выбранную для поглощения продуктом реакции. Когда падающий луч проходит через образец, продукт реакции поглощает часть падающего луча, таким образом ослабляя или уменьшая интенсивность падающего луча. Падающий луч может отражаться назад или проходить через образец к детектору. Детектор собирает и измеряет ослабленный падающий луч (выходной сигнал). Величина света, ослабленного посредством продуктов реакции, представляет собой показатель концентрации анализируемого вещества в образце.

В генерирующих свет оптических системах химический детектор флюоресцирует или испускает свет в ответ на окислительно-восстановительную реакцию анализируемого вещества. Детектор собирает и измеряет генерируемый свет (выходной сигнал). Величина света, производимого химическим индикатором, является показателем концентрации анализируемого вещества в образце.

Электрохимические системы прикладывают входной сигнал к образцу биологической текучей среды. Входной сигнал может представлять собой потенциал или ток и может быть постоянным, переменным или представлять собой их сочетание, например, как тогда, когда сигнал переменного тока прикладывается вместе с сигналом смещения постоянного тока. Входной сигнал может прикладываться как отдельный импульс или как множество импульсов, последовательностей или циклов. Анализируемое вещество подвергается окислительно-восстановительной реакции, когда входной сигнал прикладывается к образцу. Фермент или сходные частицы могут использоваться для ускорения окислительно-восстановительной реакции анализируемого вещества. Медиатор может использоваться для поддержания окисленного состояния фермента. Окислительно-восстановительная реакция генерирует выходной сигнал, который может измеряться постоянно или периодически во время прохождения стационарного и/или переходного выходного сигнала. Могут использоваться различные электрохимические способы, такие как амперометрия, кулонометрия, вольтамперметрия или что-либо подобное. Также могут использоваться стробированная амперометрия и стробированная вольтамперметрия.

При амперометрии потенциал или напряжение прикладывается к образцу биологической текучей среды. Окислительно-восстановительная реакция анализируемого вещества генерирует ток в ответ на потенциал. Ток измеряется со временем для количественного определения анализируемого вещества в образце. Амперометрия, как правило, измеряет скорость, с которой окисляется или восстанавливается анализируемое вещество, для определения концентрации анализируемого вещества в образце. Системы биосенсоров с использованием амперометрии описываются в патентах США №№5620579; 5653863; 6153069 и 6413411.

При кулонометрии к образцу биологической текучей среды прикладывается потенциал для избыточного окисления или восстановления анализируемого вещества внутри образца. Потенциал генерирует ток, который интегрируется по времени окисления/восстановления с получением электрического заряда, представляющего концентрацию анализируемого вещества. Кулонометрия, как правило, определяет общее количество анализируемого вещества в образце. Система биосенсоров с использованием кулонометрии для измерения глюкозы в цельной крови описана в патенте США №6120676.

При вольтамперметрии изменяющийся со временем потенциал прикладывается к образцу биологической текучей среды. Окислительно-восстановительная реакция анализируемого вещества генерирует ток в ответ на поданный потенциал. Ток измеряется со временем для количественного определения анализируемого вещества в образце. Вольтамперметрия, как правило, измеряет скорость, с которой анализируемое вещество окисляется или восстанавливается, для определения концентрации анализируемого вещества в образце. Дополнительную информацию о вольтамперметрии можно найти в "Electrochemical Methods: Fundamentals and Applications" by A.J. Bard and L.R. Faulkner, 1980.

В стробированной амперометрии и в стробированной вольтамперметрии импульсные входные сигналы используют, как описано во временных заявках на патент США №60/700787, зарегистрированной 20 июля 2005 года, и № 60/722584, зарегистрированной 30 сентября 2005 года, соответственно, которые включаются сюда в качестве ссылок.

Фиг.2 представляет собой график, иллюстрирующий выходные сигналы в зависимости от входных сигналов для электрохимической системы с использованием стробированной амперометрии. Входные сигналы представляют собой потенциалы, прикладываемые к образцу биологической текучей среды. Входные сигналы включают в себя опрашивающий входной сигнал и анализируемый входной сигнал. Выходные сигналы представляют собой токи, генерируемые от образца. Выходные сигналы включают в себя опрашивающий выходной сигнал и анализируемый выходной сигнал. Образец генерирует анализируемый выходной сигнал от окислительно-восстановительной реакции глюкозы в цельной крови в ответ на анализируемый входной сигнал. Входной и выходной сигналы могут предназначаться для биосенсора, имеющего рабочий и опорный электроды. Могут использоваться другие биосенсоры, включая сенсоры с дополнительными электродами и с другими конфигурациями. Могут измеряться другие концентрации анализируемых веществ, включая концентрации в других биологических текучих средах. Могут генерироваться другие выходные сигналы, включая те, которые отклоняются изначально и которые отклоняются во всех импульсах.

Анализируемый выходной сигнал на Фиг.2 имеет нормальную форму или конфигурацию. Значения тока в первом импульсе увеличиваются от первого до последнего значения тока. Значения тока во втором-пятом импульсах уменьшаются или затухают от первого до последнего значения тока в каждом импульсе. Аномальная форма или конфигурация включает в себя значения тока, которые увеличиваются в любом из второго-пятого импульса. Аномальная форма или конфигурация включает в себя значения тока, которые уменьшаются или затухают слишком быстро (большая крутизна) или слишком медленно (меньшая крутизна). Могут существовать и другие аномальные формы и конфигурации.

При использовании образец биологической текучей среды осаждается в биосенсоре. Биосенсор прикладывает опрашивающий сигнал к образцу в течение примерно от -1,25 секунды примерно до 0 секунд. Импульсы имеют ширину импульса примерно от 5-10 мсек и интервал между импульсами примерно от 125 мсек. Биосенсор генерирует опрашивающий выходной сигнал в ответ на опрашивающий входной сигнал. Биосенсор измеряет опрашивающий выходной сигнал. Биосенсор может иметь потенциостат, который подает опрашивающий выходной сигнал на вход аналогового компаратора.

Когда опрашивающий выходной сигнал равен или больше, чем порог опроса, биосенсор прикладывает анализируемый входной сигнал к электродам примерно от 0 секунд примерно до 7 секунд. Значение порога опроса может составлять примерно 250 нА. Компаратор может сравнивать опрашивающий выходной сигнал со значением порога опроса. Когда опрашивающий выходной сигнал превосходит значение порога опроса, выходной сигнал компаратора может включать запуск анализируемого входного сигнала.

Во время анализируемого входного сигнала биосенсор прикладывает первый импульс, имеющий потенциал примерно 400 мВ, в течение примерно 1 сек к рабочему и опорному электродам. После первого импульса следует 0,5 сек - релаксация, которая может представлять собой по существу разомкнутую цепь или что-либо подобное. Анализируемый выходной сигнал или ток в первом импульсе измеряется и хранится в устройстве памяти. Биосенсор может прикладывать второй импульс к рабочему и опорному электродам, примерно при 200 мВ в течение примерно 1 сек. Анализируемый выходной сигнал или ток во втором импульсе измеряется и хранится в устройстве памяти. Биосенсор продолжает подачу импульсов от анализируемого входного сигнала к рабочему и опорному электродам до конца периода анализа или настолько долго, насколько это желательно для биосенсора. Период анализа может составлять примерно 7 секунд. Биосенсор может измерять и хранить анализируемый выходной сигнал или ток в каждом импульсе.

Опрашивающий входной сигнал представляет собой электрический сигнал, такой как ток или потенциал, который пульсирует или включается и выключается при заданной частоте или интервале. Образец генерирует опрашивающий выходной сигнал в ответ на опрашивающий входной сигнал. Опрашивающий выходной сигнал представляет собой электрический сигнал, такой как ток или потенциал. Биосенсор может показывать опрашивающий выходной сигнал на дисплее и/или может хранить анализируемый выходной сигнал в устройстве памяти. Биосенсор может прикладывать опрашивающий сигнал для детектирования, когда образец соединяется с электродами. Биосенсор может использовать другие способы и устройства для детектирования, когда образец является доступным для анализа.

Опрашивающий входной сигнал представляет собой последовательность опрашивающих импульсов, разделенных опрашивающими релаксациями. Во время опрашивающего импульса электрический сигнал включается. Во время опрашивающей релакс