Подводная обсерватория

Иллюстрации

Показать все

Изобретение относится к устройствам для подводных геофизических исследований морей и океанов. Сущность: подводная обсерватория сочленена с судовым комплексом и включает устройство типа «Data»-буй. Устройство типа «Data»-буй состоит из прочного герметичного корпуса сферической формы, выполненного из титана и установленного на несущей раме. На несущей раме и в корпусе устройства «Data»-буй размещены средства регистрации геофизических и гидрофизических данных: сейсмометр, гидрофизический модуль, датчики магнитного поля, обнаружения метана, давления, пространственной ориентации, а также датчики ядерно-магнитного резонанса. Технический результат: расширение функциональных возможностей и повышение надежности при эксплуатации. 1 з.п. ф-лы, 10 ил.

Реферат

Изобретение относится к области геофизики, а более конкретно к устройствам измерения геофизических и гидрофизических параметров в придонной зоне морей и океанов, и может быть использовано при оперативной оценке сейсмического и гидродинамического состояния районов и прогноза возможных сейсмических и экологических последствий катастрофических явлений природного и техногенного характера.

Известные автономные донные станции (патенты RU №2270464, RU №2276388, RU №2294000 [1, 2, 3]) представляют собой цилиндрические или шарообразные корпусы, снабженные балластом для установки их на грунт, внутри и на корпусе которых установлены измерительные датчики и средства обработки первичной информации. В качестве измерительных датчиков используются, как правило, гидрофоны и геофоны. Зарегистрированная датчиками информация хранится на флеш-памяти донной станции, которая после подъема донных станций обрабатывается с помощью комплекса судовой аппаратуры или считывается по каналам гидроакустической связи. Известные донные станции предназначены в основном для регистрации сейсмических сигналов в морских акваториях. Так, устройство [3] представляет собой морскую автономную донную сейсмическую станцию, устанавливаемую на морское дно преимущественно с плавучих средств. Станция включает герметичный корпус, состоящий из двух полусфер, снабженных в месте сочленения уплотнительным кольцом. Внутри размещена геофизическая аппаратура, включающая измерительные датчики геофонного и гидрофонного типов, модули приема, регистрации, преобразования и хранения зарегистрированных сигналов, блоки сопряжения с бортовым модулем после всплытия и подъема устройства на борт, спутниковый и гидроакустический каналы связи, блок ориентации, блок синхронизации, блок управления размыкателем и блок питания. На внешней поверхности корпуса установлены гидроакустическая и спутниковая антенны, средства для поиска донной станции при всплытии, такелажные элементы и разъемы, устройство постановки на дно и обеспечения всплытия донной станции, выполненное в виде якоря-балласта. Технический результат - повышение точности измерений, снижение трудоемкости и изготовления донной станции, упрощение процессов ее постановки на дно и возвращения на борт после окончания работы.

Недостатком известных автономных донных станций является то, что они предназначены для регистрации только сигналов сейсмической природы. В то же время автономные донные станции могут применяться и при решении таких задач, как изучение строения земной коры, исследование совокупности проявления геофизических полей и тектонических разломов непосредственно на дне океана, геофизический мониторинг сложных гидротехнических сооружений.

Известные также подводные обсерватории (патент ЕР №0519031, патент NO №911639, патент EP №0516662, кн.: Средства и методы океанологических исследований. Смирнов Г.В., Еремеев В.Н., Агеев М.Д. и др. - М., Наука, 2005, патент AU №2002100749 от 04.09.2002 [4, 5, 6, 7, 8]) включают донный сейсмометр, гидрофизический модуль, датчик магнитного поля, средства первичной обработки и хранения информации, средства связи с комплексом судовой аппаратуры, установленные на платформе, что позволяет регистрировать более полный спектр геофизических и гидрофизических параметров и, как следствие этого, расширить функциональные возможности донных станций.

Недостатком известных подводных обсерваторий является то, что состав их измерительных средств не позволяет решить задачу, связанную с комплексным исследованием параметров морской среды в придонной зоне, включая тектонические процессы, происходящие под морским дном, а также задачу геофизического мониторинга сложных гидротехнических сооружений.

Выявленных недостатков лишено устройство, представляющее собой подводную обсерваторию (патент RU №2348950 [9]), состоящую из герметичного корпуса, установленного на раме, и содержащую средства регистрации геофизических сигналов, включающие донный сейсмометр, гидрофизический модуль, датчик магнитного поля, блок оптических измерений, средства хранения информации, средства связи с диспетчерской станцией, датчик пространственной ориентации, радиобуй, балласт, размыкатель балласта, дополнительно введены блок гидрохимических измерений, спектроанализатор, сейсмоакустический блок, блок гидроакустического телеуправления, блок контроля радиоактивного загрязнения, блок регистрации и управления, модем кабельной линии связи, в котором блок гидрохимических измерений своими входами соединен с выходами блока контроля радиоактивного загрязнения, спектроанализатора, а своим выходом соединен с входом блока регистрации и управления, который другими выходами соединен с выходами донного сейсмометра, гидрофизического модуля, датчика магнитного поля, блока оптических измерений, модемом кабельной линии связи, а входом-выходом соединен с входом-выходом блока гидроакустического телеуправления.

Отличительные признаки по сравнению с известными устройствами [1-8], заключающиеся в том, что в известное устройство дополнительно введены блок гидрохимических измерений, спектроанализатор, сейсмоакустических блок, блок гидроакустического телеуправления, блок контроля радиоактивного загрязнения, блок регистрации и управления, модем кабельной линии связи, в котором блок гидрохимических измерений своими входами соединен с выходами блока контроля радиоактивного загрязнения, спектроанализатора, а своим выходом соединен с входом блока регистрации и управления, который другими выходами соединен с выходами донного сейсмометра, гидрофизического модуля, датчика магнитного поля, блока оптических измерений, модемом кабельной линии связи, а входом-выходом соединен с входом-выходом блока гидроакустического телеуправления, позволяют решить техническую задачу не только оперативной оценки сейсмического состояния исследуемых районов, но и позволяют решить задачу оперативной оценки гидродинамического состояния на границе вода-грунт, обусловленных изменением окружающей среды под воздействием процессов природного и техногенного характера.

Однако состав измерительных средств данного устройства не позволяет выполнить анализ на содержание метана в водной среде в зонах размещения нефтегазовых трубопроводов при наличии утечек, а также определение координат газового образования. Кроме того, при использовании сейсмических датчиков электромеханического типа возможны нарушения в их работе при наличии ударов при постановке геофизической обсерватории на грунт, а также при отклонении положения сейсмических датчиков от вертикали на угол, больший максимально допустимого. Также ввиду небольшой собственной плавучести и небольшого внутреннего пространства сферы на обсерваторию невозможно установить блоки автономного питания большой емкости и, как следствие, невозможно увеличить срок автономной работы устройства без потери способности самостоятельного всплытия на водную поверхность.

Кроме того, посредством известных устройств решается ограниченной число задач, связанных с обнаружением возможности наступления катастрофических явлений.

В то же время посредством данных устройств, при их усовершенствовании, возможно решение следующих фундаментальных задач, заключающихся в изучении строения земной коры в акваториях мирового океана: исследование совокупности проявления геофизических полей в зонах тектонических разломов непосредственно на дне океана, исследование состояния морской среды в придонной зоне и ее взаимодействие с тектоническими процессами, геофизический мониторинг сложных гидротехнических сооружений, оперативная оценка сейсмического и гидродинамического состояния районов и прогноза возможных сейсмических и экологических последствий, а также при заблаговременном оповещении о землетрясениях и цунами.

Известно, что вследствие тектонических особенностей Земли свыше 80% всех землетрясений происходит под дном морей и океанов (Соловьев С.Л. История и перспективы развития морской сейсмологии. М.: Наука. 1986, с.11. Левин Б.В., Носов М.А. Физика цунами. М.: «Янус-К». 2005, с.152 [10, 11]). При этом сейсмологическая сеть расположена практически полностью на континентах и некоторых островах. Регистрация удаленных сильных морских землетрясений наземными сейсмографами приводит к большим погрешностям в определении магнитуды и координат гипоцентров, слабые морские землетрясения практически не регистрируются. Самые сильные землетрясения с магнитудой 8 и более, вызывающие в основном катастрофические волны цунами, концентрируются под океаническим дном вблизи сейсмически активных континентальных окраин. В России такими районами являются побережье Камчатки, Курильские острова и остров Сахалин. В настоящее время путем долгосрочного сейсмологического прогноза выявлены места ожидаемых сильнейших землетрясений в этом регионе. Это Авачинский залив Камчатки и пролив Буссоль между островами Урупом и Симуширом Южных Курил. Однако время наступления таких землетрясений на основе долгосрочных прогнозов определяется с погрешностью в десятки-сотни лет.

Известные способы и устройства, основанные на использовании глубоководных регистраторов волны цунами, устанавливаются, как правило, вдоль защищаемого побережья. Такие регистраторы производят измерение давления или толщины водного слоя и должны иметь очень высокую чувствительность. Высота волны цунами в открытом океане в 10 см может многократно увеличиваться на мелководье и представлять существенную опасность. Поэтому при постановке на глубину, например, 3 км регистраторы должны иметь чувствительность не меньше 3×10-5.

Такую чувствительность обеспечивают только кварцевые измерители давления. При этом для измерения толщины водного слоя используют донные эхолоты, что необходимо для компенсации погрешности, обусловленной неравномерностью распространения скорости звука в воде.

Имеется также принципиальная возможность обнаружения волн цунами с помощью спутниковых наблюдений [10, 11]. Однако для обеспечения требуемого разрешения по высоте и времени последовательного сканирования земной поверхности не меньше 10-15 минут необходимо запустить на орбиты несколько десятков спутников.

Кроме того, техническая реализация устройств регистрации и обработки сигналов сейсмического происхождения, полученных посредством ИСЗ, для выделения волн цунами на фоне шумов моря, как естественного, так и техногенного происхождения, которые в открытом океане имеют высоту в несколько сантиметров, обусловлена сложной математической обработкой, которая необходима для исключения помех в виде ветровых и приливных волн, а также ветровых нагонов.

При этом зарегистрированные сигналы, в виде синусоидальных колебаний, измеряемого параметра при наложении на них акустических и гидродинамических шумов техногенного характера, могут быть как периодическими, так и апериодическими, что требует получения многочисленных массивов измеряемого параметра для выявления амплитуды, статистически достоверно отличающейся от фоновой, для достижения положительного технического результата.

Кроме того, отрицательное воздействие на достоверность прогноза оказывает появление микросейсмических штормов (резких и относительно кратковременных увеличений уровня микросейсм на дне), вызываемых сильными морскими штормами, придонными течениями и сейсмической активностью как от удаленных землетрясений, так и сейсмоакустическими колебаниями от группы местных землетрясений и сейшевыми колебаниями поверхности воды, возникающими при приливах и вызванных при этом приливных течениях.

При этом на очень низких частотах (ниже 0,01 Гц) вследствие пренебрежительно малой толщины слоя океана по сравнению с длиной волны колебания, вызванные микросейсмами, могут продолжаться несколько часов (10 и более), которые известными устройствами не регистрируются.

Частично выявленные недостатки устраняются при использовании известного устройства (заявка RU №2009116092 [12]).

Известное устройство [12] представляет собой подводную обсерваторию, состоящую из герметичного прочного корпуса, установленного на несущей раме, и содержащую средства регистрации геофизических и гидрофизических данных, включающие сейсмометр, гидрофизический модуль, датчик магнитного поля, средства связи с комплексом судовой аппаратуры, радиобуй, балласт, размыкатель балласта, блок гидрохимических измерений, блок гидроакустического телеуправления, блок регистрации и управления, в котором блок гидрохимических измерений своим выходом соединен с входом блока регистрации и управления, который другими входами соединен с выходами сейсмометра, гидрофизического модуля, датчика магнитного поля, а входом-выходом соединен с входом-выходом блока гидроакустического телеуправления, в которую дополнительно введены датчик обнаружения метана, соединенный своим выходом с блоком регистрации и управления, донный датчик давления, соединенный своим выходом с блоком регистрации и управления, датчик пространственной ориентации, соединенный своим входом-выходом с входом-выходом блока регистрации и управления; сейсмометр состоит из сейсмического модуля и сейсмоакустического модуля. При этом известная подводная обсерватория сочленена с судовым комплексом и устройством типа "Data"-буй, которые используются для обеспечения функционирования подводной обсерватории по прямому назначению. Кроме того, герметичный прочный корпус, установленный на несущей раме, имеет сферическую форму и выполнен из титана с отношением запаса плавучести к полной массе подводной обсерватории 1:1,35, несущая рама снабжена анкерным устройством, на выносной штанге которого установлен сейсмический модуль.

Благодаря новым отличительным признакам, заключающимся в том, что введены датчик обнаружения метана, соединенный своим выходом с блоком регистрации и управления, датчик пространственной ориентации, соединенный своим входом-выходом с входом-выходом блока регистрации и управления; сейсмометр состоит из сейсмического модуля и сейсмоакустического модуля; герметичный корпус сферической формы, установленный на несущей раме, выполнен из титана с отношением запаса плавучести к полной массе подводной обсерватории 1:1,35; несущая рама снабжена анкерным устройством, на выносной штанге которого установлен сейсмический модуль, обеспечивается возможность выполнить анализ на содержание в водной среде метана за счет ввода в состав измерительных средств датчика метана. Ввод в состав измерительных средств донного датчик давления, соединенного своим выходом с блоком регистрации и управления, позволяет с высокой точностью регистрировать изменение уровня моря и тем самым определять приближение и фиксировать прохождение волны цунами. Выполнение сейсмометра из двух модулей расширяет функциональные возможности устройства и повышает надежность проводимых исследований. Выполнение герметичного прочного корпуса из титана с отношением плавучести к полной массе подводной обсерватории 1:1,35 обеспечивает большую положительную плавучесть обсерватории и возможность установки элементов электрического питания повышенной емкости, обеспечение глубоководных исследований. Снабжение несущей рамы анкерным устройством, на выносной штанге которого установлен сейсмический модуль, позволяет регистрировать сейсмические сигналы на границе раздела вода-грунт.

Однако при использовании известных конструкций подводных обсерваторий (в том числе и прототипа) имеется ряд проблем, связанных с влиянием придонных течений на аппаратные шумы, сцеплением их с мягким дном, микросейсмическими шумами, генерируемыми гравитационными волнами, особенностями распространения сейсмических сигналов в коре океанического типа и др. В общем случае придонные течения могут носить как ламинарный, так и турбулентный характер (вследствие наличия неровностей дна). При этом в низкочастотной части диапазона сейсмометра возможно возникновение помех за счет турбулентных явлений на крупных неровностях дна (до 10 м). В связи с этим практически полностью исключается возможность использования сейсмических приемников с инерционной массой на упругой подвеске, несмотря на то, что они имеют высокую чувствительность, широкий динамический и частотный диапазоны.

Также необходимо отметить, что придонные течения, особенно с рельефом дна в виде крутых склонов подводных гор, являются не коррелированными с направлением и скоростью ветра, что не позволяет из результатов наблюдений исключать данные помехи. При этом квазигармонические помехи могут возникать на частотах 1,3 Гц, 3 Гц и 6 Гц и занимать до 40% всего времени регистрации. Причем амплитуды этих помех неустойчивы и могут меняться примерно на 35 дБ.

Задачей предлагаемого технического решения является расширение функциональных возможностей и повышение надежности при эксплуатации донных сейсмических обсерваторий.

Поставленная задача решается за счет того, что подводная обсерватория, сочлененная с судовым комплексом и устройством типа "Data"-буй и состоящая из герметичного прочного корпуса, установленного на несущей раме, и содержащая средства регистрации геофизических и гидрофизических данных, включающие сейсмометр, гидрофизический модуль, датчик магнитного поля, средства связи с комплексом судовой аппаратуры, радиобуй, балласт, размыкатель балласта, блок гидрохимических измерений, блок гидроакустического телеуправления, блок регистрации и управления, в котором блок гидрохимических измерений своим выходом соединен с входом блока регистрации и управления, который другими входами соединен с выходами сейсмометра, гидрофизического модуля, датчика магнитного поля, а входом-выходом соединен с входом-выходом блока гидроакустического телеуправления, дополнительно содержащая датчик обнаружения метана, соединенный своим выходом с блоком регистрации и управления, донный датчик давления, соединенный своим выходом с блоком регистрации и управления, датчик пространственной ориентации, соединенный своим входом-выходом с входом-выходом блока регистрации и управления; сейсмометр состоит из сейсмического модуля и сейсмоакустического модуля, при этом герметичный прочный корпус, установленный на несущей раме, имеет сферическую форму и выполнен из титана с отношением запаса плавучести к полной массе подводной обсерватории 1:1,35, несущая рама снабжена анкерным устройством, на выносной штанге которого установлен сейсмический модуль, отличается тем, что на несущей раме и в корпусе устройства типа "Data"-буй размещены датчики ядерно-магнитного резонанса, соединенные своими выходами с входом блока регистрации и управления, датчик ядерно-магнитного резонанса состоит из самарий-кобальтовых шайб.

Сущность технического решения поясняется чертежами.

Фиг.1. Конструкция подводной обсерватории. Подводная обсерватория состоит из рамы 1, на которой установлен сферический титановый прочный корпус 2, внутри которого установлены аппаратурные блоки. Корпус 2 соединен тросом 3 с размыкателем 4, который соединен якорным канатом 5 с якорем 6. На верхней части рамы 1 установлен выносной блок 7, в котором размещены устройства, предназначенные для сочленения подводной обсерватории с судовым комплексом. На верхней части рамы 1 также установлены гидрофизический модуль 8, узлы и элементы спутникового 9 и гидроакустического 10 каналов связи. Рама 1 сочленена с анкерным устройством 11, на котором закреплен донный сейсмометр 12, в рабочем положении, размещаемый посредством анкерного устройства 11 на морском дне 13.

Фиг.2. Блок-схема подводной обсерватории. Блок-схема подводной обсерватории включает: сейсмический модуль 14, сейсмоакустический модуль 15, гидрофизический модуль 8, спутниковый канал связи 9, датчик магнитного поля 16, блок регистрации и управления 17, модемы 18 гидроакустического канала связи 10, блок пространственной ориентации 19, гидроакустический размыкатель 4, акустический доплеровский измеритель профиля течений 20, блок гидрохимических измерений 21, датчик метана 22, донный датчик давления 23, радиомаяк 24, проблесковый маяк 25, блок питания 26, датчик ядерно-магнитного резонанса 27.

Фиг.3. Блок-схема гидрофизического модуля 8. Блок-схема гидрофизического модуля 8 включает датчик скорости течения 28, датчик электрической проводимости 29, датчик давления 30.

Фиг.4. Блок-схема датчика магнитного поля 16. Блок-схема датчика магнитного поля 16 включает феррозондовый датчик 31, фазовый чувствительный усилитель 32 ключевого типа, трехканальный АЦП 33, температурный датчик 34, выходной порт 35, ЦАП 36, 37, микроконтроллер 38, интерфейс 39, преобразователь 40 напряжение-ток, фильтр низких частот 41, обмотку компенсации 42, микрокомпьютер 43. Фазовый чувствительный усилитель 32, ЦАП 36, 37 и преобразователь 40 напряжение-ток образуют канал обработки сигналов по горизонтальной составляющей магнитного поля 44. Аналогичные элементы образуют каналы 45 и 46, предназначенные для обработки сигналов по продольной и вертикальной составляющей магнитного поля соответственно.

Фиг.5. Вид входного напряжения на АЦП 33.

Фиг.6. Алгоритм обработки данных при получении одного значения магнитного поля.

Фиг.7. Диаграмма направленности горизонтальных компонент трехкомпонентного векторного сейсмометра.

Фиг.8. Фрагмент записи Сычуаньского землетрясения.

Фиг.9. Фрагмент записи землетрясения на острове Хонсю.

Фиг.10. Фрагмент записи землетрясения на юге озера Байкал.

Рама 1 представляет собой металлическую конструкцию и является несущей платформой подводной обсерватории.

Блок питания 26 предназначен для обеспечения возможности длительной автономной работы устройства.

Герметичный прочный корпус 2 изготовлен шарообразной формы. Внутри корпуса установлены блок питания повышенной емкости, блок регистрации и управления, блок гидроакустической связи, измерительная аппаратура.

Блок регистрации и управления 17 предназначен для сбора информации от датчиков подводной обсерватории, привязки ее к системе точного времени, для сжатия и записи информации на флеш-память в автономном режиме.

Подводная обсерватория предназначена для:

- изучения строения земной коры в акваториях Мирового океана;

- исследования совокупности проявления геофизических полей в зонах тектонических разломов непосредственно на дне океана;

- исследования состояния морской среды в придонной зоне и ее взаимодействие с тектоническими процессами;

- геофизического и геоэкологического мониторинга сложных гидротехнических сооружений;

- оперативной оценки сейсмического и гидродинамического состояния районов и прогноза возможных сейсмических и экологических последствий;

- раннего оповещения с существенным повышением точности прогноза землетрясений и цунами;

- выявления предвестников сейсмических, геодеформационных, геохимических, гидрофизических предвестников катастрофических землетрясений, очаги которых находятся под дном океана, осуществление среднесрочного и краткосрочного прогноза землетрясений с магнитудой 5,5 и выше;

- контроля изменений напряженно-деформированного состояния участков земной коры шельфовых зон вблизи разрабатываемых месторождений нефти и газа, вызванных извлечением углеводородов, законтурной закачкой воды и другими искусственными воздействиями на углеводородный пласт;

- выбора экологически безопасных режимов эксплуатации месторождений;

- прогноза развития деформаций земной коры и наведенной сейсмичности;

- прогноза небольших местных землетрясений, опасных повреждением скважин, нефтяных платформ/подводных трубопроводов;

- исследования месторождений морских газогидратов.

Применение предлагаемой подводной геофизической обсерватории позволит проводить научные исследования в придонной области океана на новом качественном уровне, дающем возможность не только регистрировать геофизические, гидрохимические, гидрофизические и гидроакустические параметры, но и оценивать взаимосвязи между этими параметрами, а также выявлять сейсмических, геодеформационных, геохимических, гидрофизических предвестников катастрофических землетрясений, очаги которых находятся под дном океана, и тем самым существенно повысить точность прогноза землетрясений и цунами.

Кроме того, применение предлагаемой конструкции подводной обсерватории позволит также осуществлять контроль изменений напряженно-деформированного состояния участков земной коры шельфовых зон вблизи разрабатываемых месторождений нефти и газа, вызванных извлечением углеводородов, законтурной закачкой воды и другими искусственными воздействиями на углеводородный пласт, прогнозировать небольшие местные землетрясения, опасные повреждением скважин, нефтяных платформ/подводных трубопроводов, прогнозировать аварийные ситуации, тем самым способствовать снижению экологической опасности при эксплуатации морских промышленных объектов.

Подводная обсерватория представляет собой погружаемый комплекс измерительной аппаратуры (фиг.1), сочлененный с судовым комплексом и устройством типа "Data"-буй, которые используются для обеспечения функционирования подводной обсерватории по прямому назначению.

Погружаемый гидрофизический комплекс (ПГК) выполняет следующие функции: постановку на дно и подъем аппаратуры; работу аппаратуры на глубинах до 6000 м; тестирование и диагностику положения ПГК на дне; измерение и преобразование параметров геофизических и гидрофизических полей в электрические сигналы с помощью соответствующих датчиков. ПГК выполняет усиление и фильтрацию сигналов от датчиков; аналого-цифровое преобразование входных сигналов; привязку полученной информации к сигналам точного времени; цифровую обработку сигналов и накопление информации; передачу зарегистрированной и обработанной информации по гидроакустической линии связи; обеспечивает прием и передачу служебных гидроакустических сигналов и устройств поиска ПГК на поверхности после всплытия. Цифровые геофизические каналы сообщаются с блоком регистрации и управления 17 через последовательный порт RS-232 в соответствии с протоколами обмена. Аналоговые геофизические каналы имеют значения выходных напряжений в диапазоне от -10 В до +10 В.

Каждый геофизический измерительный канал питается от первичного источника постоянного тока напряжением 12 В.

Конструкция подводной обсерватории представляет собой сферический прочный корпус 1 (фиг.1), выполненный из титана диаметром 950 мм, имеющий вес на воздухе 264 кг и обеспечивающий плавучесть в воде 195 кг, с рабочей глубиной 6000 м. Внутри корпуса устанавливаются основные аппаратурные блоки.

На внешней раме 1 размещаются модули измерительных приборов и устройств, соединяемые между собой кабелями с герметичными разъемами. Подводная обсерватория устанавливается на дно в заякоренном состоянии в 3÷5 м от дна. К нижней части несущей рамы 1 подвешивается автономный гидроакустический размыкатель 4, обеспечивающий отсоединение якоря 6 при подъеме погружаемого комплекса на поверхность.

Гидрофизический модуль 8 состоит из двух основных компонент: акустического трехкомпонентного измерителя течений типа 3D-ACM модель 3ACM-CBP-S и измерителя электропроводности с датчиком температуры, выполненного на основе измерителя скорости течения типа CTS-C-1ED.

Датчик скорости течения 28 представляет собой акустический измеритель течения и измеряет три компоненты скорости течения на одном горизонте и включает в себя трехкомпонентный магнитный компас для измерения магнитного поля Земли в трех проекциях, двухосевой электролитический инклинометр для измерения отклонения от вертикали, твердотельный датчик температуры. Принцип измерения скорости течения основан на измерении разности времен пролета акустического импульса в прямом и обратном направлении («времяпролетный» измеритель). Он может быть также оснащен датчиком давления для измерения глубины постановки датчика скорости течения 28. Он также имеет интерфейс для подключения датчика солености и температуры и два входных канала постоянного тока для подключения внешних датчиков. Результаты измерений передаются в реальном времени в формате ASCII по последовательному интерфейсу RS-232 или RS-485 при скорости 19200 бит/сек, либо записываются в стандартное статическое ОЗУ размером 0,5 МБ, питаемое литиевой батареей, для последующего считывания. Он имеет глубину постановки до 7000 м и вариант «прибрежной» постановки до 1000 м глубины (в зависимости от конструктивного исполнения корпуса и диапазона измерения датчика давления).

Программное обеспечение (программа 3DACM97) позволяет конфигурировать и настраивать датчик с использованием стандартного пользовательского интерфейса Windows. Данные могут передаваться в режиме реального времени или считываться из внутренней памяти прибора. Данные, передаваемые в режиме реального времени, могут быть представлены в графическом виде на экране дисплея. Программное обеспечение в режиме реального времени принимает и сохраняет данные о векторе скорости, данные с трехкомпонентного компаса, инклинометра, данные с дополнительных датчиков, включая датчик солености, температуры, давления.

Данные о векторе скорости и показания инклинометра усредняются с помощью алгоритма векторного осреднения по временному интервалу от 15 секунд до 60 минут. Программа ACMPost позволяет графически отображать прочитанные данные на дисплее и сохранять данные по измерениям солености, температуры, давления в файле стандарта DAT С00 и HDR. Эти форматы также могут читаться программой ACMPost.

Электронный интерфейс обеспечивает выход напряжения постоянного тока пропорционально электропроводности и температуре. Управление выходом напряжения достигается посредством двух управляемых пользователем логических линий. Датчики электропроводности основаны на датчике электропроводности с индуктивной связью. Индуктивные датчики демонстрируют естественную устойчивость, в отличие от датчиков, основанных на незащищенных электродах, при изменении их геометрии, которая вызывается биообрастанием. Большой внутренний диаметр датчика электропроводности устраняет необходимость в насосе или других искусственных средствах проведения потока воды через датчик. Использование высококачественного платинового термометра сопротивления приводит к линейным измерениям температуры, характеризуемым высокой стабильностью. Электронный сигнал очень линеен, что устраняет необходимость использования комплексных уравнений для преобразования выходных сигналов в физические величины.

Коммуникационный протокол модуля включает в себя развитую систему команд, позволяющую организовать работу с модулем наиболее удобным для пользователя образом.

Модуль может работать в одном из четырех режимов:

- режим RUN MODE (normal).

В этом режиме модуль осуществляет измерения всех параметров:

- режим RUN MODE (fast pressure).

В этом режиме измерения осуществляются только для датчика давления и передается значение только величины давления.

Режимы OPEN MODE (изменение констант калибровки) и CAL MODE (проведение калибровки) являются вспомогательными и используются при проведении метрологического обслуживания прибора. Измеренные величины автоматически пересчитываются в физические значения и в таком виде (в ASCII-кодах) передаются пользователю, а также записываются в память, откуда могут быть считаны позднее в произвольный момент времени.

Блок пространственной ориентации 19 представляет собой датчик пространственной ориентации и предназначен для использования в составе сейсмического модуля (СМ) для определения точного положения в пространстве сейсмического модуля 14 и сейсмоакустического модуля 15.

В качестве датчика блока пространственной ориентации 19 используется модуль электронного компаса типа ТСМ 2.50, который представляет собой трехосевой курсовой компас с компенсатором наклона, конструктивно выполненный на одной плате с блоком электроники. Компас оснащен системой электронной компенсации, которая позволяет производить точные вычисления азимута, бортового наклона (крена) и килевого наклона (тангажа) при угловых положениях ±50 градусов.

Блок регистрации и управления 17 предназначен для синхронной оцифровки и регистрации сигналов от сейсмических и иных датчиков различного типа. Оцифровка сигналов производится с помощью 8-канального дельта-сигма АЦП с разрешением в 24 бита. Он имеет энергонезависимую память объемом 16 Гб, а также дополнительную энергонезависимую память для хранения служебной информации и данных калибровки времени с частотой квантования 100 Гц, емкостью памяти 16 Гб и продолжительностью непрерывной записи 160 суток.

Подготовка блока регистрации и управления 17 к работе, а именно: проверка работоспособности, наличия необходимых сигналов, очистка и проверка памяти, установка и проверка внутренних часов реального времени - производится посредством судового комплекса через последовательный интерфейс типа RS-232. Считывание зарегистрированных данных производится с помощью специального дополнительного устройства по интерфейсу USB.

Конструктивно блок регистрации и управления 17 состоит из двух контейнеров. Один из них содержит плату регистратора, плату памяти и платы электрических согласований и предварительной аналоговой обработки сигналов. Плата памяти оформлена в виде защищенного модуля, снабженного специальной скобой для удобства ее извлечения из контейнера и установки в устройство считывания информации. Другой контейнер служит для размещения стабилизированного по температуре кварцевого генератора типа «МАРИОН» и устройства считывания данных по шине USB.

Точная временная привязка измерений основана на использовании стабилизированного по температуре кварцевого генератора совместно с имитацией спутниковым источником сигналов точного времени и временной привязки по GPS. В контроллере программно организован 6-байтный счетчик, который в непрерывном режиме производит подсчет импульсов опорного кварцевого генератора с предварительным делителем частоты. Предварительный делитель выбран таким образом, что время переполнения счетчика составляет примерно 1 год при разрешении порядка 0,01 мс.

Перед постановкой погружаемого модуля контроллер блока регистрации и управления подключается к спутниковому навигационному приемнику, имеющему выход сигнала PPS. По команде оператора с помощью специального программного обеспечения (программа FAST_PGK.exe) производится обнаружение положительного фронта сигнала PPS, после чего сразу производится фиксация накопленного значения счетчика. Далее из спутникового навигационного приемника читается сообщение об астрономическом времени, соответствующем фронту PPS. Данные счетчика и соответствующее сообщение о времени заносятся в служебную энергонезависимую память. Эта информация дополняется сообщением о дате момента калибровки, которое берется из часов реального времени, расположенных на плате контроллера. В ходе измерений и регистрации сигналов после приема первого 8-канального отсчета на странице памяти производится фиксация и регистрация значения счетчика. Каждая страница памяти содержит 87 восьмиканальных 3-байтных отсчетов. Таким образом, один раз на 87 отсчетов производится регистрация временной метки. После завершения процесса регистрации процедура временной привязки повторяется. Временную привязку можно производить произвольное число раз в пределах разумного, но достаточно по одному разу перед началом измерений и после их окончания.

Ввод зарегистрированных данных в судовой компьютер после завершения процесса регистрации сигналов выполняется путем извлечения из контейнера платы памяти, размещенной в прочном корпусе погружаемого модуля после его всплытия, и вставляется в устройство считывания. Перекачка данных осуществляется блоками, по 64 страницы за один цикл. Для запуска процесса перекачки данных достаточно указать количество перекачиваемых блоков памяти (количество страниц, деленное на 64) и выбрать имя файла без расширения с помощью программы READER.exe. В процессе перекачки производи