Мобильный телефон с навигационным устройством, способ инициализации корректирующих значений и функция навигации
Иллюстрации
Показать всеИзобретение относится к области навигационного приборостроения и может найти применение в системах персональной навигации. Технический результат - расширение функциональных возможностей. Для достижения данного результата навигационное устройство содержит: блок измерений, предназначенный для измерения текущего местоположения; геомагнитный датчик, расположенный на заранее заданном основном блоке и предназначенный для определения геомагнетизма; блок вычисления направления, предназначенный для вычисления направления основного блока после установки корректирующих значений, обеспечивающий корректировку значений геомагнетизма; блок индикации, предназначенный для показа пользователю результатов измерений и результатов вычисления местонахождения; блок установки рабочего состояния, предназначенный для переключения между обычным рабочим состоянием, в котором выполняется процесс показа, и состоянием ожидания, в котором сохраняется часть состояния процессов и фиксируется, по меньшей мере, процесс вычисления направления; блок процесса инициализации, предназначенный для инициализации корректирующих значений в случае перехода из состояния ожидания в обычное рабочее состояние, указанный переход осуществляется блоком установки/переключения рабочего состояния. 3 н. и 4 з.п. ф-лы, 15 ил.
Реферат
Область техники, к которой относится изобретение
Изобретение относится к мобильным телефонам с навигационным устройством, способу инициализации корректирующих значений и функции навигации и, например, может быть применено в навигационном устройстве, которое может определить азимут с помощью геомагнитного датчика.
Уровень техники
До настоящего времени были широко распространены навигационные устройства, установленные в автомобилях или подобных средствах передвижения, указанные навигационные устройства вычисляют текущее местоположение исходя из GPS (глобальная система позиционирования) сигнала, передаваемого от GPS спутника, и показывают местоположение автомобиля и направление движения на экране с картой.
Также существуют навигационные устройства, называемые ПНУ (персональное навигационное устройство), которые пользователь может легко переносить между автомобилем и домом, или подобным образом, или между автомобилями и которые могут показывать экран с картой или выполнять подобные функции даже при их перемещении.
Было предложено ПНУ, содержащее встроенный геомагнитный датчик, который определяет геомагнетизм, вычисляет направление на основе результатов определения геомагнетизма и показывает экран с картой, который соответствует направлению (см., например, нерассмотренную заявку на японский патент №2008-076374).
Кроме ПНУ существуют портативные электронные устройства, такие как мобильные телефоны, с функциями проведения измерений, функциями показа карт или подобными функциями, указанные устройства дополнительно содержат геомагнитный датчик и показывают экран с картой, соответствующий направлению.
На геомагнитные датчики оказывает влияние находящееся рядом магнитное поле от таких магнитных материалов, как металл, или подобных, и, кроме того, даже в случае, когда изменяется намагниченность металлической части, такой как защитная пластина, или подобного элемента, расположенного в ПНУ, указанное изменение также может оказывать влияние на геомагнитные датчики.
Следовательно, при начале вычисления направления с помощью геомагнитного датчика, ПНУ осуществляет заранее заданный процесс инициализации (например, регулировку корректирующих значений и тому подобное), при этом направление может быть надлежащим образом вычислено на основе сигналов, полученных от геомагнитного датчика.
С другой стороны, существуют ПНУ, которые могут переводиться в состояние ожидания, когда работает только часть внутренних контуров и прочего, это состояние имеет место тогда, когда пользователь временно не использует устройство и в подобных случаях, что аналогично компьютерам общего пользования или подобным устройствам.
После осуществления заранее заданных операций возврата, ПНУ, которое было переведено в состояние ожидания, не выполняет процесс инициализации и подобные процессы, которые выполняются при обычном запуске, возвращается в рабочее состояние, непосредственно предшествующее переводу в состояние ожидания, и может немедленно продолжить работу.
Тем не менее, существуют случаи, когда во время возврата из состояния ожидания ПНУ было перемещено в место, которое отличается от места нахождения, где произошел переход в состояние ожидания, и в котором окружающее магнитное поле отличается, и существуют случаи, когда при переведении в состояние ожидания на ПНУ действует окружающее магнитное поле и изменяется намагниченность внутренних металлических частей ПНУ.
В таких случаях возникала проблема, заключающаяся в том, что ПНУ могло некорректно определять направление с помощью геомагнитного датчика и экран с картой, соответствующей текущему местонахождению, мог отражаться некорректно.
Представляется необходимым предложить мобильный телефон, имеющий навигационное устройство, которое может улучшить точность определения направления с помощью геомагнитного датчика, способ инициализации корректирующих значений и функцию навигации.
Сущность изобретения
В навигационном устройстве и способе инициализации корректирующих значений, которые соответствуют варианту осуществления настоящего изобретения, заранее заданный блок проведения измерений измеряет текущее местоположение, геомагнитный датчик, расположенный на заранее заданном основном блоке, определяет геомагнетизм, направление основного блока вычисляется с помощью заранее заданного блока вычисления направления, после установки корректирующих значений, предназначенных для корректировки определенных заранее значений геомагнетизма, что делается на основе определенных значений и корректирующих значений, результаты измерений, полученные с помощью блока проведения измерений, и результаты вычисления местонахождения показываются пользователю с помощью заранее заданного блока показа информации, заранее заданный блок переключения рабочего состояния переключает между обычным рабочим состоянием, в котором выполняется указанный процесс показа, и состоянием ожидания, в котором поддерживается часть состояния процессов и останавливается, по меньшей мере, процесс вычисления направления; и в случае перехода из состояния ожидания в обычное рабочее состояние корректирующие значения проходят инициализацию с помощью заранее заданного блока осуществления инициализации.
Таким образом, даже если периферийное магнитное поле и намагниченность периферийных частей или подобных элементов изменились во время нахождения в состоянии ожидания, навигационное устройство и способ инициализации корректирующих значений, соответствующий приведенной выше структуре, могут выработать надлежащие корректирующие значения, соответствующие магнитному полю и намагниченности после изменения, что делается путем повторного получения корректирующих значений с самого начала.
Также сотовый телефон с навигационными возможностями, соответствующий варианту осуществления настоящего изобретения, содержит блок проведения измерений, предназначенный для измерения текущего местоположения; геомагнитный датчик, расположенный в заранее заданном основном блоке и предназначенный для определения геомагнетизма; блок вычисления направления, предназначенный для вычисления направления основного блока, после установки корректирующих значений, нужных для корректировки определенных значений геомагнетизма на основе определенных значений и корректирующих значений; блок показа информации, предназначенный для показа пользователю результатов измерений, полученных блоком проведения измерений, и результатов вычисления направления; блок переключения рабочего состояния, предназначенный для переключения между обычным рабочим состоянием, в котором выполняется указанный процесс показа, и состоянием ожидания, в котором поддерживается часть состояния процессов и останавливается, по меньшей мере, процесс вычисления направления; блок процесса инициализации, предназначенный для инициализации корректирующих значений в случае перехода из состояния ожидания в обычное рабочее состояние с помощью блока переключения рабочего состояния; и блок сотового телефона, предназначенный для осуществления обработки телефонного звонка путем осуществления беспроводной связи с заранее заданной базовой станцией.
Таким образом, даже если периферийное магнитное поле и намагниченность периферийных частей или подобных элементов изменились во время нахождения в состоянии ожидания, сотовый телефон с навигационными возможностями, соответствующий приведенной выше структуре, может выработать надлежащие корректирующие значения, соответствующие магнитному полю и намагниченности после изменения, что делается путем повторного получения корректирующих значений с самого начала.
Согласно приведенным выше структурам, даже если периферийное магнитное поле и намагниченность периферийных частей или подобных элементов изменились во время нахождения в состоянии ожидания, могут быть выработаны надлежащие корректирующие значения, соответствующие магнитному полю и намагниченности после изменения, что делается путем повторного получения корректирующих значений с самого начала. Следовательно, могут быть реализованы навигационное устройство, способ инициализации корректирующих значений и сотовый телефон с навигационными возможностями, в которых с помощью геомагнитного датчика может быть увеличена точность определения направления.
Краткое описание чертежей
Фиг.1 - схематический вид, иллюстрирующий общую структуру ПНУ;
фиг.2 - схематический вид, иллюстрирующий определение системы координат ПНУ;
фиг.3 - схематический вид, иллюстрирующий структуру датчика ПНУ;
фиг.4А и 4В - схематические виды, иллюстрирующие состояние во время движения по неровной дорожной поверхности;
фиг.5 - схематический вид, иллюстрирующий состояние во время движения по кривой;
фиг.6 - схематический вид, иллюстрирующий способ вычисления текущего местоположения с использованием скорости и угла;
фиг.7 - схематический вид, иллюстрирующий схему ПНУ;
фиг.8 - схематический вид, иллюстрирующий структуру блока вычисления скорости;
фиг.9 - схематический вид, иллюстрирующий состояние, вызванное колебанием опоры;
фиг.10 - схематический вид, иллюстрирующий отношение между максимальным значением и минимальным значением;
фиг.11 - вид, показывающий блок-схему, сопровождающую описание процедур процесса вычисления текущего местоположения, в котором используется процесс вычисления скорости;
фиг.12 - вид, показывающий блок-схему, сопровождающую описание процедур процесса инициализации;
фиг.13 - схематический вид, иллюстрирующий общую структуру мобильного телефона;
фиг.14 - схематический вид, иллюстрирующий схему мобильного телефона;
фиг.15 - схематический вид, иллюстрирующий пример использования, соответствующий другому варианту осуществления изобретения.
Описание предпочтительных вариантов осуществления изобретения
Варианты осуществления изобретения, реализующие изобретение (в дальнейшем называемые просто «вариантами осуществления изобретения») будут описаны со ссылками на фигуры. Описание приведено в следующем порядке.
1. Первый вариант осуществления изобретения (ПНУ)
2. Второй вариант осуществления изобретения (мобильный телефон)
3. Другие варианты осуществления изобретения
1. Первый вариант осуществления изобретения
1-1. Структура ПНУ
Как показано на фиг.1, портативное навигационное устройство (в дальнейшем также называемое ПНУ 1 (Персональное Навигационное Устройство)) содержит блок 2 отображения, расположенный на передней стороне устройства. ПНУ 1 выполнено таким образом, чтобы на основании данных карты, хранящихся во внутренней энергонезависимой памяти (не показана), отображать экран с картой или подобное, например, в блоке 2 отображения, в результате чего содержимое показывается пользователю.
Также ПНУ 1 держится на опоре 3, которая прикреплена к панели приборов описанного ниже автомобиля 9 с помощью присоски 3А, кроме того, ПНУ 1 и опора 3 соединены механически и электрически.
Таким образом, ПНУ работает с помощью электроэнергии, полученной от аккумулятора автомобиля 9 через опору 3, а когда ПНУ 1 снято с опоры 3, оно работает в независимом режиме с помощью электроэнергии, получаемой от встроенного аккумулятора.
ПНУ расположено таким образом, чтобы блок 2 отображения был размещен примерно вертикально по отношению к направлению движения автомобиля 9. Система координат ПНУ 1 в этом случае отображается следующим образом: направление вперед/назад (направление движения) для автомобиля 9 является осью X, горизонтальное направление, которое перпендикулярно оси X, является осью Y, а вертикальное направление является осью Z.
В этой системе координат, направление движения автомобиля 9 является положительным по оси X, направление направо является положительным по оси Y и направление вниз является положительным по оси Z.
Как показано на фиг.3, ПНУ 1 содержит внутренний трехмерный датчик 4 ускорения, гиродатчик 5 оси Y, гиродатчик 6 оси Z, датчик 7 атмосферного давления и геомагнитный датчик 8.
Трехмерный датчик 4 ускорения выполнен таким образом, чтобы измерять как значения напряжения следующие величины: ускорение αx в направлении оси X, ускорение αy в направлении оси Y и ускорение αz в направлении оси Z соответственно.
Также гиродатчик 5 оси Y, гиродатчик 6 оси Z и датчик 7 атмосферного давления выполнены таким образом, чтобы измерять как значения напряжения следующие величины: угловую скорость ωy по оси Y, угловую скорость ωz по оси Z и периферийное давление PR соответственно.
Далее, геомагнитный датчик 8 выполнен таким образом, чтобы измерять как значения напряжения, следующие величины: геомагнетизм Mx, My и Mz соответственно по направлению оси X, по направлению оси Y и по направлению оси Z.
1-2. Принципы вычисления
ПНУ 1, соответствующее варианту осуществления настоящего изобретения, может также выполнять автономный процесс нахождения местоположения с целью вычисления текущего местоположения после вычисления скорости автомобиля 9, что делается на основе ускорения и угловой скорости и других величин, измеренных трехмерным датчиком 4 ускорения, гиродатчиком 5 оси Y и другими устройствами. Далее будут описаны основные принципы вычисления скорости и текущего местоположения.
1-2-1. Принципы вычисления скорости
На практике, автомобиль 9, являющийся движущимся объектом, редко перемещается по гладкой дороге, которая представляет собой дорожную поверхность, в реальности автомобиль 9 перемещается по дороге, которая, в общем, является вогнутой, как показано на фиг.4А, и которая, в общем, является выпуклой, как показано на фиг.4В.
Когда автомобиль 9 перемещается по дороге вогнутой формы (фиг.4А), ПНУ 1, установленное на панели приборов автомобиля 9, определяет ускорение αz в направлении вниз по оси Z, что делается с помощью трехмерного датчика 4 ускорения (фиг.3), при этом частота проведения измерений равна, например, 50 Гц.
Также ПНУ 1 определяет угловую скорость ωy по оси Y, которая перпендикулярна направлению движения, что делается с помощью гиродатчика 5 (фиг.3) оси Y, при этом частота проведения измерений равна, например, 50 Гц.
ПНУ 1 считает положительным ускорение αz, направленное вниз вдоль оси Z, и также считает положительной угловую скорость ωy, в случае вращения вверх в вертикальном направлении по отношению к направлению движения в виртуальной окружности, образованной вдоль вогнутой дорожной поверхности, как показано на фиг.4А.
ПНУ 1 использует ускорение αz, определенное трехмерным датчиком 4 ускорения, и угловую скорость ωy, определенную гиродатчиком 5 оси Y, для вычисления 50 раз за секунду скорости V в направлении движения с помощью следующего выражения (1):
Также, когда автомобиль 9 движется по дороге выпуклой формы (фиг.4В), ПНУ 1 определяет ускорение в направлении вверх по оси Z, что делается с помощью трехмерного датчика 4 ускорения, при этом частота проведения измерений равна, например, 50 Гц. Также ПНУ 1 определяет угловую скорость по оси Y, что делается с помощью гиродатчика 5 оси Y, при этом частота проведения измерений равна, например, 50 Гц.
ПНУ 1 использует ускорение , определенное трехмерным датчиком 4 ускорения, и угловую скорость , определенную гиродатчиком 5 оси Y, для вычисления 50 раз за секунду скорости V' в направлении движения с помощью следующего выражения (2):
Для упрощения описания отрицательное значение ускорения αz будет описываться как ускорение , но фактически трехмерный датчик ускорения определяет ускорение как противоположное по знаку значение ускорения αz. Аналогично для угловой скорости противоположное по знаку значение угловой скорости ωy будет описываться как угловая скорость , но фактически гиродатчик 5 оси Y определяет угловую скорость как противоположное по знаку значение угловой скорости ωy. Соответственно скорость V' также фактически вычисляется как скорость V.
1-2-2. Принципы вычисления текущего местоположения
Далее будут описаны принципы вычисления текущего местоположения, предназначенные для вычисления текущего местоположения на основе скорости V, найденной в соответствии с описанными выше принципами вычисления скорости, и на основе угловой скорости относительно оси Z.
Как показано на фиг.5, угловая скорость (скорость рыскания) ωz относительно оси Z во время поворота автомобиля 9, например, в направлении против часовой стрелки определяется гиродатчиком 6 (фиг.3) оси Z, при этом частота проведения измерений равна, например, 50 Гц.
Далее ПНУ 1 получает величину изменения от предыдущего местоположения Р0 до текущего местоположения Р1 исходя из скорости V в предыдущем местоположении Р0 и угла θ, полученного умножением угловой скорости ωz, определенной гиродатчиком, на частоту проведения измерений (в данном случае на 0,02 секунды). Затем ПНУ 1 может вычислить и получить текущее местоположение Р1 путем прибавления величины изменения к предыдущему местоположению Р0.
1-3. Схема ПНУ
Как показано на фиг.7, ПНУ 1 выполнено на основе блока 11 управления и блока 10 навигации, который снабжен датчиками различных типов и выполняет функции навигации.
Блок 11 управления содержит ЦП (центральный процессор) и осуществляет централизованное управление всем устройством на основе основной программы, считанной из блока 12 хранения информации, который выполнен, например, на основе энергонезависимой памяти.
Также ПНУ 1 выполняет описанный ниже процесс вычисления текущего местоположения, процесс инициализации и подобные процессы, соответствующие прикладным программам различных типов, считанных блоком 11 управления из блока 12 хранения информации.
Далее ПНУ 1 содержит функциональный блок 13, представляющий собой сенсорную панель, объединенную с блоком 2 отображения, непоказанный выключатель и так далее. При получении рабочей инструкции от пользователя через сенсорную панель или выключатель, функциональный блок 13 сообщает о содержании работы блоку 11 управления.
Блок 11 управления выполнен таким образом, чтобы осуществлять обработку в соответствии с содержанием работы пользователя, например устанавливает пункт назначения и так далее в соответствии с содержанием работы, полученным от функционального блока 13.
Также блок 11 управления выполнен таким образом, чтобы работать как блок 16 переключения рабочего состояния. То есть в случае когда работает выключатель функционального блока 13, блок 16 переключения рабочего состояния переключается между включенным состоянием, в котором работает все ПНУ 1, и выключенным состоянием, в котором работа всего ПНУ 1 полностью останавливается, и состоянием ожидания.
В случае переключения от включенного состояния в состояние ожидания, блок 11 управления останавливает работу различных датчиков и блока 2 отображения и подобных устройств, продолжает выполняться только часть функций блока 11 управления и сохраняются данные различных типов и подобное, имевшиеся на момент, непосредственно предшествующий переключению.
Также в случае переключения из состояния ожидания во включенное состояние, блок 11 управления моментально восстанавливает рабочее состояние до состояния, которое было в момент, непосредственно предшествующий переключению в состояние ожидания, это делается исходя из сохраненных данных различного типа и подобного, и ПНУ 1 начинает работать.
В этом случае блок 16 переключения рабочего состояния может возвратиться из состояния ожидания во включенное состояние, если включен двигатель автомобиля 9, а также к ПНУ 1, прикрепленному к опоре 3, поступает электроэнергия.
Далее ПНУ 1 выполнено таким образом, чтобы переключаться между следующими режимами работы: режим установки на автомобиле, в котором осуществляется процесс навигации в состоянии, когда ПНУ 1 установлено на автомобиле 9 с помощью опоры 3 (фиг.1), и режим ходьбы, в котором осуществляется процесс навигации в состоянии, когда ПНУ 1 снято с опоры 3 и удерживается пользователем, который в основном передвигается пешком.
Также блок 11 управления работает в качестве блока 17 определения опоры. Блок 17 определения опоры периодически (например, каждые 3 секунды) определяет, присутствует ли электрическое соединение ПНУ 1 с опорой 3 или не присутствует, и вырабатывает сигнал CTD определения опоры, который содержит полученные результаты, и подает этот сигнал в блок 16 переключения рабочего состояния.
На основе сигнала CTD определения опоры блок 16 переключения рабочего состояния переключает режим работы общего блока 11 управления в режим установки на автомобиле в случае присутствия соединения с опорой 3 и переключает в режим ходьбы в случае отсутствия соединения с опорой 3.
Например, в случае когда блок 17 определения опоры определяет, что ПНУ 1 прикреплено к опоре 3, то показывающий это сигнал CTD определения опоры подается в блок 16 переключения рабочего состояния.
Соответственно, блок 16 переключения рабочего состояния переключает режим работы ПНУ 1 в режим установки на автомобиле. В случае режима установки на автомобиле, блок 11 управления выполняет функции блока 21 обработки GPS сигнала, блока 22 вычисления скорости, блока 23 вычисления угла, блока 24 вычисления высоты, блока 25 вычисления местоположения и блока 26 навигации.
В случае возможности приема GPS сигнала от GPS спутника, блок 11 управления в режиме установки на автомобиле может осуществлять обработку GPS сигналов, предназначенную для проведения измерений на основе GPS сигнала.
То есть ПНУ 1 передает множество GPS сигналов, полученных от GPS спутника с помощью антенны ANT1, в блок 21 обработки GPS сигнала, являющийся частью блока 11 управления.
Блок 21 обработки GPS сигнала получает данные NPD 1 о текущем местоположении путем точного измерения текущего местоположения автомобиля 9 исходя из данных об экваторе, полученных после демодуляции множества GPS сигналов, и расстояния от множества GPS спутников до автомобиля 9 и передает указанные данные в блок 26 навигации.
Блок 26 навигации получает сигнал MD режима работы, который содержит результат переключения режима работы, от блока 16 переключения рабочего состояния и осуществляет процесс навигации в соответствии с режимом работы в текущий момент времени.
В случае режима установки на автомобиле, когда блок 26 навигации считывает данные о карте окружающей местности, которые включают в себя текущее местоположение автомобиля 9, что делается на основе данных NPD 1 о текущем местоположении, и вырабатывает изображение карты, которое содержит текущее местоположение, после чего это изображение выдается в блок 2 отображения, изображение карты показывается пользователю.
Также ПНУ 1 не осуществляет обработку GPS сигнала при отсутствии приема GPS сигнала от GPS спутников. Таким образом, когда нет приема GPS сигнала, ПНУ 1 может осуществлять автономный процесс нахождения местоположения, направленный на вычисление текущего местоположения после вычисления скорости V на основе ускорения и угловой скорости и других данных, измеренных трехмерным датчиком 4 ускорения, гиродатчиком 5 оси Y и другими датчиками.
То есть трехмерный датчик 4 ускорения определяет ускорения αx, αy и αz при частоте проведения измерений, равной, например, 50 Гц, и данные AD об ускорении, содержащие ускорение αz, передаются в блок 22 вычисления скорости, который является частью блока 11 управления.
Гиродатчик 5 оси Y определяет угловую скорость ωy при частоте проведения измерений, равной, например, 50 Гц, и данные PD об угловой скорости, содержащие угловую скорость ωy, передает в блок 22 вычисления скорости, который является частью блока 11 управления.
Блок 22 вычисления скорости вычисляет скорость V 50 раз в секунду с использованием выражения (1) исходя из ускорения αz, соответствующего данным AD об ускорениях, поступившим от трехмерного датчика 4 ускорения, и исходя из угловой скорости ωy, соответствующей данным PD об угловой скорости, поступившим от гиродатчика 5 оси Y, и передает данные VC о скорости, содержащие скорость V, в блок 25 вычисления местоположения.
Также гиродатчик 6 оси Z определяет угловую скорость ωz при частоте проведения измерений, равной, например, 50 Гц, и данные YD об угловой скорости, содержащие угловую скорость ωz, передает в блок 23 вычисления угла, который является частью блока 11 управления.
Блок 23 вычисления угла умножает частоту проведения измерений (в этом случае равную 0,02 секунды) на угловую скорость ωz, которая соответствует данным YD об угловой скорости, поступившим от гиродатчика 6 оси Z, тем самым вычисляет угол θ в момент поворота автомобиля 9 в направлении по часовой стрелке или против часовой стрелки и передает данные DD об угле, содержащие угол θ, в блок 25 вычисления местоположения.
Блок 25 вычисления местоположения находит величину изменения от предыдущего местоположения Р0, показанного на фиг.6, до текущего местоположения Р1, что делается на основе угла θ, соответствующего данным DD об угле, полученным от блока 23 вычисления угла, и на основе скорости V, соответствующей данным VD о скорости, полученным от блока 22 вычисления скорости. Далее блок 25 вычисления местоположения вычисляет текущее местоположение Р1 путем прибавления величины изменения к предыдущему местоположению Р0 и передает данные NPD 2 о текущем местоположении, содержащие текущее местоположение Р1, в блок 26 навигации.
С другой стороны, датчик 7 атмосферного давления определяет давление PR окружающего воздуха с частотой проведения измерений, равной, например, 50 Гц, и передает данные PRD о давлении, содержащие давление PR, в блок 24 вычисления высоты.
Блок 24 вычисления высоты вычисляет высоту, на которой находится автомобиль 9, исходя из давления PR воздуха, соответствующего данным PRD о давлении, полученным от датчика 7 атмосферного давления, и предает данные HD о высоте, содержащие высоту, в блок 26 навигации.
Блок 26 навигации считывает из блока 12 хранения информации данные о карте окружающей местности, которые включают в себя текущее местоположение автомобиля 9 и которые основаны на данных NPD 2 о текущем местоположении, поступивших от блока 25 вычисления местоположения, и основаны на данных HD о высоте, поступивших от блока 24 вычисления высоты, и вырабатывает изображение карты, содержащее текущее местоположение автомобиля, после чего блок 26 навигации выдает это изображение в блок 2 отображения, тем самым изображение карты показывается пользователю.
1-4. Процесс вычисления скорости
Далее будет описан процесс вычисления скорости, направленный на вычисление скорости V в блоке 22 вычисления скорости на основе ускорения αz, которое соответствует данным AD об ускорении, поступившим от трехмерного датчика 4 ускорения, и на основе угловой скорости ωy, которая соответствует данным PD об угловой скорости, поступившим от гиродатчика 5 оси Y.
При осуществлении процесса вычисления скорости, блок 22 вычисления скорости выполняет функции блока 31 получения данных, блока 32 фильтрации высоких частот, блока 33 фильтрации низких частот, блока 34 вычисления скорости, блока 35 сглаживания и устранения шумов и блока 36 вывода скорости, как показано на фиг.8.
Блок 31 получения данных, являющийся частью блока 22 вычисления скорости, получает данные AD об ускорении от трехмерного датчика 4 ускорения и данные PD об угловой скорости от гиродатчика 5 оси Y и передает данные AD об ускорении и данные PD об угловой скорости в блок 32 фильтрации высоких частот.
Блок 32 фильтрации высоких частот отрезает постоянные составляющие данных AD об ускорении и данных PD об угловой скорости, поступивших от блока 31 получения данных, и передает полученные в результате данные AD1 об ускорении и данные PD1 об угловой скорости в блок 33 фильтрации низких частот.
Блок 33 фильтрации низких частот осуществляет описанный ниже процесс фильтрации низких частот для данных AD1 об ускорении и данных PD1 об угловой скорости, поступивших от блока 32 фильтрации высоких частот, и передает полученные в результате данные AD2 об ускорении и данные PD2 об угловой скорости в блок 34 вычисления скорости.
Блок 34 вычисления скорости осуществляет описанный ниже процесс вычисления скорости для данных AD2 об ускорении и данных PD2 об угловой скорости, поступивших от блока 33 фильтрации низких частот, и передает полученные в результате данные VD1 о скорости в блок 35 сглаживания и устранения шумов.
Блок 35 сглаживания и устранения шумов осуществляет заранее заданный процесс сглаживания и устранения шумов для данных V1 о скорости, поступивших от блока 34 вычисления скорости, уменьшает различие в ошибке, содержащейся в скорости V, и передает полученные в результате данные VD о скорости в блок 36 вывода скорости.
Блок 36 вывода скорости передает данные VD о скорости, поступившие от блока 35 сглаживания и устранения шумов, в блок 25 вычисления местоположения.
Таким образом, блок 22 вычисления скорости вычисляет скорость V автомобиля 9 на основе данных AD об ускорении, поступивших от трехмерного датчика 4 ускорения, и данных PD об угловой скорости, поступивших от гиродатчика 5 оси Y.
1-4-1. Процесс фильтрации низких частот
Далее будет описан процесс фильтрации низких частот, осуществляемый блоком 33 фильтрации низких частот для данных AD1 об ускорении и данных PD1 об угловой скорости, поступивших от блока 32 фильтрации высоких частот.
Как описано выше, когда ПНУ 1 установлено на автомобиле 9, угловую скорость ωy, образующуюся вследствие изгибания дороги в направлении движения автомобиля 9, определяет гиродатчик 5 оси Y.
Хотя подробности опущены, результат эксперимента показывает, что для ПНУ 1 в текущий момент времени угловая скорость ωy определяется как вибрация частоты от 1 до 2 Гц независимо от скорости движения автомобиля 9.
ПНУ 1 установлено на опоре 3, которая прикреплена к панели приборов автомобиля 9 с помощью присоски 3А. Как показано на фиг.9 опора 3 содержит основной блок 3В опоры, который расположен выше присоски 3А, один конец которого поддерживается точкой 3С приложения нагрузки, расположенной на определенной высоте в основном блоке 3В опоры, а блок 3D поддержки ПНУ предназначен для поддержки ПНУ 1 с другого конца.
Следовательно, в случае колебаний автомобиля 9 вместе с изгибами дороги, ПНУ 1 колеблется с ускорением αc и угловой скоростью ωc, например, в вертикальном направлении, при этом центром колебаний является точка 3С приложения нагрузки блока 3D поддержки ПНУ.
В результате экспериментов и подобных действий, с помощью гиродатчика 5 оси Y было подтверждено, что ПНУ 1 имеет угловую скорость ωy, которая колеблется от 1 до 2 Гц вместе с изгибами дороги, как описано выше, и общую угловую скорость ωcy, которая соединяется с угловой скоростью ωс, принимающей колебания от опоры, составляющие примерно 15 Гц.
Также было подтверждено, что ПНУ 1 имеет, с помощью трехмерного датчика 4 ускорения, ускорение αz, которое колеблется с частотой от 1 до 2 Гц вместе с изгибами дороги, как описано выше, и общее ускорение αcz, которое соединяется с ускорением αс, которое принимает колебания от опоры 3, составляющие примерно 15 Гц.
Таким образом, блок 33 фильтрации низких частот осуществляет фильтрацию низких частот для данных AD1 об ускорении и данных PD1 об угловой скорости, поступивших от блока 32 фильтрации высоких частот, и удаляет частотные компоненты частоты 15 Гц, то есть ускорение αс и угловую скорость ωс, которые вызваны тем, что ПНУ 1 поддерживается опорой 3.
То есть благодаря удалению ускорения αс из общего ускорения αcz блок 33 фильтрации низких частот может извлечь ускорение αz, которое определяется изгибами дороги. Также благодаря удалению угловой скорости ωс из общей угловой скорости ωcz блок 33 фильтрации низких частот может извлечь угловую скорость ωy, которая определяется изгибами дороги.
1-4-2. Процесс вычисления скорости
Далее будет описан процесс вычисления скорости, предназначенный для вычисления скорости V и осуществляемый блоком 34 вычисления скорости на основе данных AD2 об ускорении и данных PD2 об угловой скорости, поступивших от блока 33 фильтрации низких частот.
В общем, ПНУ 1 может быть расположено в разных местах автомобиля 9, например на панели приборов, расположенной в передней части автомобиля 9, или рядом с задним ветровым стеклом, которое находится в задней части автомобиля 9.
Хотя подробности опущены, результаты экспериментов показывают, что для ПНУ 1 фаза ускорения αz, определенного с помощью ПНУ 1, которое установлено в задней части автомобиля 9, отстает от ускорения αz, определенного с помощью ПНУ 1, которое установлено в передней части. Таким образом, ПНУ 1 использует данные в определенном диапазоне данных PD2 об угловой скорости.
Далее, в случае когда скорость V автомобиля 9 мала, ускорение αz и угловая скорость ωy изменяются быстро из-за небольших изменений дорожной поверхности. Таким образом, блок 34 вычисления скорости устанавливает диапазон используемых данных как 25 опорных точек, то есть устанавливает узкий диапазон для обработки внезапных изменений ускорения и угловой скорости.
Также в случае когда скорость V автомобиля 9 большая, велико влияние подвески автомобиля 9 и ускорение αz и угловая скорость ωy изменяются медленно. Таким образом, для обработки медленных изменений ускорения и угловой скорости блок 34 вычисления скорости устанавливает диапазон используемых данных как 75 опорных точек, то есть устанавливает широкий диапазон.
В частности, блок 34 вычисления скорости извлекает максимальное и минимальное значения из диапазона из 25 опорных точек или из 75 опорных точек, отцентрированных опорной точкой Pm, соответствующей предыдущему положению (фиг.6) ускорения αz, которое соответствует данным AD2 об ускорении, поступившим от блока 33 фильтрации низких частот, и считает указанные максимальное и минимальное значения максимальным ускорением αz,max и минимальным ускорением αz,min соответственно.
Также блок 34 вычисления скорости извлекает максимальное и минимальное значения из диапазона из 25 опорных точек или из 75 опорных точек, отцентрированных измерительной точкой Pm угловой скорости ωy, которые соответствуют данным PD2 об угловой скорости, поступившим от блока 33 фильтрации низких частот, и считает указанные максимальное и минимальное значения максимальной угловой скоростью ωz,max и минимальной угловой скоростью ωz,min соответственно.
То есть блок 34 вычисления скорости извлекает из диапазона, который шире сдвига фазы, который может иметь место для ускорения αz и угловой скорости ωy, максимальное ускорение αz,max и минимальное ускорение αz,min и максимальную угловую скорость ωy,max и минимальную угловую скорость ωy,min соответственно.
Блок 34 вычисления скорости использует максимальное ускорение αz,max и минимальное ускорение αz,min, извлеченные из данных AD2 об ускорении, и максимальную угловую скорость ωy,max и минимальную угловую скорость ωy,min, извлеченные из данных PD2 об угловой скорости, для вычисления скорости V в направлении движения в предыдущем местоположении Р0 (фиг.3) с помощью выражения (3), которое является модификацией приведенного выше выражения (1)
Затем блок 34 вычисления скорости передает данные VD1 о скорости, содержащие скорость