Способ определения пространственного распределения и концентрации компонента в поровом пространстве пористого материала

Иллюстрации

Показать все

Использование: для определения пространственного распределения и концентрации компонента в поровом пространстве пористого материала. Сущность: заключается в том, что в образец пористого материала закачивают контрастное рентгеновское вещество, в качестве которого используют водорастворимую соль металла с высоким атомным весом, вступающую в селективную ионно-обменную реакцию с исследуемым компонентом, с общей формулой: R+M-, где R+ выбирают из группы {Ва2+; Sr2+; T1+; Rb+…}, а М- выбирают из группы {Cln; NOn; OHn; CH3COO; SO4; …} в соответствии с таблицей растворимости неорганических веществ в воде, по окончании реакции селективного ионного обмена в образец закачивают неконтрастный вытесняющий агент, проводят компьютерную рентгеновскую микротомографию образца и определяют пространственное распределение и концентрацию исследуемого компонента путем анализа полученного компьютерного томографического изображения. Технический результат: повышение рентгеновской контрастности слабоконтрастных компонент, содержащихся в поровом пространстве, при проведении компьютерной томографии образцов пористых материалов. 1 з.п. ф-лы, 2 ил.

Реферат

Изобретение относится к способам неразрушающего анализа образцов пористых материалов, в частности, оно может быть использовано для анализа распределения остаточной нефти, а также определения концентрации естественной глины в образце керна или глины, проникшей в керн в ходе закачки бурового раствора.

Пространственное распределение компонент (остаточная жидкость, адсорбированные пленки на поверхности пор, глина или иной твердый заполнитель порового пространства), содержащихся в поровом пространстве пористого материала, является важной информацией для различных технических приложений в медицине, петрофизике, гражданском строительстве и материаловедении, разработке нефтяных и газовых месторождений.

Так, существует проблема повреждения пласта под воздействием бурового раствора (или промывочной жидкости), особенно для длинных горизонтальных скважин, т.к. заканчивание большинства из них производится в необсаженном состоянии, т.е. без цементированной и перфорированной эксплуатационной колонны.

Буровые растворы представляют собой сложные смеси глины, мелких частиц (размером от нескольких миллиметров до менее одного микрона) и органических добавок (полимеры, поверхностно активные вещества и т.д.), содержащихся в "несущей" жидкости - "основе" бурового раствора, в качестве которой может выступать вода, нефть или какая-либо синтетическая жидкость.

В процессе бурения под воздействием избыточного давления фильтрат бурового раствора, а также содержащиеся в нем мелкие частицы и глина проникают в околоскважиную зону пласта и вызывают значительное снижение ее проницаемости (для характеризации этого явления обычно используется термин "повреждение призабойной зоны пласта" или просто "повреждение пласта").

Во время технологической процедуры очистки скважины (путем постепенного вывода на добычу) эти компоненты частично вымываются из околоскважинной зоны, и ее проницаемость частично восстанавливается. Однако часть компонентов остается удержанной в поровом пространстве породы (абсорбируются на поверхности пор, захватываются поровыми сужениями и т.д.), что приводит к существенному различию между исходной проницаемостью и проницаемостью, восстановленной после проведения технологической процедуры очистки (обычно восстановленная проницаемость не превышает 50-70% от начальной).

Общепринятым лабораторным методом проверки качества бурового раствора является его прямая и обратная фильтрации через образец керна, в ходе которой замеряется динамика ухудшения / восстановления проницаемости как функция от количества закачанных поровых объемов бурового раствора или нефти (последнее - при обратной прокачке, моделирующей процесс очистки).

Однако распределение и концентрация глины и других компонентов бурового раствора, удерживаемых в поровом пространстве, по длине образца керна представляет собой важную информацию для понимания механизма повреждения пласта и выбора соответствующего метода повышения коэффициента продуктивности скважины (минимизации повреждения призабойной зоны пласта). Данные параметры не замеряются в рамках указанной выше традиционной процедуры проверки качества бурового раствора.

Одним из наиболее распространенных неразрушающих методов исследования структуры образца является рентгеновская компьютерная томография.

В патенте США №4540882 описывается метод определения глубины проникновения бурового раствора при помощи рентгеновской компьютерной томографии керна с добавлением контрастного агента. Первый материал добавляется к буровому раствору с целью обнаружения первого флюида, обладающего средним атомным номером, отличающимся от среднего атомного номера остаточных флюидов, содержащихся в околоскважинной зоне пласта. Сохраненный образец керна отбирается из скважины для сканирования компьютерным осевым рентгеновским томографом с целью определения коэффициентов поглощения рентгеновского излучения во множестве точек, лежащих в поперечном сечении образца керна. Образец керна сканируется при помощи рентгеновских лучей на первой и второй энергии. Полученные значения коэффициентов поглощения во множестве точек, лежащих на поперечном сечении при каждом значении энергии, используются для определения атомного номера элементов в изображении. Затем по атомному номеру элементов в изображении определяется глубина проникновения первого флюида, и полученное значение является индикатором глубины проникновения бурового раствора в образец керна.

Еще один метод раскрывается в патенте США №4722095, который основан на использовании высокого коэффициента поглощения рентгеновского излучения в барите, широко применяемым в качестве утяжеляющей добавки для бурового раствора. Сначала фильтрат бурового раствора удаляется из образца керна, после чего с помощью рентгеновской компьютерной томографии измеряется поровый и суммарный объемы образца керна, а также объем частиц барита, проникших в образец.

К сожалению, использование барита в качестве контрастного агента для оценки глубины проникновения бурового раствора не всегда обосновано, поскольку размер данных частиц сопоставим с размером поровых сужений и, следовательно, большая их часть будет захвачена в малых порах вблизи от входа в образец.

Другие компоненты бурового раствора (глина, полимеры, вода и т.д.) имеют, как правило, слабый контраст к рентгеновскому излучению и не могут быть пространственно разрешены с требуемой точностью.

Использование контрастного агента, растворимого в "несущей жидкости", как это предлагалось в патенте США №5027379, не позволяет оценить глубину проникновения и концентрацию глины и иных слабоконтрастных добавок, содержащихся в буровом растворе, поскольку глубина проникновения фильтрата бурового раствора и указанных добавок в общем случае различна.

Технический результат, достигаемый при реализации изобретения, заключается в повышении рентгеновской контрастности слабоконтрастных компонент, содержащихся в поровом пространстве, при проведении компьютерной томографии образцов пористых материалов. Указанные компоненты могут быть как природными (например, природная глина, пленочная нефть и т.д.), так и внедренными в ходе фильтрационных экспериментов (например, компоненты бурового раствора).

Указанный технический результат обеспечивается тем, что в образец пористого материала закачивают контрастное рентгеновское вещество, в качестве которого используют водорастворимую соль металла с высоким атомным весом, вступающую в селективную ионно-обменную реакцию с исследуемым компонентом. В общем виде формула для водорастворимой соли металла может быть записана в виде: R+M-, где R+ выбирают из группы {Ва2+; Sr2+; Тl+; Tb+…}, а М- выбирают из группы {Сln; NOn; OHn; СН3СОО, SO4; …}. Вещества R+ и М- выбираются в соответствии с таблицей растворимости неорганических веществ в воде.

По окончании реакции селективного ионного обмена в образец закачивают неконтрастный вытесняющий агент, проводят компьютерную рентгеновскую микротомографию образца и определяют пространственное распределение и концентрацию рассматриваемого компонента путем анализа полученного компьютерного томографического изображения.

Изобретение поясняется чертежом, где на фиг.1 приведены данные компьютерной рентгеновской микротомографии водного раствора исходной глины (до смешивания с контрастным агентом) и водного раствора контрастной глины, а на фиг.2 - пример компьютерной рентгеновской микротомографии образца после применения контрастного агента.

Основным критерием применимости метода является устойчивость исследуемых компонентов к процессу закачки контрастного агента.

При использовании в качестве контрастного рентгеновского вещества водорастворимой соли металла с высоким атомным весом, обладающей способностью вступать в селективную ионно-обменную реакцию с исследуемым компонентом, ионы тяжелых металлов аккумулируются на слабоконтрастной компоненте, увеличивая тем самым ее контраст к рентгеновскому излучению. В результате закачки в образец неконтрастного вытесняющего агента по окончании реакции селективного ионного обмена остатки соли тяжелого металла и продукты реакции вымываются из образца. Из анализа полученного компьютерного томографического изображения (см., например, Gonzalez R.С., Woods R.E. Digital Image Processing. Addison-Wessley, New York (1992)) определяют пространственное распределение и концентрацию рассматриваемого компонента.

В качестве первого примера реализации изобретения рассмотрим использование заявленного метода для увеличения контрастности к рентгеновскому излучению и последующего определения концентрации глины, удерживаемой в поровом пространстве после цикла прямая - обратная фильтрация модельного бурового раствора - 2% водного раствора бентонитовой глины - через образец керна.

Выполняют фильтрационный эксперимент по закачке 2% водного раствора бентонитовой глины и последующей отмывке проникшей глины из пористой среды (обратная прокачка). После окончания эксперимента в поровом пространстве образца сохраняется только глина, прочно удерживаемая в сужениях пор.

Выбирают растворимую в воде соль металла с высоким атомным весом, вступающую в селективную ионно-обменную реакцию с исследуемой глиной.

Принимая во внимание состав бентонитовой глины Al2[Si4O10](OH)2·nH2O и следуя стандартной таблице растворимости неорганических веществ в воде (например, Справочник экспериментальных данных по растворимости многокомпонентных водно-солевых систем, Государственное научно-техническое издательство химической литературы. Ленинград, т.1-2, 1954), в качестве соли металла выбирают ВаСl2.

Для иллюстрации на Фиг.1 приведены данные компьютерной рентгеновской микротомографии водного раствора исходной глины (до смешивания с контрастным агентом) и водного раствора контрастной глины (т.е. глины, подвергшейся ионно-обменной реакции с солью ВаСl2).

Образец насыщают водным раствором контрастного агента (ВаСl2) и выдерживают некоторое время, зависящее от скорости реакции.

После окончания реакции через образец прокачивается 3-4 поровых объема модельного неконтрастного флюида (солевой раствор) для удаления продуктов реакции и остатков контрастного агента.

Скорости закачки не должны превышать скорость обратной прокачки в фильтрационном эксперименте.

Исследуют образец с помощью компьютерной рентгеновской микротомографии.

Пример компьютерной рентгеновской микротомографии образца после применения патентуемого контрастного агента приведен на Фиг.2. Аккумуляция ионов бария в глине, как результат ионно-обменной реакции, ведет к значительному увеличению ее контрастности (модифицированная глина соответствует белым областям на снимке).

Другим примером реализации изобретения является исследование содержания углеводородов в образце. Алканы при нагревании взаимодействуют с раствором брома в органическом растворителе, вступая в реакцию замещения. Это можно показать на примере взаимодействия н-додекана СН3(СН2)10СН3 с бромом, растворенным в четыреххлористом углероде СCl4.

Эту реакцию можно использовать для селективной модификации углеводородов в пористой среде. Образец, содержащий углеводороды, насыщается раствором брома, затем нагревается и выдерживается при заданной температуре. Температура и время реакции зависят от состава углеводородной смеси. После окончания реакции через образец необходимо прокачать 3-4 поровых объема модельного флюида (солевой раствор) для удаления продуктов реакции. Введение брома позволяет увеличить контраст углеводородов в порах образца при исследовании с помощью компьютерной рентгеновской микротомографии.

1. Способ определения пространственного распределения и концентрации компонента в поровом пространстве пористого материала, в соответствии с которым- в образец пористого материала закачивают контрастное рентгеновское вещество, в качестве которого используют водорастворимую соль металла с высоким атомным весом, вступающую в селективную ионно-обменную реакцию с исследуемым компонентом, с общей формулой: R+M-, где R+ выбирают из группы {Ва2+; Sr2+; Т1+; Rb+…}, a M- выбирают из группы {Сln; NOn; OHn; CH3COO, SO4; …} в соответствии с таблицей растворимости неорганических веществ в воде,- по окончании реакции селективного ионного обмена в образец закачивают неконтрастный вытесняющий агент,- проводят компьютерную рентгеновскую микротомографию образца иопределяют пространственное распределение и концентрацию исследуемого компонента путем анализа полученного компьютерного томографического изображения.

2. Способ по п.1, в соответствии с которым в качестве вытесняющего агента используют водный солевой раствор.