Жидкокристаллическое устройство отображения
Иллюстрации
Показать всеИзобретение относится к измерительной технике. Жидкокристаллическое устройство 100 отображения включает в себя термисторы 28, предоставленные отдельно от светоизлучающих диодов 22 в области, где располагаются светоизлучающие диоды 22, и секцию 201 управления излучением света для управления напряжением, которое будет прикладываться к светоизлучающим диодам 22. На основе информации о температуре, полученной из термисторов 28, секция 201 управления излучением света понижает целевое значение v1 напряжения, которое будет прикладываться к светоизлучающим диодам 22, по мере повышения температуры и повышает целевое значение v1 напряжения, которое будет прикладываться к светоизлучающим диодам 22, по мере понижения температуры. 4 н. и 8 з.п. ф-лы, 8 ил.
Реферат
Область техники, к которой относится изобретение
Настоящее изобретение имеет отношение к жидкокристаллическому устройству отображения. В частности, настоящее изобретение имеет отношение к жидкокристаллическому устройству отображения, включающему в себя множество расположенных в нем светоизлучающих диодов, и к управлению светоизлучающими диодами.
Предшествующий уровень техники
Жидкокристаллическое устройство отображения (LCD) включает в себя подсветку, расположенную на стороне задней поверхности части жидкокристаллического устройства отображения, включающую в себя жидкокристаллический слой. Свет, исходящий от подсветки, освещает заднюю поверхность части жидкокристаллического устройства отображения. Посредством управления напряжением, прикладываемым между двумя подложками, между которыми помещен жидкокристаллический слой, жидкокристаллический слой части жидкокристаллического устройства отображения переключается между режимом, в котором тем самым свет блокируется, и другим режимом, в котором посредством этого свет передается, таким образом отображая свет желаемого цвета через цветной фильтр. В подсветках таких жидкокристаллических устройств отображения в качестве источников света используются светоизлучающие диоды (LED), как раскрывается, например, в японской опубликованной заявке на патент номер 2007-165632 (патентный документ 1).
Как сформулировано в вышеупомянутой публикации, светоизлучающий диод, в целом, имеет такой параметр, что его относительная светимость понижается по мере повышения окружающей температуры. В случае использования светоизлучающих диодов в качестве устройств подсветки необходимы некоторые контрмеры для поддерживания выходной светимости постоянной независимо от изменений температуры. Данная публикация раскрывает использование диодов в качестве термодатчиков для измерения температуры вокруг светоизлучающих диодов и коррекции температуры в пределах блока светоизлучающих диодов. Таким образом является возможным поддерживать постоянную цветовую температуру и светимость светоизлучающих диодов.
Список источников информации
Патентный документ
Патентный документ 1: опубликованная заявка на патент Японии номер 2007-165632.
Сущность изобретения
Техническая задача
В вышеупомянутой публикации раскрывается использование некоторых светоизлучающих диодов в качестве средства определения температуры. В случае использования светоизлучающих диодов в качестве средства определения температуры светоизлучающие диоды при свечении генерируют высокую температуру сами по себе. Существует несколько отдельных разновидностей светоизлучающих диодов в зависимости от степени генерирования тепла. Для более точного и постоянного управления цветовой температурой и светимостью светоизлучающих диодов является желательным корректировать температуру светоизлучающих диодов с наилучшей точностью. С учетом этого настоящее изобретение предлагает новую структуру, допускающую более точное и постоянное управление цветовой температурой и светимостью светоизлучающих диодов (LED).
Решение задачи
Жидкокристаллическое устройство отображения из настоящего изобретения включает в себя множество светоизлучающих диодов, расположенных на задней поверхности части жидкокристаллического устройства отображения. Термисторы предоставлены отдельно от светоизлучающих диодов в области, где располагаются светоизлучающие диоды. Кроме того, жидкокристаллическое устройство отображения включает в себя секцию управления излучением света для управления напряжением, которое будет прикладываться к светоизлучающим диодам. На основании информации о температуре, получаемой из термисторов, секция управления излучением света уменьшает целевое значение напряжения, которое будет прикладываться к светоизлучающим диодам, по мере повышения температуры и повышает целевое значение напряжения, которое будет прикладываться к светоизлучающим диодам, по мере понижения температуры.
В случае жидкокристаллического устройства отображения целевое значение напряжения понижается по мере повышения температуры и целевое значение напряжения повышается по мере понижения температуры из-за управления посредством секции управления излучением света. Таким образом, является возможным постоянное излучение света светоизлучающими диодами, а также является возможным удержание генерирования высокой температуры и энергопотребления на низком уровне.
В одном варианте осуществления жидкокристаллическое устройство отображения может включать в себя секцию хранения целевого напряжения, предварительно сохраняющую взаимосвязь между информацией о температуре, полученной из термисторов, и целевым значением напряжения, которое будет прикладываться к светоизлучающим диодам. В этом случае секция управления излучением света может устанавливать целевое значение напряжения, которое будет прикладываться к светоизлучающим диодам, из взаимосвязи между информацией о температуре и целевым значением напряжения, сохраненным в блоке хранения целевого напряжения на основе информации о температуре, полученной из термисторов.
В другом варианте осуществления жидкокристаллическое устройство отображения может включать в себя секцию хранения эталонного напряжения, сохраняющую эталонное напряжение для целевого значения напряжения, которое будет прикладываться к светоизлучающим диодам. В этом случае секция управления излучением света может устанавливать целевое значение напряжения, которое будет прикладываться к светоизлучающим диодам, посредством коррекции эталонного напряжения, сохраненного в блоке хранения эталонного напряжения на основе информации о температуре, полученной из термисторов.
Жидкокристаллическое устройство отображения может включать в себя множество термисторов, расположенных повсюду по области, где располагаются светоизлучающие диоды. В этом случае секция управления излучением света может разделить область, где располагаются светоизлучающие диоды, на множество зон и получать информацию о температуре из каждой зоны на основе термисторов для установления целевого значения напряжения, которое будет прикладываться к светоизлучающим диодам, для каждой зоны.
Целевое значение напряжения, которое будет прикладываться к светоизлучающим диодам, может быть установлено на основе значения нижнего предела значения VF (переменного напряжения) светоизлучающих диодов.
Множество светоизлучающих диодов может включать в себя три типа светоизлучающих диодов, излучающих свет R, G и B, которые при их сочетании производят белый свет. В этом случае секция управления излучением света может изменять целевое значение напряжения, которое будет прикладываться к светоизлучающим диодам, в зависимости от информации о температуре, получаемой из термисторов, для каждого из светоизлучающих диодов, излучающих свет R, G и B. В этом случае секция управления излучением света может варьировать целевое значение напряжения, которое будет прикладываться к светоизлучающим диодам, в зависимости от информации о температуре, получаемой из термисторов, между светоизлучающими диодами, излучающими свет R, и светоизлучающими диодами, излучающими свет G и B.
Термисторы могут быть сформированы посредством использования агломерата, например, с примесью оксида металла. Количество термисторов в зависимости от количества светоизлучающих диодов может варьироваться от области к области.
Настоящее изобретение также применимо в подсветке для освещения задней поверхности части жидкокристаллического устройства отображения жидкокристаллического устройства отображения. В этом случае подсветка может включать в себя множество светоизлучающих диодов, расположенных таким образом, чтобы находиться напротив задней поверхности части жидкокристаллического устройства отображения, и термисторов, предоставленных отдельно от светоизлучающих диодов в области, где располагаются светоизлучающие диоды. Оно может включать в себя секцию управления излучением света для управления напряжением, которое будет прикладываться к светоизлучающим диодам на основе информации о температуре, полученной из термисторов. В этом случае на основе информации о температуре, полученной из термисторов, секция управления излучением света понижает целевое значение напряжения, которое будет прикладываться к светоизлучающим диодам, по мере повышения температуры и повышает целевое значение напряжения, которое будет прикладываться к светоизлучающим диодам, по мере понижения температуры.
Способ управления подсветкой жидкокристаллического устройства отображения в соответствии с вариантом осуществления настоящего изобретения сначала выполняет первый этап получения информации о температуре из термисторов, предоставленных отдельно от светоизлучающих диодов в области, где располагаются светоизлучающие диоды. Затем он выполняет второй этап установления целевого значения напряжения, которое будет прикладываться к светоизлучающим диодам, из предварительно сохраненной взаимосвязи между информацией о температуре и целевым значением напряжения на основе информации о температуре, полученной на первом этапе. Затем он выполняет третий этап управления напряжением, которое будет прикладываться к светоизлучающим диодам на основе целевого значения напряжения, установленного на втором этапе.
В другом варианте осуществления способ управления подсветкой жидкокристаллического устройства отображения сначала выполняет первый этап получения информации о температуре из термисторов, предоставленных отдельно от светоизлучающих диодов в области, где располагаются светоизлучающие диоды. Затем он выполняет второй этап установления целевого значения напряжения, которое будет прикладываться к светоизлучающим диодам, посредством коррекции эталонного напряжения, которое предварительно сохранено для целевого значения напряжения, которое будет прикладываться к светоизлучающим диодам на основе информации о температуре, полученной в первом этапе. Затем он выполняет третий этап управления напряжением, которое будет прикладываться к светоизлучающим диодам на основе целевого значения напряжения, установленного на втором этапе.
Краткое описание чертежей
Фиг.1 является представлением в поперечном разрезе, изображающим жидкокристаллическое устройство отображения в соответствии с вариантом осуществления настоящего изобретения.
Фиг.2 является представлением в поперечном разрезе, изображающим жидкокристаллическую панель жидкокристаллического устройства отображения в соответствии с вариантом осуществления настоящего изобретения.
Фиг.3 является горизонтальным представлением, изображающим часть области пикселя подложки матрицы жидкокристаллического устройства отображения в соответствии с вариантом осуществления настоящего изобретения.
Фиг.4 является горизонтальным представлением, изображающим часть области пикселя подложки цветного фильтра жидкокристаллического устройства отображения в соответствии с вариантом осуществления настоящего изобретения.
Фиг.5A является частично увеличенным горизонтальным представлением, изображающим расположение светоизлучающих диодов и термисторов жидкокристаллического устройства отображения в соответствии с вариантом осуществления настоящего изобретения.
Фиг.5B является горизонтальным представлением, изображающим расположение светоизлучающих диодов и термисторов жидкокристаллического устройства отображения в соответствии с вариантом осуществления настоящего изобретения.
Фиг.6A является графиком, изображающим взаимосвязь между значением напряжения VF и температурой светоизлучающего диода.
Фиг.6B является графиком, изображающим взаимосвязь между значением напряжения VF и температурой светоизлучающего диода.
Фиг.6C является графиком, изображающим взаимосвязь между температурой и целевым значением напряжения для жидкокристаллического устройства отображения в соответствии с вариантом осуществления настоящего изобретения.
Фиг.7 является представлением в поперечном разрезе, изображающим жидкокристаллическое устройство отображения в соответствии с другим вариантом осуществления настоящего изобретения.
Фиг.8 является горизонтальным представлением, изображающим пример конфигурации подложки, расположенной внутри монтажной панели подсветки жидкокристаллического устройства отображения в соответствии с вариантом осуществления настоящего изобретения.
Описание вариантов осуществления
Теперь будет описываться жидкокристаллическое устройство отображения в соответствии с вариантом осуществления настоящего изобретения со ссылкой на чертежи.
Фиг.1 схематично изображает конфигурацию поперечного разреза жидкокристаллического устройства 100 отображения в соответствии с вариантом осуществления настоящего изобретения. Как изображено на Фиг.1, жидкокристаллическое устройство 100 отображения включает в себя жидкокристаллическую панель 10 в качестве части жидкокристаллического устройства отображения и подсветку 20. В жидкокристаллическом устройстве 100 отображения используются светоизлучающие диоды (LED) в качестве источников 22 света подсветки 20. В данном случае структура жидкокристаллического устройства 100 отображения будет описываться схематично, а затем будут описываться структура и управление подсветкой 20.
В целом жидкокристаллическая панель 10 жидкокристаллического устройства 100 отображения имеет полностью прямоугольную форму и формируется посредством пары прозрачных подложек 11 и 12 (стеклянных подложек). В настоящем варианте осуществления одна из подложек 11 и 12 на передней стороне является подложкой 11 цветного фильтра (подложкой CF), а другая подложка на обратной стороне является подложкой 12 матрицы (подложкой TFT (тонкопленочных транзисторов)).
Как изображено на Фиг.1, в настоящем варианте осуществления как у подложки 11 цветного фильтра, так и у подложки 12 матрицы имеется область 10a пикселей (область, где сформированы пиксели). Подложка 11 цветного фильтра и подложка 12 матрицы располагаются напротив друг друга. Между подложкой 11 цветного фильтра и подложкой 12 матрицы предоставлен герметик 15 таким образом, чтобы обводить контур (границу контура) области 10a пикселей по всему ее периметру.
Жидкокристаллический слой 13 предоставлен между подложкой 11 цветного фильтра и подложкой 12 матрицы. Жидкокристаллический материал, включающий в себя молекулы жидких кристаллов, изолирован в жидкокристаллическом слое 13. Ориентация молекул жидких кристаллов жидкокристаллического материала управляется приложением электрического поля между подложкой 11 цветного фильтра и подложкой 12 матрицы, таким образом изменяя их оптические параметры. Герметик 15 герметизирует жидкокристаллический материал жидкокристаллического слоя 13.
Теперь будет описываться подложка 12 матрицы и подложка 11 цветного фильтра в этом порядке. Фиг.2-4 изображают область 10a пикселей жидкокристаллической панели 10. Фиг.2 изображает представление в поперечном разрезе подложки 11 цветного фильтра и подложки 12 матрицы, скрепленных вместе. Фиг.3 изображает горизонтальное представление части области пикселей подложки 12 матрицы, а Фиг.4 изображает горизонтальное представление части области пикселей подложки 11 цветного фильтра. На Фиг.3 и 4 область, отграниченная посредством пунктирной линии A, представляет область одного пикселя жидкокристаллического устройства 100 отображения.
В настоящем варианте осуществления подложка 12 матрицы включает в себя пиксельный электрод 42, электрические шины с 43a по 43c, сглаживающий слой 44, ориентирующую пленку 46 (пленку, ориентирующую в горизонтальном направлении) и тонкопленочный транзистор 47, сформированные на передней стороне (стороне жидкокристаллического слоя 13) стеклянной подложки 41, как изображено на Фиг.2 и 3. Пиксельный электрод 42 изготавливается из ITO (оксида индия и олова), который является пропускающим свет электропроводным материалом, а напряжение в соответствии с изображением подается на пиксельный электрод 42 с предварительно определенной синхронизацией через электрические шины с 43a по 43c и тонкопленочный транзистор 47 (см. Фиг.3). Сглаживающий слой 44 формируется посредством изоляционного материала и покрывает пиксельный электрод 42 и электрические шины с 43a по 43c (см. Фиг.3). Ориентирующая пленка 46, изготовленная из полиимида или подобного материала, сформирована на верхней стороне (стороне жидкокристаллического слоя 13) сглаживающего слоя 44. Передняя поверхность (поверхность со стороны жидкокристаллического слоя 13) ориентирующей пленки 46 подвергается процессу притирки для определения ориентации молекул жидких кристаллов в отсутствие прикладываемого напряжения.
Как изображено на Фиг.2 и 4, подложка 11 цветного фильтра включает в себя черную матрицу 52, цветные фильтры 53, сглаживающий слой 54, противоэлектрод 55 и ориентирующую пленку 56 (пленку, ориентирующую в горизонтальном направлении), сформированные на обратной стороне (стороне жидкокристаллического слоя 13) стеклянной подложки 51. Черная матрица 52 сформирована посредством такого металла, как Cr (хром), таким образом, чтобы свет не проходил через области между пикселями. Цветные фильтры 53 включают в себя три цвета из числа красного (R), зеленого (G) и синего (B). Как изображено на Фиг.2-4, один из цветных фильтров 53 R, G и B находится напротив одного пиксельного электрода 42 из подложки 12 матрицы. Как изображено на Фиг.2, сглаживающий слой 54 сформирован таким образом, чтобы покрывать черную матрицу 52 и цветной фильтр 53. Противоэлектрод 55, изготовленный из оксида ITO (оксида индия и олова), сформирован на нижней стороне (стороне жидкокристаллического слоя 13) сглаживающего слоя 54. Ориентирующая пленка 56 сформирована на нижней стороне (стороне жидкокристаллического слоя 13) противоэлектрода 55. Передняя поверхность (поверхность со стороны жидкокристаллического слоя 13) ориентирующей пленки 56 также подвергается процессу притирки. Отметим, что ориентация ориентирующей пленки 46 подложки 12 матрицы и ориентация ориентирующей пленки 56 подложки 11 цветного фильтра отличаются друг от друга на 90°.
Как изображено на Фиг.2, стеклянные подложки 41 и 51 располагаются с размещенными между ними сферическими или столбчатыми разделителями 59 (со сферическими в иллюстрированном примере). Разделители 59 формируются, например, из пластмассы, стекла или подобного. Промежуток между стеклянными подложками 41 и 51 удерживается посредством вышеописанного герметика 15 (см. Фиг.1) и разделителей 59, таким образом поддерживая жидкокристаллический слой 13 постоянным.
Кроме того, как изображено на Фиг.1 и 2, поляризаторы 17 и 18 присоединены к стороне передней поверхности подложки 11 цветного фильтра (стеклянной подложки 51) и обратной стороне поверхности подложки 12 матрицы (стеклянной подложки 41) соответственно. В жидкокристаллическом устройстве отображения, так называемом «normally-white», два поляризатора 17 и 18 располагаются с перпендикулярными друг к другу осями поляризации. В жидкокристаллическом устройстве отображения, так называемом «normally-black», два поляризатора 17 и 18 располагаются с параллельными друг к другу осями поляризации. В настоящем варианте осуществления лицевая панель 30 присоединяется к передней стороне жидкокристаллической панели 10, как изображено на Фиг.1. Рамка 32 присоединяется к обратной стороне жидкокристаллической панели 10. Лицевая панель 30 и рамка 32 поддерживают жидкокристаллическую панель 10. Кроме того, у рамки 32 имеется отверстие в части, соответствующей области 10a пикселей жидкокристаллической панели 10. Подсветка 20, поддерживаемая посредством монтажной панели 24 подсветки, присоединяется к обратной стороне жидкокристаллической панели 10.
Как изображено на Фиг.1, подсветка 20 является внешним источником света, расположенным на обратной стороне (правой стороне на Фиг.1) жидкокристаллической панели 10. В настоящем варианте осуществления подсветка 20 включает в себя множество светоизлучающих диодов 22 (LED) и монтажную панель 24 подсветки. В настоящем варианте осуществления монтажная панель подсветки 24 имеет коробчатую форму, которая открывается в переднюю сторону (сторону жидкокристаллической панели 10), а светоизлучающие диоды 22 располагаются повсюду в пределах монтажной панели 24 подсветки. Более подробно расположение светоизлучающих диодов 22 и управление ими будет описано позже. Множество оптических пластин 26 наслаивается друг на друга в открытой части монтажной панели подсветки 24.
Например, оптические пластины 26 включают в себя светорассеиватель, светорассеивающую пластину, пластину линзы и повышающую светимость пластину, начиная с обратной стороны в этом порядке. Монтажная панель 24 подсветки присоединяется к обратной стороне рамки 32 жидкокристаллической панели 10 со светоизлучающими диодами 22, находясь лицом к описанной выше жидкокристаллической панели 10. Оптические пластины 26 помещаются между обратной поверхностью рамки 32 жидкокристаллической панели 10 и передней поверхностью монтажной панели 24 подсветки. Как изображено на фиг.1, жидкокристаллическое устройство 100 отображения включает в себя секцию 200 управления (например, такую схему управления светом, как инверторная схема трубок с холодным катодом) для регулирования светимости (яркости) подсветки 20. Секция 200 управления регулирует яркость подсветки 20 посредством регулирования мощности, которая, например, будет подводиться на подсветку 20. В этом случае секция 200 управления может увеличивать яркость (повышать светимость) подсветки 20 посредством увеличения мощности, которая будет подводиться на подсветку 20. Секция 200 управления также может уменьшать яркость (понижать светимость) подсветки 20 посредством уменьшения мощности, которая будет подводиться на подсветку 20.
Молекулы жидких кристаллов в жидкокристаллическом слое 13 управляются посредством приложения управляемого напряжения между подложкой 11 цветного фильтра и подложкой 12 матрицы. В случае жидкокристаллической панели 10 свет подсветки 20 может блокироваться или пропускаться, а ее коэффициент пропускания может варьироваться посредством управления молекулами жидких кристаллов в жидкокристаллическом слое 13 для каждого пикселя (более конкретно, для каждого из субпикселей, определенных как R, G и B). Кроме того, жидкокристаллическое устройство 100 отображения отображает намеченное изображение, несмотря на то, что светимость или подобное подсветки 20 является управляемой.
Теперь будет описана структура подсветки 20 и, в частности, расположение светоизлучающих диодов 22 и управление ими.
В настоящем варианте осуществления в подсветке 20 в качестве источников света используется множество светоизлучающих диодов 22, как изображено на Фиг.1. В настоящем варианте осуществления светоизлучающие диоды 22 включают в себя три типа светоизлучающих диодов, излучающих свет R, G и B, которые при их сочетании производят белый свет.
Отметим, что в подсветке 20 предпочтительно используется белый свет, баланс которого регулируется в зависимости от интенсивности света R, G и B и т.д. В подсветке 20, использующей светоизлучающие диоды 22, может употребляться конфигурация, в которой белые диоды LED, излучающие белый свет, располагаются таким образом, чтобы при этом излучать освещение белого света, или конфигурация, в которой диоды LED (светоизлучающие диоды) трех цветов (красного) R, (зеленого) G и (синего) В располагаются таким образом, чтобы при этом смешивать эти три цвета света для производства белого света. В данном случае способы, использующие белые диоды LED, включают в себя, например, способ, в котором используются люминофоры цветов R, G и B в сочетании с коротковолновым кристаллом диода LED для получения белого, способ, в котором желтый люминофор используется в сочетании с синими кристаллами диода LED для получения белого, способ, в котором белый получается как смешанный цвет из кристаллов диодов LED трех цветов R, G и B, и способ, в котором белый получается как смешанный цвет из кристаллов диодов LED двух цветов, которые являются взаимодополняющими.
В настоящем варианте осуществления, как изображено на Фиг.1, светоизлучающие диоды 22 присоединены к отражающей подложке 25, расположенной внутри монтажной панели 24 подсветки таким образом, чтобы находиться напротив задней поверхности жидкокристаллической панели 10. У светоизлучающих диодов 22 имеются светоизлучающие части, находящиеся напротив задней поверхности жидкокристаллической панели 10. У отражающей подложки 25 имеется светоотражающая зеркальная поверхность на поверхности 25a (отражающей поверхности), находящаяся напротив жидкокристаллической панели 10. Свет светоизлучающих диодов 22, просачивающийся на сторону отражающей подложки 25, отражается посредством поверхности 25a по направлению к задней поверхности жидкокристаллической панели 10. Светоизлучающие диоды 22 располагаются повсюду по отражающей подложке 25. Фиг.5A и 5B являются горизонтальными представлениями, каждое из которых схематично изображает поверхность 25a отражающей подложки 25, находящейся напротив жидкокристаллической панели 10, причем Фиг.5A является горизонтальным представлением, изображающим в увеличенном масштабе часть, указанную посредством стрелки 5a на Фиг.5B. В настоящем варианте осуществления светоизлучающие диоды 22 располагаются в решетчатой структуре на поверхности 25a, как изображено на Фиг.5A. Отметим, что расположение светоизлучающих диодов 22 не ограничивается решетчатой структурой, изображенной на Фиг.5A, и может являться таким расположением (шахматной структурой или зигзагообразной структурой), чтобы позиции светоизлучающих диодов 22 были сдвинуты, например, равномерно друг от друга и один ряд от другого.
В целом светоизлучающий диод (LED) имеет параметр, что его относительная светимость понижается по мере повышения окружающей температуры. Относительная световая эффективность излучения светоизлучающего диода изменяется вследствие изменений окружающей температуры. С учетом этого в случае жидкокристаллического устройства 100 отображения напряжение и сила тока, которые будут прикладываться к светоизлучающим диодам 22, управляются посредством секции 200 управления.
Таким образом, как изображено на Фиг.1, жидкокристаллическое устройство 100 отображения включает в себя секцию 200 управления и термисторы 28 (термодатчики). Секция 200 управления управляет светимостью, цветовой температурой и т.д. подсветки 20. Фиг.1 схематично изображает секцию 200 управления и термисторы 28. В дальнейшем в этом документе Фиг.1 должна упоминаться по мере необходимости касательно структуры жидкокристаллического устройства 100 отображения.
Секция 200 управления является электронным процессором и включает в себя средство выполнения арифметических операций, реализованное посредством микропроцессора (MPU), центрального процессора (CPU) или подобного, и средство хранения данных, реализованное посредством энергонезависимого запоминающего устройства или подобного. Секция 200 управления конфигурируется таким образом, чтобы реализовывать намеченную функцию посредством предварительно сохраненной программы. Отметим, что, несмотря на то, что в данном документе это не обсуждается, на практике секция 200 управления также отвечает за параметры управления, помимо светимости и цветовой температуры подсветки 20 в настоящем варианте осуществления. Например, она управляет напряжением, которое будет прикладываться к жидкокристаллическому слою 13 жидкокристаллической панели 10.
Как изображено на Фиг.5A, термисторы 28 предоставляются в области, где располагаются светоизлучающие диоды 22, отдельно от светоизлучающих диодов 22. В настоящем варианте осуществления термисторы 28 предоставляются на отражающей подложке 25, на которой располагаются светоизлучающие диоды 22. Светоизлучающие диоды 22 располагаются в решетчатой структуре на поверхности 25a отражающей подложки 25, которая находится на стороне жидкокристаллической панели 10. Таким же образом каждый из термисторов 28 располагается в центре ряда четырех светоизлучающих диодов 22, расположенных в решетчатой структуре с обнаруживающей структурой, расположенной лицом к жидкокристаллической панели 10 отражающей подложки 25. Отметим, что в случае, в котором светоизлучающие диоды 22 располагаются в решетке с шахматной структурой, зигзагообразной структурой или подобной, множество термисторов 28 может располагаться повсюду по области, где располагается множество светоизлучающих диодов 22, в зависимости от структуры светоизлучающих диодов 22. В случае множества термисторов 28, расположенных повсюду по области, где располагается множество светоизлучающих диодов 22, является возможным более точное получение изменений температуры области, где располагаются светоизлучающие диоды 22. Отметим, что структура светоизлучающих диодов 22 и структура термисторов 28 не ограничиваются вышеописанными, но они могут располагаться в соответствующих позициях. В предпочтительном варианте осуществления термисторы 28 располагаются повсюду равномерно. Однако это не всегда является необходимым располагать термисторы 28 повсюду равномерно, но также их можно располагать в соответствующих позициях, выбираемых в зависимости от заданной конфигурации и т.д. жидкокристаллической панели 10.
Термисторы 28 могут являться любыми из различных типов термисторов при условии, что они могут электрически получать информацию о температуре на основе изменений значения сопротивления, вызванного посредством изменений температуры. Например, они могут являться термисторами, в которых используется агломерат, включающий в себя смесь оксидов таких металлов, как никель, марганец, кобальт и железо. Такой термистор, как правило, показывает NTC (отрицательный температурный коэффициент), при котором сопротивление понижается по мере повышения температуры. Например, термисторы 28 могут являться такими термисторами, температура которых в целом изменяется пропорционально изменениям значения сопротивления и значение сопротивления которых изменяется в значительной степени по отношению к изменению температуры. Таким образом возможно простое и точное получение информации о температуре.
Светоизлучающие диоды 22 управляются на основе информации о температуре, получаемой посредством термисторов 28. В настоящем варианте осуществления термисторы 28 электрически соединяются с секцией 200 управления посредством проволочных соединений 28a (см. Фиг.1). Светоизлучающие диоды 22 соединяются с секцией 200 управления через проволочные соединения 22a (см. Фиг.1), а секция 200 управления электрически управляет напряжением, которое будет прикладываться к светоизлучающим диодам 22 на основе информации о температуре, получаемой из термисторов 28.
В настоящем варианте осуществления секция 200 управления включает в себя секцию 201 управления излучением света и секцию 202 хранения целевого напряжения, как изображено на Фиг.1.
Секция 201 управления излучением света управляет напряжением, которое будет прикладываться к светоизлучающим диодам 22. В настоящем варианте осуществления на основе информации о температуре, получаемой из термисторов 28, секция 201 управления излучением света понижает целевое значение v1 напряжения, которое будет прикладываться к светоизлучающим диодам 22, при повышении температуры (см. Фиг.6C). На основе информации о температуре, получаемой из термисторов 28, секция 201 управления излучением света повышает целевое значение v1 напряжения, которое будет прикладываться к светоизлучающим диодам 22, при понижении температуры (см. Фиг.6C). Отметим, что светимость (напряжение, которое будет прикладываться к светоизлучающим диодам 22) светоизлучающих диодов 22 может регулироваться посредством, например, способа широтно-импульсной модуляции, способа ШИМ.
Секция 202 хранения целевого напряжения предварительно сохраняет взаимосвязь между информацией о температуре, получаемой из термисторов 28, и целевым значением напряжения, которое будет прикладываться к светоизлучающим диодам 22. В этом случае секция 202 хранения целевого напряжения может сохранять взаимосвязь между информацией о температуре и целевым значением v1 напряжения в таблице, в которой, например, информация о температуре представляется посредством одной координаты, а целевое значение v1 напряжения - посредством другой координаты. В настоящем варианте осуществления секция 201 управления излучением света устанавливает целевое значение напряжения, которое будет прикладываться к светоизлучающим диодам 22, со ссылкой на взаимосвязь между информацией о температуре и целевым значением напряжения, сохраненным в секции 202 хранения целевого напряжения на основе информации о температуре, получаемой из термисторов 28.
Несмотря на то, что существуют отдельные различия, светоизлучающие диоды 22 имеют определенную взаимосвязь между окружающей температурой и напряжением, которое будет прикладываться. С учетом этого, например, данные касательно взаимосвязи между температурой вокруг светоизлучающих диодов 22 и напряжением, которое будет прикладываться к светоизлучающим диодам 22, могут собираться заранее. Секция 202 хранения целевого напряжения может сохранять взаимосвязь между информацией о температуре, получаемой из термисторов 28, и целевым значением напряжения, которое будет прикладываться к светоизлучающим диодам 22 на основе данных.
В настоящем варианте осуществления тесты для светоизлучающих диодов 22 выполняются заранее таким образом, чтобы получать данные касательно взаимосвязи между температурой вокруг светоизлучающих диодов 22 и значением напряжения VF. Взаимосвязь между информацией о температуре, получаемой из термисторов 28, и целевым значением напряжения, которое будет прикладываться к светоизлучающим диодам 22, может сохраняться на основе таких данных. В данном случае значение напряжения VF относится к приемлемому диапазону прикладываемого напряжения, в районе которого свет из светоизлучающих диодов излучается должным образом.
Каждая из Фиг.6A, 6B и 6C изображает взаимосвязь между значением напряжения VF и температурой светоизлучающего диода. Кроме того, Фиг.6C изображает взаимосвязь между температурой и целевым значением v1 напряжения для жидкокристаллического устройства 100 отображения из настоящего варианта осуществления. Каждая из Фиг.6A и 6B изображает сравнительный пример Фиг.6C.
Как изображено на Фиг.6A, значение L нижнего предела значения напряжения VF имеет тенденцию к понижению по мере повышения температуры. С учетом этого, чтобы светоизлучающие диоды 22 постоянно излучали свет даже при более низких температурах, например, можно рассмотреть установление целевого значения v1 напряжения на основе значения нижнего предела значения напряжения VF при более низких температурах. Например, как изображено на Фиг.6A, на основе значения напряжения VF при более низких температурах в качестве целевого значения v1 напряжения может быть установлено напряжение немного выше значения L нижнего предела. В данном случае напряжением, которое будет прикладываться к светоизлучающим диодам 22, можно управлять при постоянном целевом значении v1 напряжения и, следовательно, легко управлять напряжением, которое будет прикладываться к светоизлучающим диодам 22. В данном случае, однако, если температура повышается, то прикладываемое напряжение может повышаться за верхний предел значения напряжения VF и, следовательно, светоизлучающие диоды 22 могут генерировать ненужную высокую температуру или расход энергии может без необходимости увеличиваться.
Например, как изображено на Фиг.6B, можно рассмотреть установление целевого значения v1 напряжения на основе значения напряжения VF при комнатной температуре. В этом случае напряжением, которое будет прикладываться к светоизлучающим диодам 22, можно управлять при постоянном целевом значении v1 напряжения и, следовательно, легко управлять напряжением, которое будет прикладываться к светоизлучающим диодам 22. Однако при более низких температу