Способы и устройства для обмена данными при связи между равноправными узлами

Иллюстрации

Показать все

Изобретение относится к беспроводной связи, а более конкретно к способам и устройствам, связанным с обменом данными между равноправными узлами. Технический результат заключается в уменьшении задержки обнаружения присутствия другого терминала. Для этого устройство беспроводной связи содержит процессор, соединенный с запоминающим устройством и интерфейсом беспроводной связи. Запоминающее устройство содержит информацию, связывающую множество идентификаторов устройства с соответствующими сохраненными наборами временных индексов. Процессор выполнен с возможностью передавать первый передаваемый символ с первым временным индексом из первого набора временных индексов и передавать второй передаваемый символ со вторым временным индексом, отличным от первого временного индекса из первого набора временных индексов, при этом часть первого передаваемого символа и часть второго передаваемого символа включают в себя одинаковые данные. Первый набор временных индексов ассоциирован с первым идентификатором устройства и включает в себя, по меньшей мере, один временной индекс, не содержащийся во втором наборе временных индексов, ассоциированном со вторым идентификатором устройства, а второй набор включает в себя, по меньшей мере, один временной индекс, не содержащийся в первом наборе. 4 н. и 23 з.п. ф-лы, 36 ил.

Реферат

Родственные заявки

Настоящая заявка на патент притязает на приоритет предварительной заявки номер 60/948980, озаглавленной "METHODS AND APPARATUS FOR DATA EXCHANGE IN PEER TO PEER COMMUNICATIONS", поданной 10 июля 2007 года и назначенной правопреемнику этой заявки и таким образом явно содержащейся в данном документе по ссылке.

Область техники, к которой относится изобретение

Различные варианты осуществления направлены на способы и устройства для беспроводной связи, а более конкретно на способы и устройства, связанные с обменом данными между равноправными узлами.

Уровень техники

В беспроводной сети, в которой сетевая инфраструктура отсутствует, например в произвольно организующейся сети равноправных узлов, терминал сталкивается с рядом сложностей при установлении линии связи с другим равноправным терминалом. Одна сложность заключается в том, что когда терминал только включает питание или перемещается в новую область, терминал, вероятно, должен сначала выяснять то, присутствует ли другой терминал в окрестности, до того как какая-либо связь между двумя терминалами сможет начаться.

Широко используемое решение вышеуказанной проблемы идентификации и обнаружения заключается в том, чтобы давать возможность терминалу передавать и/или принимать сигналы согласно протоколу связи. Тем не менее, произвольно организующаяся сеть вызывает ряд сложностей. Зачастую терминалы могут не иметь общего опорного синхронизирующего сигнала, к примеру вследствие отсутствия сетевой инфраструктуры. По сути, возможно то, что когда первый терминал передает сигнал, а второй терминал, не находится в режиме приема, передаваемый сигнал не помогает второму терминалу обнаруживать присутствие первого терминала.

Полудуплексные терминалы имеют еще одну сложность в том, что они не допускают передачу и прием одновременно. В таком случае каждый из двух терминалов может передавать сообщение одновременно и может не иметь возможности обнаруживать присутствие другого терминала, поскольку он не может принимать сигнал другого терминала в то время, когда он передает. Эти проблемы оказывают влияние не только на обнаружение равноправных узлов, но также оказывают влияние и на другие виды обмена данными, к примеру диспетчеризацию пользователей, помимо прочего.

Наконец, отдача мощности оказывает большое влияние на время работы терминалов от аккумулятора и, таким образом, является другим важным вопросом в любой беспроводной системе.

Сущность изобретения

Описаны устройства, системы и способы в данном документе, которые разрешают один или более из недостатков, описанных выше. Примерное устройство беспроводной связи содержит процессор, соединенный с запоминающим устройством, и интерфейс беспроводной связи. Процессор выполнен с возможностью передавать первый передаваемый символ с первым временным индексом из первого набора временных индексов и передавать второй передаваемый символ со вторым временным индексом, который также из первого набора временных индексов, но отличается от первого временного индекса из первого набора временных индексов, при этом часть первого передаваемого символа и часть второго передаваемого символа включают в себя одинаковые данные. Например, первый передаваемый символ и второй передаваемый символ могут быть маяковыми радиосигналами, которые занимают небольшую полосу пропускания частот, или сигналом с расширенным спектром, который занимает большую часть доступной полосы пропускания. Первый набор временных индексов ассоциирован с первым идентификатором устройства и включает в себя, по меньшей мере, один временной индекс, не содержащийся во втором наборе временных индексов, ассоциированном со вторым идентификатором устройства, а второй набор включает в себя, по меньшей мере, один временной индекс, не содержащийся в первом наборе. Согласно одному аспекту таблица, сохраненная в запоминающем устройстве, отображает первый идентификатор устройства в первый набор временных индексов и второй идентификатор устройства во второй набор временных индексов. Согласно другому аспекту процессор выполняет функцию, чтобы отображать первый идентификатор устройства в первый набор временных индексов и второй идентификатор устройства во второй набор временных индексов.

Согласно другому аспекту процессор выполняет модуль, который определяет текущий идентификатор устройства, используемый устройством в настоящее время, как один, по меньшей мере, из первого и второго идентификаторов устройства, отображает текущий идентификатор устройства в один набор, по меньшей мере, из первого и второго наборов временных индексов и передает передаваемый символ с временным индексом из набора временных индексов, в который выполнено отображение. Такое изменение идентификатора устройства, назначенного узлу, уменьшает возможные эффекты снижения чувствительности, вызванные другими устройствами в сети.

Согласно одному аспекту первый набор временных индексов и второй набор временных индексов имеют одинаковый размер. Согласно другому аспекту первый набор временных индексов имеет размер, равный ближайшему целому числу к половине размера интервала блока передачи для передачи.

В качестве иллюстрации первый передаваемый символ может модулироваться в форме CDMA-сигнала или в форме OFDM-сигнала. Как описано ниже, размер первого набора временных индексов может быть определен посредством размера пространства идентификаторов устройств (т.е. числа поддерживаемых мобильных узлов) и максимального числа форм CDMA-сигнала, поддерживаемых в данном временном индексе, причем технология модуляции - это форма CDMA-сигнала. Аналогично, размер первого из временных индексов также может быть определен, по меньшей мере, посредством размера пространства идентификаторов устройств и максимального числа частотных индексов, поддерживаемых в системе, причем технология модуляции - это форма OFDM-сигнала.

Согласно одному аспекту процессор выполнен с возможностью передавать первый передаваемый символ с первым частотным индексом и передавать второй передаваемый символ со вторым частотным индексом, отличным от первого частотного индекса. В одном конкретном аспекте, описанном ниже, первый частотный индекс=i, первый временной индекс=j, второй частотный индекс=j, первый временной индекс=i.

Краткое описание чертежей

Фиг.1 иллюстрирует примерную реализованную произвольно организующуюся сеть связи.

Фиг.2 иллюстрирует примерную проблему некорректного обнаружения пользователей в произвольно организующейся сети, когда нет общего опорного синхронизирующего сигнала.

Фиг.3 иллюстрирует примерный ресурс линии радиосвязи, используемый для того, чтобы передавать маяковый радиосигнал, включающий в себя три примерных пакета маяковых радиосигналов, причем каждый пакет маяковых радиосигналов включает в себя один символ маякового радиосигнала.

Фиг.4 иллюстрирует примерные относительные уровни мощности передачи между символом маякового радиосигнала и сигналом данных/управления.

Фиг.5 иллюстрирует один примерный вариант осуществления передачи пакетов маяковых радиосигналов.

Фиг.6 иллюстрирует один примерный вариант осуществления, в котором прием пакетов маяковых радиосигналов может осуществляться в течение определенных обозначенных интервалов времени, тогда как в другое время приемное устройство отключено для того, чтобы экономить энергопотребление.

Фиг.7 используется для того, чтобы описывать то, как проблема некорректного обнаружения пользователей разрешается, когда два терминала передают и принимают пакеты маяковых радиосигналов согласно реализации.

Фиг.8 иллюстрирует один примерный вариант осуществления схемы состояний, реализованной в терминале.

Фиг.9 иллюстрирует подробную иллюстрацию примерного реализованного беспроводного терминала.

Фиг.10 - это чертеж блок-схемы последовательности операций примерного способа работы портативного беспроводного терминала.

Фиг.11 - это чертеж блок-схемы последовательности операций примерного способа работы портативного беспроводного терминала.

Фиг.12 - это чертеж блок-схемы последовательности операций примерного способа работы портативного беспроводного терминала, к примеру, работающего от аккумулятора мобильного узла.

Фиг.13 - это чертеж блок-схемы последовательности операций примерного способа работы портативного беспроводного терминала, к примеру, работающего от аккумулятора мобильного узла.

Фиг.14 включает в себя чертежи, иллюстрирующие примерную передачу маяковых радиосигналов от портативного беспроводного терминала.

Фиг.15 иллюстрирует, что различные беспроводные терминалы передают различные маяковые радиосигналы, в том числе различные пакетные маяковые радиосигналы.

Фиг.16 - это чертеж и соответствующая легенда, иллюстрирующие признак некоторых вариантов осуществления, в которых единица передачи символа маякового радиосигнала включает в себя множество единиц передачи OFDM-символа.

Фиг.17 - это чертеж, используемый для того, чтобы иллюстрировать примерный маяковый радиосигнал, содержащий последовательность пакетных маяковых радиосигналов, и иллюстрировать временные взаимосвязи некоторых вариантов осуществления.

Фиг.18 - это чертеж, используемый для того, чтобы иллюстрировать примерный маяковый радиосигнал, содержащий последовательность пакетных маяковых радиосигналов, и иллюстрировать временные взаимосвязи некоторых вариантов осуществления.

Фиг.19 - это чертеж, иллюстрирующий примерное разделение ресурсов линии радиосвязи посредством беспроводного терминала в режиме работы, в котором беспроводной терминал передает маяковый радиосигнал.

Фиг.20 описывает примерную часть ресурсов линии радиосвязи, ассоциированную с применениями, отличными от передачи маяковых радиосигналов для примерного режима работы беспроводного терминала, в котором беспроводной терминал передает маяковый радиосигнал и может принимать и/или передавать пользовательские данные, к примеру активного режима работы.

Фиг.21 иллюстрирует два примерных режима работы беспроводного терминала, в которых беспроводной терминал передает маяковый радиосигнал, к примеру неактивный режим и активный режим.

Фиг.22 включает в себя чертеж и соответствующую легенду, иллюстрирующие примерное использование ресурсов линии радиосвязи беспроводного терминала в течение примерного первого интервала времени, включающего в себя два пакета маяковых радиосигналов.

Фиг.23 включает в себя чертеж и соответствующую легенду, иллюстрирующие примерное использование ресурсов линии радиосвязи беспроводного терминала в течение примерного первого интервала времени, включающего в себя два пакета маяковых радиосигналов.

Фиг.24 иллюстрирует альтернативное описательное представление относительно маяковых радиосигналов.

Фиг.25 - это чертеж примерного портативного беспроводного терминала, к примеру мобильного узла.

Фиг.26 - это чертеж блок-схемы последовательности операций примерного способа работы устройства связи, к примеру, работающего от аккумулятора беспроводного терминала.

Фиг.27 - это чертеж примерного портативного беспроводного терминала, к примеру мобильного узла.

Фиг.28 - это чертеж, иллюстрирующий примерную временную шкалу, последовательность событий и операций относительно двух беспроводных терминалов в произвольно организующейся сети, которые обнаруживают присутствие друг друга и достигают временной синхронизации через использование маяковых радиосигналов беспроводного терминала.

Фиг.29 иллюстрирует примерное согласование по времени между двумя беспроводными терминалами на основе маяковых радиосигналов в соответствии с примерным вариантом осуществления.

Фиг.30 иллюстрирует примерное согласование по времени между двумя беспроводными терминалами на основе маяковых радиосигналов в соответствии с другим примерным вариантом осуществления.

Фиг.31 иллюстрирует примерное согласование по времени между двумя беспроводными терминалами на основе маяковых радиосигналов в соответствии с другим примерным вариантом осуществления.

Фиг.32 и 33 иллюстрируют примерные компоновки обмена данными в соответствии с примерными вариантами осуществления.

Фиг.34 и 35 иллюстрируют примерные компоновки назначения временных квантов относительно множества узлов в соответствии с примерными вариантами осуществления.

Фиг.36 иллюстрирует примерную компоновку частотно-временного назначения в соответствии с примерным вариантом осуществления.

Подробное описание изобретения

Фиг.1 иллюстрирует примерную реализованную произвольно организующуюся сеть 100 связи. Два примерных беспроводных терминала, а именно первый беспроводной терминал 102 и второй беспроводной терминал 104, присутствуют в географической области 106. Некоторая полоса частот спектра доступна для использования посредством двух беспроводных терминалов для связи. Эти два беспроводных терминала используют доступную полосу частот спектра для того, чтобы устанавливать линию связи между равноправными узлами друг с другом.

Поскольку произвольно организующаяся сеть может не иметь сетевой инфраструктуры, беспроводные терминалы могут не иметь общего опорного синхронизирующего сигнала или общей опорной частоты. Это приводит к определенным сложностям в произвольно организующейся сети. Чтобы уточнить, рассмотрим проблему того, как любой из терминалов обнаруживает присутствие другого.

В целях описания далее предполагается, что в данное время беспроводной терминал может или передавать, или принимать, но не то и другое одновременно. Следует понимать, что специалисты в данной области техники могут применять те же принципы к случаю, когда терминал может и передавать, и принимать одновременно.

Фиг.2 включает в себя чертеж 200, используемый для описания одной возможной схемы, которую эти два беспроводных терминала могут использовать для того, чтобы находить друг друга. Первый терминал передает некоторый сигнал в интервале 202 времени и принимает сигнал в интервале 204 времени. Между тем, второй беспроводной терминал передает некоторый сигнал в интервале 206 времени и принимает сигнал в интервале 208 времени. Следует отметить, что если первый беспроводной терминал может как передавать, так и принимать одновременно, то интервалы 202 и 204 времени могут перекрываться между собой.

Отметим, что поскольку два терминала не имеют общего опорного синхронизирующего сигнала, их времена TX (передачи) и RX (приема) не синхронизированы. В частности, Фиг.2 показывает, что интервалы 204 и 206 времени не перекрываются. Когда первый беспроводной терминал прослушивает, второй беспроводной терминал не передает, а когда второй беспроводной терминал передает, первый беспроводной терминал не прослушивает. Следовательно, первый беспроводной терминал не обнаруживает присутствие второго терминала. Аналогично, интервалы 202 и 208 времени не перекрываются. Следовательно, второй беспроводной терминал также не обнаруживает присутствие первого беспроводного терминала.

Предусмотрены способы преодолевать вышеупомянутую проблему некорректного обнаружения. Например, беспроводной терминал может рандомизировать интервал времени, в котором выполняется TX- и RX-процедура, так что со временем эти два беспроводных терминала обнаруживают друг друга вероятностным образом. Тем не менее, затратами являются задержка и результирующая потребляемая мощность аккумулятора. Помимо этого, потребляемая мощность также определяется посредством требования по питанию в TX- и RX-процедуре. Например, она может требовать меньше мощности обработки для того, чтобы обнаруживать одну форму из сигнала, чем для того, чтобы обнаруживать другую форму.

Признаком различных вариантов осуществления является то, что новая TX- и RX-процедура сигналов реализуется и используется для того, чтобы уменьшать задержку обнаружения присутствия другого терминала и ассоциированной потребляемой мощности.

В соответствии с различными вариантами осуществления беспроводной терминал передает специальный сигнал, называемый маяковым радиосигналом, который занимает небольшую часть, к примеру в некоторых вариантах осуществления не более 0,1% от общей величины доступного ресурса линии радиосвязи. Ресурсы линии радиосвязи измеряются на основе минимальных или базовых единиц передачи, к примеру тоновых OFDM-символов в OFDM-системе. Ресурсы линии радиосвязи могут измеряться с точки зрения степени свободы, причем степень свободы - это минимальная единица ресурса, которая может использоваться для связи. Например, в CDMA-системе степенью свободы может быть код расширения спектра, время, соответствующее периоду символа. В общем, степени свободы в данной системе являются ортогональными друг с другом.

Рассмотрим примерный вариант осуществления системы мультиплексирования с частотным разделением каналов, к примеру OFDM-системы. В этой системе информация передается посимвольным способом. В периоде передачи символа общая доступная полоса пропускания делится на определенное число тонов, каждый из которых может использоваться для того, чтобы переносить информацию.

Фиг.3 включает в себя чертеж 300, показывающий доступный ресурс в примерной OFDM-системе. Горизонтальная ось 301 представляет время, а вертикальная ось 302 представляет частоту. Вертикальный столбец представляет каждый из тонов в данный период символа. Каждое небольшое поле 304 представляет тоновый символ, который является ресурсом линии радиосвязи одного тона за один период передаваемого символа. Минимальная единица передачи в OFDM-символе - это тоновый символ.

Маяковый радиосигнал включает в себя последовательность пакетов маяковых радиосигналов (308, 310, 312), которые передаются последовательно во времени. Пакет маяковых радиосигналов включает в себя небольшое количество символов маяковых радиосигналов. В этом примере каждый пакет символов маяковых радиосигналов (308, 310, 312) включает в себя один символ маякового радиосигнала и 19 нулей. В этом примере каждый символ маякового радиосигнала - это один тон за один период передачи. Пакет маяковых радиосигналов включает в себя символы маяковых радиосигналов одного тона за небольшое количество периодов передаваемых символов, к примеру один или два периода символа. Фиг.3 показывает три небольших "черных поля", каждое из которых (306) представляет символ маякового радиосигнала. В этом случае символ маякового радиосигнала использует ресурс линии радиосвязи в один тоновый символ, т.е. одна единица передачи символа маякового радиосигнала - это тоновый OFDM-символ. В другом варианте осуществления символ маякового радиосигнала содержит один тон, передаваемый более чем за два последовательных периода символа, а единица передачи символа маякового радиосигнала содержит два смежных тоновых OFDM-символа.

Маяковый радиосигнал занимает небольшую часть из всех минимальных единиц передачи. Обозначим N общее число тонов интересующего спектра. В любом достаточно длинном интервале времени, к примеру в одну или две секунды, допустим, что число периодов символа составляет T. В таком случае общее число минимальных единиц передачи составляет N*T. В соответствии с различными вариантами осуществления число тоновых символов, занимаемых посредством маякового радиосигнала в интервале времени, значительно меньше N*T, к примеру в некоторых вариантах осуществления составляет не более 0,1% от N*T.

Тон символа маякового радиосигнала в пакете маяковых радиосигналов варьируется (перескакивает) от одного пакета к другому. В соответствии с различными вариантами осуществления конфигурация перескока частот тона символа маякового радиосигнала в некоторых вариантах осуществления является функцией беспроводного терминала и может быть и иногда используется в качестве идентификатора терминала или идентификатора типа, которому принадлежит терминал. В общем, информация в маяковом радиосигнале может быть декодирована посредством определения того, какие минимальные единицы передачи передают символы маяковых радиосигналов. Например, информация может быть включена в частоту тона(ов) символа(ов) маякового радиосигнала в данном пакете маяковых радиосигналов, число символов маяковых радиосигналов в данном пакете, длительность пакета маяковых радиосигналов и/или межпакетный интервал, в дополнение к последовательностям перескока частот тона.

Маяковый радиосигнал также может отличаться с точки зрения мощности передачи. В соответствии с различными вариантами осуществления мощность передачи маякового радиосигнала в расчете на минимальную единицу передачи намного превышает, к примеру в некоторых вариантах осуществления, по меньшей мере, на 10 дБ превышает среднюю мощность передачи данных и управляющих сигналов в расчете на степень свободы, когда передающее устройство терминала находится в обычном сеансе передачи данных. В соответствии с некоторыми вариантами осуществления мощность передачи маякового радиосигнала в расчете на минимальную единицу передачи, по меньшей мере, на 16 дБ превышает среднюю мощность передачи данных и управляющих сигналов в расчете на степень свободы, когда передающее устройство терминала находится в обычном сеансе передачи данных. Например, чертеж 400 на Фиг.4 демонстрирует мощности передачи, используемые в каждом из тоновых символов за достаточно длинный интервал времени, к примеру в одну или две секунды, в котором беспроводной терминал находится в сеансе передачи данных, т.е. терминал отправляет данные и управляющую информацию с использованием интересующего спектра. Порядок этих тоновых символов, представляемых посредством горизонтальной оси 401, является несущественным для целей этого пояснения. Небольшие вертикальные прямоугольники 404 представляют мощность отдельных тоновых символов, передающих пользовательские данные и/или управляющую информацию. Для сравнения, высокий черный прямоугольник 406 также включен, чтобы показывать мощность тонового символа маякового радиосигнала.

В другом варианте осуществления маяковый радиосигнал включает в себя последовательность пакетов маяковых радиосигналов, передаваемых через перемежающиеся интервалы времени. Пакет маяковых радиосигналов включает в себя один или более (небольшое число) импульсов временной области. Импульсный сигнал временной области - это специальный сигнал, который занимает очень небольшую длительность передачи в определенной интересующей полосе пропускания спектра. Например, в системе связи, где доступная полоса пропускания составляет 30 кГц, импульсный сигнал временной области занимает значительную часть полосы пропускания на 30 кГц для короткой длительности. В любом достаточно длинном интервале времени, к примеру в несколько секунд, полная длительность импульсов временной области - это небольшая часть, к примеру в некоторых вариантах осуществления не более 0,1% от полной длительности. Кроме того, мощность передачи в расчете на степень свободы в интервале времени, в течение которого передается импульсный сигнал, значительно превышает, к примеру в некоторых вариантах осуществления на 10 дБ превышает среднюю мощность передачи в расчете на степень свободы, когда передающее устройство находится в обычном сеансе передачи данных. Мощность передачи в расчете на степень свободы в интервале времени, в течение которого передается импульсный сигнал, по меньшей мере, на 16 дБ превышает среднюю мощность передачи в расчете на степень свободы, когда передающее устройство находится в обычном сеансе передачи данных.

Фиг.4 показывает, что мощность передачи может варьироваться от одного тонового символа к другому. Обозначим Pavg среднюю мощность передачи в расчете на тоновый символ (408). В соответствии с различными вариантами осуществления мощность передачи в расчете на тоновый символ маякового радиосигнала намного превышает, к примеру, по меньшей мере, на 10 дБ превышает Pavg. Мощность передачи в расчете на тоновый символ маякового радиосигнала, по меньшей мере, на 16 дБ превышает Pavg. В одном примерном варианте осуществления мощность передачи в расчете на тоновый символ маякового радиосигнала на 20 дБ превышает Pavg.

В одном варианте осуществления мощность передачи в расчете на тоновый символ маякового радиосигнала является постоянной для данного терминала. Таким образом, мощность не изменяется со временем или с тоном. В другом варианте осуществления мощность передачи в расчете на тоновый символ маякового радиосигнала является одинаковой для нескольких терминалов или даже для каждого из терминалов в сети.

Чертеж 500 по Фиг.5 иллюстрирует один вариант осуществления передачи пакетов маяковых радиосигналов. Беспроводной терминал продолжает передавать пакеты маяковых радиосигналов, к примеру пакет A 502 маяковых радиосигналов, пакет B 504 маяковых радиосигналов, пакет C 506 маяковых радиосигналов и т.д., даже если беспроводной терминал определяет то, что нет другого терминала в окрестности, или даже если терминал уже обнаружил другие терминалы и, возможно, даже установил линии связи с ними.

Терминал передает пакеты маяковых радиосигналов неустойчивым (т.е. прерывистым) способом так, что есть ряд периодов символа между двумя последовательными пакетами маяковых радиосигналов. В общем, длительность пакета маяковых радиосигналов намного меньше, к примеру в некоторых вариантах осуществления, по меньшей мере, в 50 раз меньше числа периодов символа в промежутке между двумя последовательными пакетами маяковых радиосигналов, обозначенными как L 505. В одном варианте осуществления значение L является фиксированным и постоянным, и в этом случае маяковый радиосигнал является периодическим. В некоторых вариантах осуществления значение L является одинаковым и известным для каждого из терминалов. В другом варианте осуществления значение L изменяется во времени, к примеру, согласно заранее определенной или псевдослучайной конфигурации. Например, число может быть числом, к примеру случайным числом, распределенным между константами L0 и L1.

Чертеж 600 по Фиг.6 иллюстрирует один примерный вариант осуществления, в котором прием пакетов маяковых радиосигналов может осуществляться в течение определенных обозначенных интервалов времени, тогда как в другое время приемное устройство отключено для того, чтобы экономить энергопотребление. Беспроводной терминал прослушивает интересующий спектр и пытается обнаруживать маяковый радиосигнал, который может отправляться посредством другого терминала. Беспроводной терминал может непрерывно находиться в режиме прослушивания для интервала времени в несколько периодов символа, который называется временем активации. После времени 602 активации следует время 606 деактивации, в течение которого беспроводной терминал находится в режиме энергосбережения и не принимает сигналы. Во время деактивации беспроводной терминал полностью выключает приемные модули. Когда время 606 деактивации завершается, терминал возвращается во время 604 активации и снова начинает обнаруживать маяковый радиосигнал. Вышеупомянутая процедура повторяется.

Предпочтительно длина интервала времени активации меньше длины интервала времени деактивации. В одном варианте осуществления интервал времени активации может составлять меньше 1/5 интервала времени деактивации. В одном варианте осуществления длина каждого из интервалов времени активации является одинаковой и длина каждого из интервалов времени деактивации также является одинаковой.

В некоторых вариантах осуществления длина интервала времени деактивации зависит от требования по времени задержки первого беспроводного терминала, чтобы обнаруживать присутствие другого (второго) беспроводного терминала, если второй беспроводной терминал фактически присутствует рядом с первым беспроводным терминалом. Длина интервала времени активации определяется так, чтобы первый беспроводный терминал имел большую вероятность обнаружения, по меньшей мере, одного пакета маяковых радиосигналов в интервале времени активации. В одном варианте осуществления длина интервала времени активации - это функция, по меньшей мере, одного из длительности передачи пакета маяковых радиосигналов и длительности между последовательными пакетами маяковых радиосигналов. Например, длина интервала времени активации составляет, по меньшей мере, сумму длительности передачи пакета маяковых радиосигналов и длительности между последовательными пакетами маяковых радиосигналов.

Чертеж 700 по Фиг.7 иллюстрирует то, как терминал обнаруживает присутствие второго терминала, когда эти два терминала используют реализованную процедуру передачи и приема маяковых радиосигналов.

Горизонтальная ось 701 представляет время. Первый беспроводной терминал 720 достигает произвольно организующейся сети до того, как второй беспроводной терминал 724 обнаруживается. Первый беспроводной терминал 720 с использованием передающего устройства 722 начинает передавать маяковый радиосигнал, который включает в себя последовательность пакетов 710, 712, 714 маяковых радиосигналов и т.д. Второй беспроводной терминал 724 обнаруживается после того, как первый беспроводной терминал 720 уже передал пакет 710. Предположим, что второй беспроводной терминал 724, включающий в себя приемное устройство 726, начинает интервал 702 времени активации. Следует отметить, что интервал времени активации является достаточно большим для того, чтобы покрывать длительность передачи пакета 712 маяковых радиосигналов и длительность между пакетами 712 и 714. Следовательно, второй беспроводной терминал 724 может обнаруживать присутствие пакета 712 маяковых радиосигналов в интервале 702 времени активации, даже когда первый и второй беспроводные терминалы (720, 724) не имеют общего опорного синхронизирующего сигнала.

Фиг.8 иллюстрирует один вариант осуществления примерной схемы 800 состояний, реализованной в беспроводном терминале.

Когда беспроводной терминал включается, беспроводной терминал переходит в состояние 802, в котором терминал определяет начальное время следующего пакета маяковых радиосигналов, который должен быть передан. Помимо этого, беспроводной терминал определяет начальное время следующего интервала времени активации для приемного устройства. Беспроводной терминал может и в некоторых вариантах осуществления использует таймер передающего устройства и таймер приемного устройства для того, чтобы управлять начальными временами. Беспроводной терминал ожидает до тех пор, пока какой-либо из таймеров не истечет. Следует отметить, что любой таймер может истекать мгновенно, что означает то, что беспроводной терминал должен передавать или обнаруживать пакет маяковых радиосигналов при включении питания.

После истечения TX-таймера терминал переходит в состояние 804. Беспроводной терминал определяет форму сигнала пакета, в том числе частотный тон, который должен использоваться посредством пакета, и передает пакет маяковых радиосигналов. Как только передача осуществлена, терминал возвращается в состояние 802.

После истечения RX-таймера беспроводной терминал переходит в состояние 806. Беспроводной терминал находится в режиме прослушивания и выполняет поиск пакета маяковых радиосигналов. Если беспроводной терминал не нашел пакет маяковых радиосигналов, когда интервал времени активации завершается, то беспроводной терминал возвращается в состояние 802. Если беспроводной терминал обнаруживает пакет маяковых радиосигналов нового беспроводного терминала, беспроводной терминал может переходить в состояние 808, если беспроводной терминал должен обмениваться данными с новым терминалом. В состоянии 808 беспроводной терминал извлекает время и/или частоту нового беспроводного терминала из обнаруженного маякового радиосигнала и затем синхронизирует свое время и частоту с новым беспроводным терминалом. Например, беспроводной терминал может использовать местоположение маякового радиосигнала во времени и/или по частоте в качестве основы для оценки тактовой фазы и/или частоты нового беспроводного терминала. Эта информация может использоваться для того, чтобы синхронизировать эти два беспроводных терминала.

Как только синхронизация осуществлена, беспроводной терминал может отправлять (810) дополнительный сигнал в новый терминал и устанавливать линию связи. Беспроводной терминал и новый беспроводной терминал могут затем устанавливать сеанс связи между равноправными узлами. Когда беспроводной терминал установил линию связи с другим терминалом, терминал должен продолжать периодически передавать маяковый радиосигнал так, чтобы другие терминалы, к примеру новые беспроводные терминалы, могли обнаруживать беспроводной терминал. Помимо этого, беспроводной терминал продолжает периодически переходить в интервалы времени активации, чтобы обнаруживать новые беспроводные терминалы.

Фиг.9 предоставляет подробную иллюстрацию реализованного примерного беспроводного терминала 900, к примеру портативного мобильного узла. Примерный беспроводной терминал 900, проиллюстрированный на Фиг.9, является подробным представлением устройства, которое может использоваться в качестве любого из терминалов 102 и 104, проиллюстрированных на Фиг.1. В варианте осуществления по Фиг.9 терминал 900 включает в себя процессор 904, модуль 930 интерфейса беспроводной связи, интерфейс 940 ввода/вывода пользователя и запоминающее устройство 910, соединенные посредством шины 906. Соответственно, через шину 906 различные компоненты терминала 900 могут обмениваться информацией, сигналами и данными. Компоненты 904, 906, 910, 930, 940 терминала 900 находятся в корпусе 902.

Модуль 930 интерфейса беспроводной связи предоставляет механизм, посредством которого внутренние компоненты беспроводного терминала 900 могут отправлять и/или принимать сигналы в/из внешних устройств и другого беспроводного терминала. Модуль 930 интерфейса беспроводной связи включает в себя, к примеру, модуль 932 приемного устройства и модуль 934 передающего устройства, которые соединены с дуплексером 938 с антенной 936, используемыми для связи беспроводного терминала 900 с другими терминалами, к примеру, через каналы беспроводной связи.

Примерный беспроводной терминал 900 также включает в себя устройство 942 ввода пользователя, к примеру клавишную панель, и устройство 944 вывода пользователя, к примеру дисплей, которые связаны с шиной 906 через интерфейс 940 ввода/вывода пользователя. Таким образом, устройства 942, 944 ввода/вывода пользователя могут обмениваться информацией, сигналами и данными с другими компонентами терминала 900 через интерфейс 940 ввода/вывода пользователя и шину 906. Интерфейс 940 ввода/вывода пользователя и ассоциированные устройства 942, 944 предоставляют механизм, посредством которого пользователь может осуществлять действия с беспроводным терминалом 900, чтобы выполнять различные задачи. В частности, устройство 942 ввода пользователя и устройство 944 вывода пользователя предоставляют функциональность, которая позволяет пользователю управлять беспроводным терминалом 900 и приложениями, например модулями, программами, подпрограммами и/или функциями, которые выполняются в запоминающем устройстве 910 беспроводного терминала 900.

Процессор 904 под управлением различных модулей, например подпрограмм, включенных в запоминающее устройство 910, управляет работой беспроводного терминала 900, чтобы выполнять различную передачу сигналов и обработку. Модули, включенные в запоминающее устройство 910, приводятся в исполнение при запуске или по мере вызова посредством других модулей. Модули могут обмениваться данными, информацией и сигналами, когда приводятся в исполнение. Модули также могут совместно использовать данные и информацию, когда приводятся в исполнение. В варианте осуществления по Фиг.9 запоминающее устройство 910 примерного беспроводного терминала 900 включает в себя модуль 912 передачи служебных/управляющих сигналов и служебные/управляющие данные 914.

Модуль 912 передачи служебных/управляющих сигналов управляет обработкой, относящейся к приему и отправк