Способ и устройство для реализации показателя качества цифрового сигнала
Иллюстрации
Показать всеИзобретение относится к приемникам цифрового широковещания, а более точно к способам и устройству для реализации показателя качества сигнала цифрового радиоприемника для цифрового сигнала OFDM (мультиплексирования с ортогональным частотным разделением каналов). Способ для детектирования цифрового радиосигнала включает в себя этапы приема цифрового радиосигнала, включающего в себя последовательность символов, выявление формы сигнала корреляции, имеющей пик, который соответствует границе символа, нормализацию формы сигнала корреляции и расчет пикового значения нормализованной формы сигнала корреляции, при этом пиковое значение представляет качество принятого цифрового радиосигнала. Также предложен приемник, предназначенный для осуществления способа. Технический результат - обеспечение точного указания качества принятых ЧМ-сигналов. 4 н. и 26 з.п. ф-лы, 30 ил.
Реферат
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Это изобретение относится к приемникам цифрового широковещания, а более точно к способам и устройству для реализации показателя качества сигнала цифрового радиоприемника для цифрового сигнала OFDM (мультиплексирования с ортогональным частотным разделением каналов).
УРОВЕНЬ ТЕХНИКИ
Технология цифрового широковещания доставляет цифровые звуковые и информационные услуги на мобильные, портативные и стационарные приемники. Один из типов цифрового широковещания, указываемый ссылкой как внутриполосное подканальное (IBOC) цифровое аудиошироковещание (DAB), использует наземные передатчики в существующих радиодиапазонах средних частот (СЧ, MF) и очень высоких частот (ОВЧ, VHF). Технология HD Radio™, разработанная корпорацией iBiquity Digital, является одним из примеров IBOC реализации для цифрового радиошироковещания и приема.
Сигналы IBOC DAB могут передаваться в гибридном формате, включающем в себя несущую с аналоговой модуляцией в комбинации с множеством несущих с цифровой модуляцией, или в полностью цифровом формате, в котором несущая с аналоговой модуляцией не используется. С использованием гибридного режима широковещательные станции могут продолжать передавать аналоговые АМ (амплитудно-модулированные, AM) и ЧМ (частотно-модулированные, FM) одновременно с более высококачественными и более устойчивыми к ошибкам цифровыми сигналами, дающими им самим и их слушателям возможность осуществлять перестройку с аналогового на цифровое радио наряду с сохранением своих текущих распределений частот.
Одним из признаков цифровых систем передачи является неотъемлемая возможность одновременно передавать как представленное в цифровой форме аудио, так и данные. Таким образом, технология также предусматривает беспроводные информационные услуги со станций АМ и ЧМ-широковещания. Широковещательные сигналы могут включать в себя метаданные, такие как имя артиста, название песни или позывные станции. Специальные сообщения о событиях, дорожном движении и погоде также могут быть включены в состав. Например, информация о дорожном движении, прогнозы погоды, новости и спортивные показатели - все могут прокручиваться через устройство отображения радиоприемника, в то время как пользователь слушает радиостанцию.
Технология IBOC DAB может обеспечивать аудио цифрового качества лучше существующих форматов аналогового вещания. Так как сигнал IBOC DAB передается в пределах спектральной маски существующего распределения АМ или FM-каналов, он не требует новых выделений спектра. IBOC DAB способствуют экономии спектра наряду с предоставлением широковещательным станциям возможности поставлять аудио цифрового качества современной базе слушателей.
Мультивещание, способность доставлять несколько программ или потоков данных по одному каналу в АМ или ЧМ-спектре дает станциям возможность широковещательно передавать многочисленные потоки данных по отдельным дополнительным или подканалам основной частоты. Например, многочисленные потоки данных могут включать в себя альтернативные музыкальные форматы, местного дорожного движения, погоды, новостные и спортивные. Дополнительные каналы могут подвергаться доступу таким же образом, как частота обычной станции, с использованием функций поиска и настройки. Например, если сигнал с аналоговой модуляцией центрирован на 94,1 МГц, одна и та же широковещательная передача в IBOC DAB может включать в себя дополнительные каналы 94.1-1, 94.1-2 и 94.1-3. Высоко специализированные программы на дополнительных каналах могут доставляться узким целевым аудиториям, создавая больше благоприятных возможностей, чтобы рекламодатели объединяли свои торговые марки с контентом программ. В качестве используемого в материалах настоящей заявки мультивещание включает в себя передачу одной или более программ на одиночном канале цифрового радиошироковещания или в одиночном сигнале цифрового радиошироковещания. Контент мультивещания может включать в себя услугу основной программы (MPS), услуги дополнительной программы (SPS), служебные данные программ (PSD) и/или другие широковещательные данные.
Национальный комитет по системам радиовещания, устанавливающая стандарты организация, финансируемая Национальной ассоциацией широковещательных компаний и Ассоциацией бытовой электроники, переняла стандарт IBOC, обозначенный NRSC-5A, в сентябре 2005 года. NRSC-5A, раскрытие которого включено в материалы настоящей заявки посредством ссылки, формулирует требования к широковещанию цифрового аудио и служебных данных по радиошироковещательным АМ и ЧМ-каналам. Стандарт и его ссылочные документы содержат в себе подробные разъяснения подсистемы радиопередачи с канальным кодированием и модуляцией и подсистемы переноса и уплотнения сигналов звукового сопровождения. Копии стандарта могут быть получены у NRSC на http://www.nrscstandards.org/standards.asp. Технология HD Radio™ от iBiquity является реализацией стандарта IBOC NRSC-5A. Дополнительная информация касательно технологии HD RadioTM может быть найдена на www.hdradio.com и www.ibiquity.com.
Другие типы систем цифрового радиошироковещания включают в себя спутниковые системы, такие как XM Radio, Sirius и WorldSpace, и наземные системы, такие как Всемирное цифровое радио (DRM), Eureka 147 (имеющая торговую марку DAB), версия 2 DAB и FMeXtra. В качестве используемой в материалах настоящей заявки фраза «цифровое радиошироковещание» охватывает цифровое аудиошироковещание, в том числе внутриполосное подканальное радиошироковещание, а также другое цифровое наземное радиошироковещание и спутниковое радиошироковещание.
Было бы желательно иметь показатель для качества принятого цифрового сигнала, так как целый ряд приложений требует точного указания качества сигнала, в том числе, например, функция поискового сканирования, разрешение конфликтов, разнесенных на 300 кГц источников помех, выбор боковой полосы первого смежного источника помех и коммутация с разнесением. Также было бы желательным, чтобы этот показатель получался быстро и был эффективным и надежным для гибридных и полностью цифровых ЧМ-сигналов. Также было бы желательно минимизировать любые изменения в отношении существующих аппаратных средств и программного обеспечения приемника HD Radio™ при реализации расчета показателя.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В первом аспекте изобретение представляет способ для детектирования цифрового радиосигнала. Цифровой радиосигнал включает в себя последовательность символов, каждый из которых составлен из множества отсчетов. Способ включает в себя этапы приема цифрового радиосигнала, выявление формы сигнала корреляции, имеющей пик, который соответствует границе символа, нормализацию формы сигнала корреляции и расчет пикового значения нормализованной формы сигнала корреляции, при этом пиковое значение представляет качество принятого цифрового радиосигнала.
Цифровой радиосигнал может содержать верхнюю и нижнюю боковые полосы, и способ может независимо применяться к каждой из боковых полос для создания пиковых значений нормализованных форм сигнала корреляции для каждой из боковых полос. Показатель качества цифрового сигнала может подвергаться подтверждению действительности посредством расчета дельты индексов пиков. Способ может включать в себя расчет индекса пика, соответствующего пиковому значению для нормализованных форм сигнала корреляции для верхней и нижней боковых полос. В таком случае может определяться дельта индексов пиков, представляющая разность между индексами пиков для верхней и нижней боковых полос, а дельта индексов пиков и пиковые значения для верхней и нижней боковых полос могут сравниваться с пороговыми значениями. Показатель качества цифрового сигнала также может подвергаться подтверждению действительности посредством расчета разности уходов частоты между верхней и нижней боковыми полосами и определения, удовлетворяет ли разность определенному пороговому значению, тем самым указывая, является ли детектированный сигнал требуемым интересующим сигналом или смежным мешающим сигналом.
В еще одном аспекте изобретение представляет приемник для детектирования цифрового радиосигнала. Цифровой радиосигнал включает в себя последовательность символов, каждый из которых составлен из множества отсчетов. Приемник включает в себя вход для приема цифрового радиосигнала и процессор для расчета пикового значения, которое соответствует границе символа нормализованной формы сигнала корреляции, при этом пиковое значение представляет качество принятого цифрового радиосигнала.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг. 1 - структурная схема передатчика для использования в системе основнополосного подканального цифрового радиошироковещания.
Фиг. 2 - схематическое представление гибридной формы IBOC ЧМ-сигнала.
Фиг. 3 - схематическое представление расширенной гибридной формы IBOC ЧМ-сигнала.
Фиг. 4 - схематическое представление полностью цифровой формы IBOC ЧМ-сигнала.
Фиг. 5 - схематическое представление гибридной формы IBOC АМ-сигнала.
Фиг. 6 - схематическое представление полностью цифровой формы АМ-сигнала IBOC DAB.
Фиг. 7 - функциональная структурная схема АМ-приемника IBOC DAB.
Фиг. 8 - функциональная структурная схема ЧМ-приемника IBOC DAB.
Фиг. 9a и 9b - схемы логического стека протоколов IBOC DAB с ракурса широковещания.
Фиг. 10 - схема логического стека протоколов IBOC DAB с ракурса приемника.
Фиг. 11a - графическое представление сигнала OFDM в частотной области.
Фиг. 11b - графическое представление сигнала OFDM во временной области.
Фиг. 11c - графическое представление пиков сигнала сопряженного произведения, представляющих границы символа.
Фиг. 11d - графическая иллюстрация сопряженных произведений, умноженных на соответственные убывания амплитуд.
Фиг. 12 - структурная схема одного из вариантов модуля захвата.
Фиг. 13a, 13b и 13c - графические представления синхронизации символа для модуля выявления пиков.
Фиг. 14 - блок-схема последовательности операций способа первой части обработки захвата сигнала.
Фиг. 15 - функциональная структурная схема, которая иллюстрирует алгоритм захвата.
Фиг. 16 - функциональная структурная схема комбинации боковых полос.
Фиг. 17 - схема, которая иллюстрирует нормализацию формы сигнала возле границы символа.
Фиг. 18 - график нормализованного корреляционного пика.
Фиг. 19 - блок-схема последовательности операций способа второй части обработки захвата сигнала.
Фиг. с 20 по 24 - графики вероятности остановки на конкретной частоте для различных условий в приложении поискового сканирования показателя качества цифрового сигнала согласно настоящему изобретению.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Фиг. 1-13 и сопроводительное описание в материалах настоящей заявки дают общее описание системы IBOC, в том числе конструкции и работы вещательного оборудования, конструкции и работы приемника, и структуру форм сигналов IBOC DAB. Фиг. 14-24 и сопроводительное описание в материалах настоящей заявки дают подробное описание конструкции и работы модуля захвата для реализации показателя качества цифрового сигнала согласно аспекту настоящего изобретения.
СИСТЕМА И ФОРМЫ СИГНАЛОВ IBOC
Со ссылкой на чертежи, фиг. 1 - функциональная структурная схема важных компонентов студийной установки 10, установки 12 ЧМ-передатчика, линии 14 студийного передатчика (STL), которые могут использоваться для широковещательной передачи ЧМ-сигнала IBOC DAB. Студийная установка включает в себя, среди прочего, оборудование 34 автоматизации студии, центр 16 работы ансамбля (EOC), который включает в себя импортер 18, экспортер 20 и вспомогательный служебный блок 22 задающего генератора (EASU) и передатчик 48 STL. Установка передатчика включает в себя приемник 54 STL, цифровой задающий генератор 56, который включает в себя подсистему 58 машины задающего генератора (задающей машины) и аналоговый задающий генератор 60. Несмотря на то что на фиг. 1 экспортер является находящимся в студийной установке радиостанции, а задающий генератор расположен в установке передачи, эти элементы могут быть совместно расположены в установке передачи.
В студийной установке оборудование автоматизации студии выдает аудио 42 услуги основной программы (MPS) в EASU, данные 40 MPS в экспортер, аудио 38 услуги дополнительной программы (SPS) в импортер и данные 36 SPS в импортер. Аудио MPS служит в качестве источника основных аудиопрограмм. В гибридных режимах оно сохраняет существующие форматы аналоговых радиопрограмм как в аналоговых, так и цифровых передачах. Данные MPS, также известные как служебные данные программ (PSD), включают в себя информацию, такую как название музыки, артист, наименование альбома и т. д. Услуга дополнительной программы может включать в себя дополнительный аудиоконтент, а также ассоциативно связанные с программой данные.
Импортер содержит в себе аппаратные средства и программное обеспечение для поставки современных прикладных услуг (AAS). «Услуга» является контентом, который доставляется пользователям посредством широковещания IBOC DAB, и AAS может включать в себя любой тип данных, которые не классифицированы в качестве MPS, SPS или услуги информации о станции (SIS). SIS выдает информацию о станции, такую как позывной, абсолютное время, положение, соотнесенное с GPS, и т. д. Примеры данных AAS включают в себя информацию реального времени о дорожном движении и погоде, обновления навигационных карт или другие изображения, электронные программы передач, мультимедийные программы, другие звуковые услуги и другой контент. Контент для AAS может поставляться поставщиком 44 услуг, который выдает данные 46 услуги в импортер через программный интерфейс приложения (API). Поставщики услуг могут быть вещательными станциями, расположенными в студийных установках, или поставщиками услуг и контента третьей стороны с внешним источником. Импортер может устанавливать сеансовые соединения между многочисленными поставщиками услуг. Импортер кодирует и мультиплексирует данные 46 услуг, аудио 38 SPS и данные 36 SPS, чтобы создавать данные 24 линии экспортера, которые выдаются в экспортер через канал передачи данных.
Экспортер 20 содержит в себе аппаратные средства и программное обеспечение, необходимые, чтобы поставлять услуги основной программы и SIS для радиошироковещания. Экспортер принимает цифровое аудио 26 MPS через аудиоинтерфейс и сжимает аудио. Экспортер также мультиплексирует данные 40 MPS, данные 24 линии экспортера и сжатое цифровое аудио MPS для создания данных 52 линии задающего генератора. В дополнение, экспортер принимает аналоговое аудио 28 MPS через свой аудиоинтерфейс и применяет к нему предварительно запрограммированную задержку, чтобы создавать задержанные сигналы 30 аналогового аудио MPS. Это аналоговое аудио может широковещательно передаваться в качестве резервного канала для гибридных широковещательных передач IBOC DAB. Задержка компенсирует системную задержку цифрового аудио MPS, предоставляя приемникам возможность переходить между цифровой и аналоговой программой без сдвига во времени. В системе АМ-передачи задержанный сигнал 30 аудио MPS преобразуется экспортером в монофонический сигнал и отправляется непосредственно в STL в качестве части данных 52 линии задающего генератора.
EASU 22 принимает аудио 42 MPS из оборудования автоматизации студии, перестраивает его скорость передачи на надлежащий системный тактовый генератор и выводит две копии сигнала, одну цифровую (26) и одну аналоговую (28). EASU включает в себя GPS-приемник, который присоединен к антенне 25. GPS-приемник предоставляет EASU возможность получать сигнал главного генератора тактовых импульсов, который синхронизируется тактовым сигналом задающего генератора посредством использования блоков GPS. EASU предоставляет главный системный тактовый генератор, используемый экспортером. EASU также используется, чтобы отводить (или перенаправлять) аналоговое аудио MPS от прохождения через экспортер в случае, если экспортер имеет катастрофический отказ и больше не является рабочим. Отведенное аудио 32 может подаваться непосредственно в передатчик STL, устраняя случай мертвого эфира.
Передатчик 48 STL принимает задержанное аналоговое аудио 50 MPS и данные 52 линии задающего генератора. Он выдает данные линии задающего генератора и задержанное аналоговое аудио MPS через линию 14 STL, которая может быть однонаправленной или двунаправленной. Линия STL, например, может быть цифровой микроволновой или линией связи Ethernet и может использовать стандартный протокол дейтаграмм пользователя или стандартный TCP/IP (протокол управления передачей/межсетевой протокол).
Установка передатчика включает в себя приемник 54 STL, задающий генератор 56 и аналоговый задающий генератор 60. Приемник 54 STL принимает данные линии задающего генератора, включающие в себя аудиосигналы и сигналы данных, а также сообщения команд и управления через линию 14 STL. Данные линии задающего генератора пересылаются в задающий генератор 56, который вырабатывает форму сигнала IBOC DAB. Задающий генератор включает в себя основной процессор, цифровой преобразователь с повышением частоты, радиочастотный преобразователь с повышением частоты и подсистему 58 задающей машины. Задающая машина принимает данные линии задающего генератора и модулирует цифровую часть формы сигнала IBOC DAB. Цифровой преобразователь с повышением частоты задающего генератора 56 осуществляет преобразование из цифровой в аналоговую форму основнополосной части выходного сигнала задающей машины. Цифроаналоговое преобразование основано на тактовом сигнале GPS, общем для такового у основанного на GPS тактового сигнала задающего генератора, полученного из EASU. Таким образом, задающий генератор 56 включает в себя блок и антенну 57 GPS. Альтернативный способ для синхронизации тактовых генераторов экспортера и задающего генератора может быть найден в заявке на выдачу патента США под порядковым № 11/081,267 (публикация № 2006/0209941 A1), раскрытие которой настоящим включено в состав посредством ссылки. Радиочастотный преобразователь с повышением частоты задающего генератора преобразует с повышением частоты аналоговый сигнал в надлежащую внутриполосную частоту канала связи. Преобразованный с повышением частоты сигнал затем пересылается на усилитель 62 большой мощности и антенну 64 для широковещательной передачи. В системе АМ-передачи подсистема задающей машины когерентно добавляет резервное аналоговое аудио MPS к цифровой форме сигнала в гибридном режиме; таким образом, система АМ-передачи не включает в себя аналоговый задающий генератор 60. В дополнение, задающий генератор 56 вырабатывает информацию о фазе и амплитуде, и аналоговый сигнал выводится непосредственно в усилитель большой мощности.
Сигналы IBOC DAB могут передаваться как в АМ, так и ЧМ-радиодиапазонах с использованием многообразия форм сигналов. Формы сигналов включают в себя гибридную форму ЧМ-сигнала IBOC DAB, полностью цифровую форму ЧМ-сигнала IBOC DAB, гибридную форму АМ-сигнала IBOC DAB и полностью цифровую форму АМ-сигнала IBOC DAB.
Фиг. 2 - схематическое представление гибридной формы 70 ЧМ-сигнала IBOC. Форма сигнала включает в себя сигнал 72 с аналоговой модуляцией, расположенный в центре радиовещательного канала 74, первое множество равноразнесенных мультиплексированных с ортогональным частотным разделением каналов поднесущих 76 в верхней боковой полосе 78 и второе множество равноразнесенных мультиплексированных с ортогональным частотным разделением каналов поднесущих 80 в нижней боковой полосе 82. Поднесущие с цифровой модуляцией поделены на разделы, и различные поднесущие обозначены в качестве опорных поднесущих. Частотный раздел является группой из 19 поднесущих OFDM, содержащей в себе 18 поднесущих данных и одну опорную поднесущую.
Гибридная форма сигнала включает в себя ЧМ-сигнал с аналоговой модуляцией плюс первичные основные поднесущие с цифровой модуляцией. Поднесущие расположены в равноразнесенных частотных местоположениях. Местоположения поднесущих пронумерованы от -546 до +546. В форме сигнала по фиг. 2 поднесущие находятся в местоположениях с +356 по +546 и с -356 по -546. Каждая первичная основная боковая полоса составлена из десяти частотных разделов. Поднесущие 546 и -546, также включенные в первичные основные боковые полосы, являются дополнительными опорными поднесущими. Амплитуда каждой поднесущей может масштабироваться масштабным коэффициентом амплитуды.
Фиг. 3 - схематическое представление расширенной гибридной формы 90 IBOC ЧМ-сигнала. Расширенная гибридная форма сигнала создается добавлением первичных расширенных боковых полос 92, 94 к первичным основным боковым полосам, присутствующим в гибридной форме сигнала. Один, два или четыре раздела частот могут добавляться к внутренней границе каждой первичной основной боковой полосы. Расширенная гибридная форма сигнала включает в себя аналоговый ЧМ-сигнал плюс первичные основные поднесущие с цифровой модуляцией (поднесущие с +356 по +546 и с -356 по -546) и некоторые или все первичные расширенные поднесущие (поднесущие с +280 по +355 и с -280 по -355).
Верхние первичные расширенные боковые полосы включают в себя поднесущие с 337 по 355 (один раздел частот), с 318 по 355 (два раздела частот) или с 280 по 355 (четыре раздела частот). Нижние первичные расширенные боковые полосы включают в себя поднесущие с -337 по -355 (один раздел частот), с -318 по -355 (два раздела частот) или с -280 по -355 (четыре раздела частот). Амплитуда каждой поднесущей может масштабироваться масштабным коэффициентом амплитуды.
Фиг. 4 - схематическое представление полностью цифровой формы 100 IBOC ЧМ-сигнала. Полностью цифровая форма сигнала построена маскированием аналогового сигнала, полным расширением полосы пропускания первичных цифровых боковых полос 102, 104 и добавлением вторичных боковых полос 106, 108 малой мощности в спектре, освобожденном аналоговым сигналом. Полностью цифровая форма сигнала в проиллюстрированном варианте осуществления включает в себя поднесущие с цифровой модуляцией в местоположениях с -546 по +546 поднесущих, без аналогового ЧМ-сигнала.
В дополнение к десяти основным разделам частот, все четыре расширенных раздела частот присутствуют в каждой первичной боковой полосе полностью цифровой формы сигнала. Каждая вторичная боковая полоса также имеет десять вторичных основных (SM) и четыре вторичных расширенных (SX) разделов частот. В отличие от первичных боковых полос, однако, вторичные основные разделы частот отображены ближе к центру канала с расширенными разделами частот дальше от центра.
Каждая вторичная боковая полоса также поддерживает небольшую вторичную защищенную (SP) область 110, 112, включающую в себя 12 поднесущих OFDM и опорные поднесущие 279 и -279. Боковые полосы указаны ссылкой как «защищенные», так как они расположены в зоне спектра, наименее вероятно подверженной влиянию аналоговой или цифровой помехи. Дополнительная опорная поднесущая размещена в центре канала (0). Упорядочение разделов частот у области SP не применяется, поскольку область SP не содержит в себе разделов частот.
Каждая вторичная основная боковая полоса охватывает поднесущие с 1 по 190 или с -1 по -190. Верхняя вторичная расширенная боковая полоса включает в себя поднесущие со 191 по 266, а верхняя вторичная защищенная боковая полоса включает в себя поднесущие с 267 по 278, плюс дополнительная опорная поднесущая 279. Нижняя вторичная расширенная боковая полоса включает в себя поднесущие со -191 по -266, а нижняя вторичная защищенная боковая полоса включает в себя поднесущие с -267 по -278, плюс дополнительная опорная поднесущая -279. Общим диапазоном частот взятого в целом полностью цифрового спектра является 396803 Гц. Амплитуда каждой поднесущей может масштабироваться масштабным коэффициентом амплитуды. Масштабные коэффициенты амплитуды вторичной боковой полосы могут быть выбираемыми пользователем. Любая одна из четырех может выбираться для применения к вторичным боковым полосам.
В каждой из форм сигнала цифровой сигнал модулируется с использованием мультиплексирования с ортогональным частотным разделением каналов (OFDM). OFDM является параллельной схемой модуляции, в которой поток данных модулирует большое количество ортогональных поднесущих, которые передаются одновременно. OFDM является гибким по своему существу, без труда предоставляя возможность отображения логических каналов в разные группы поднесущих.
В гибридной форме сигнала цифровой сигнал передается в первичных основных (PM) боковых полосах по любую сторону аналогового ЧМ-сигнала в гибридной форме сигнала. Уровень мощности каждой боковой полосы заметно ниже полной мощности в аналоговом ЧМ-сигнале. Аналоговый сигнал может быть монофоническим или стереофоническим и может включать в себя каналы авторизации вспомогательной связи (SCA).
В расширенной гибридной форме сигнала полоса пропускания гибридных боковых полос может быть расширена по отношению к аналоговому ЧМ-сигналу для увеличения цифровой емкости. Этот дополнительный спектр, выделенный у внутренней границы каждой первичной основной боковой полосы, назван первичной расширенной (PX) боковой полосой.
В полностью цифровой форме сигнала аналоговый сигнал удаляется, а полоса пропускания первичных цифровых боковых полос расширяется полностью, как в расширенной гибридной форме сигнала. В дополнение, эта форма сигнала предоставляет цифровым вторичным боковым полосам малой мощности возможность передаваться в спектре, освобожденном аналоговым ЧМ-сигналом.
Фиг. 5 - схематическое представление гибридной формы 120 АМ-сигнала IBOC DAB. Гибридный формат включает в себя традиционный аналоговый АМ-сигнал 122 (ограниченный по полосе до приблизительно ±5 кГц) наряду с сигналом 124 DAB шириной в приблизительно 30 кГц. Спектр заключен в пределах канала 126, имеющего полосу пропускания приблизительно в 30 кГц. Канал делится на верхнюю 130 и нижнюю 132 полосы частот. Верхняя полоса тянется от центральной частоты канала на приблизительно +15 кГц от центральной частоты. Нижняя полоса тянется от центральной частоты канала на приблизительно -15 кГц от центральной частоты.
Гибридный формат АМ-сигнала IBOC DAB в одном из примеров содержит сигнал 134 несущей с аналоговой модуляцией плюс местоположения поднесущих OFDM, охватывающих верхнюю и нижнюю полосы. Кодированная цифровая информация, представляющая аудиосигналы или сигналы данных (материал программ), передается на поднесущих. Частота символов является меньшей, чем период поднесущих вследствие защитного интервала между символами.
Как показано на фиг. 5, верхняя полоса разделена на первичную секцию 136, вторичную секцию 138 и третичную секцию 144. Нижняя полоса разделена на первичную секцию 140, вторичную секцию 142 и третичную секцию 143. С целью этого пояснения третичные секции 143 и 144 могут считаться включающими в себя множество групп поднесущих, помеченных 146, 148, 150 и 152 на фиг. 5. Поднесущие в пределах третичных секций, которые расположены возле центра канала, указываются ссылкой как внутренние поднесущие, а поднесущие в пределах третичных секций, которые расположены дальше от центра канала, указываются ссылкой как внешние поднесущие. В этом примере уровень мощности внутренних поднесущих в группах 148 и 150 показан линейно падающим в зависимости от частотного интервала от центральной частоты. Оставшиеся группы поднесущих 146 и 152 в третичных секциях имеют по существу постоянные уровни мощности. Фиг. 5 также показывает две опорные поднесущие 154 и 156 для управления системой, чьи уровни зафиксированы на значении, которое отлично от других боковых полос.
Мощность поднесущих в цифровых боковых полосах находится значительно ниже полной мощности в аналоговом АМ-сигнале. Уровень каждой поднесущей OFDM в пределах заданной первичной или вторичной секции зафиксирован на постоянном значении. Первичные или вторичные секции могут масштабироваться относительно друг друга. В дополнение, информация о состоянии и управляющая информация передается на опорных поднесущих, расположенных по обе стороны основной несущей. Отдельный логический канал, такой как канал IBOC информационной услуги (IDS), может передаваться на отдельных поднесущих непосредственно выше и ниже границ частот верхней и нижней вторичных боковых полос. Уровень мощности каждой первичной поднесущей OFDM зафиксирован относительно немодулированной основной аналоговой несущей. Однако уровень мощности вторичных поднесущих, поднесущих логического канала и третичных поднесущих является настраиваемым.
С использованием формата модуляции по фиг. 5 несущая с аналоговой модуляцией и поднесущие с цифровой модуляцией передаются в пределах канальной маски, специфицированной для стандартного АМ-радиошироковещания в Соединенных Штатах. Гибридная система использует аналоговый АМ-сигнал для настройки и резервирования.
Фиг. 6 - схематическое представление назначения поднесущих для полностью цифровой формы АМ-сигнала IBOC DAB. Полностью цифровой АМ-сигнал 160 IBOC DAB включает в себя первую и вторую группы 162 и 164 равноотстоящих поднесущих, указываемые ссылкой как первичные поднесущие, которые расположены в верхней и нижней полосах 166 и 168. Третья и четвертая группы 170 и 172 поднесущих, указываемые ссылкой как вторичные и третичные поднесущие соответственно, также расположены в верхней и нижней полосах 166 и 168. Две опорные поднесущие 174 и 176 третьей группы лежат наиболее близко к центру канала. Поднесущие 178 и 180 могут использоваться для передачи информационных данных программы.
Фиг. 7 - упрощенная функциональная структурная схема АМ-приемника 200 IBOC DAB. Приемник включает в себя вход 202, присоединенный к антенне 204, тюнер или входные каскады 206 и цифровой преобразователь 208 с понижением частоты для формирования основнополосного сигнала на линии 210. Аналоговый демодулятор 212 демодулирует часть с аналоговой модуляцией основнополосного сигнала для формирования сигнала аналогового аудио на линии 214. Цифровой демодулятор 216 демодулирует часть с цифровой модуляцией основнополосного сигнала. Затем цифровой сигнал обращенно перемежается обращенным перемежителем 218 и декодируется декодером 220 Витерби. Демультиплексор 222 услуг отделяет сигналы основной и дополнительной программ от сигналов данных. Процессор 224 обрабатывает сигналы программ для создания сигнала цифрового аудио на линии 226. Сигналы аналогового и основного цифрового аудио смешиваются, как показано в блоке 228, или пропускается сигнал дополнительного цифрового аудио для создания выходного сигнала аудио на линии 230. Процессор 232 данных обрабатывает сигналы данных и вырабатывает выходные сигналы данных на линиях 234, 236 и 238. Сигналы данных, например, могут включать в себя услугу информации о станции (SIS), данные услуги основной программы (MPSD), данные услуги дополнительной программы (SPSD) и одну или более вспомогательных прикладных услуг (AAS).
Фиг. 8 - упрощенная функциональная структурная схема ЧМ-приемника 250 IBOC DAB. Приемник включает в себя вход 252, присоединенный к антенне 254, и тюнер или входные каскады 256. Принятый сигнал выдается в аналого-цифровой преобразователь и цифровой преобразователь 258 с понижением частоты для создания основнополосного сигнала на выходе 260, содержащего последовательность комплексных отсчетов сигнала. Отсчеты сигнала являются комплексными по той причине, что каждый отсчет содержит «вещественную» составляющую и «мнимую» составляющую, которая подвергнута выборке со сдвигом на 90 градусов относительно вещественной составляющей. Аналоговый демодулятор 262 демодулирует часть с аналоговой модуляцией основнополосного сигнала для формирования сигнала аналогового аудио на линии 264. Часть с цифровой модуляцией подвергнутого выборке основнополосного сигнала затем фильтруется фильтром 266 изоляции боковой полосы, который имеет полосовую частотную характеристику, содержащую совокупный набор поднесущих f1-fn, присутствующих в принятом сигнале OFDM. Фильтр 268 подавляет влияния первого смежного источника помех. Комплексный сигнал 298 направляется на вход модуля 296 захвата, который получает или восстанавливает ошибку или погрешность синхронизации символа OFDM либо отклонение или сдвиг частоты несущей из принятого сигнала OFDM, которые представлены в принятом комплексном сигнале 298. Модуль 296 захвата выявляет ошибку Δt синхронизации символа и отклонение частоты несущей Δf, а также информацию о состоянии и управляющую информацию. Сигнал затем демодулируется (блок 272) для демодуляции части с цифровой модуляции основнополосного сигнала. Затем цифровой сигнал обращенно перемежается обращенным перемежителем 274 и декодируется декодером 276 Витерби. Демультиплексор 278 услуг отделяет сигналы основной и дополнительной программ от сигналов данных. Процессор 280 обрабатывает сигналы основной и дополнительных программ для создания сигнала цифрового аудио на линии 282. Сигналы аналогового и основного цифрового аудио смешиваются, как показано в блоке 284, или пропускается сигнал дополнительной программы для создания выходного сигнала аудио на линии 286. Процессор 288 данных обрабатывает сигналы данных и вырабатывает выходные сигналы данных на линиях 290, 292 и 294. Сигналы данных, например, могут включать в себя услугу информации о станции (SIS), данные услуги основной программы (MPSD), данные услуги дополнительной программы (SPSD) и одну или более современных прикладных услуг (AAS).
На практике многие из функций сигнальной обработки, показанных в приемниках по фиг. 7 и 8, могут быть реализованы с использованием одной или более интегральных схем.
Фиг. 9a и 9b - схемы логического стека протоколов IBOC DAB с ракурса передатчика. С ракурса приемника логический стек будет проходиться в противоположном направлении. Большинство данных, пересылаемых между различными сущностями в пределах стека протоколов, находятся в форме модуля данных протокола (PDU). PDU является структурированным блоком данных, который создан определенным уровнем (или последовательностью операций в пределах уровня) стека протоколов. PDU данного уровня может инкапсулировать PDU со следующего более высокого уровня стека и/или включать в себя данные контента и управляющую информацию протокола, возникающие на самом уровне (или последовательности операций). PDU, сформированные каждым уровнем (или последовательностью операций) в стеке протоколов передатчика, подаются на соответствующий уровень (или последовательность операций) в стеке протоколов приемника.
Как показано на фиг. 9a и 9b, есть администратор 330 конфигураций, который является системной функцией, которая поставляет конфигурационную и управляющую информацию в различные сущности в пределах стека протоколов. Конфигурационная/управляющая информация может включать в себя определенные пользователем установочные параметры, а также информацию, сформированную изнутри системы, такую как время и положение GPS. Интерфейсы 331 услуг представляют интерфейсы для всех услуг за исключением SIS. Интерфейс услуг может быть разным для каждого из различных типов услуг. Например, для аудио MPS и аудио SPS интерфейсом услуг может быть звуковая плата. Для данных MPS и данных SPS интерфейсы могут быть в виде разных интерфейсов прикладных программ (API). Для всех информационных услуг интерфейс находится в виде единого API. Аудиокодек 332 кодирует аудио MPS и аудио SPS для формирования базового (поток 0) и необязательных расширяющих (поток 1) потоков кодированных пакетов аудио MPS и SPS, которые пересылаются в транспорт 333 аудио. Аудиокодек 332 также передает состояние неиспользуемой емкости в другие части системы, таким образом, предоставляя возможность включения в состав периодически доступных данных. Данные MPS и SPS обрабатываются транспортом 334 служебных данных программ (PSD) для создания PDU данных MPS и SPS, которые пересылаются на транспорт 333 аудио. Транспорт 333 аудио принимает кодированные аудиопакеты и PDU PSD и выдает потоки битов, содержащие в себе сжатое аудио и служебные данные программ. Транспорт 335 SIS принимает данные SIS от администратора конфигураций и формирует PDU SIS. PDU SIS может содержать в себе идентификацию станции и информацию о местоположении, тип программы, а также абсолютное время и положение, сопоставленное с GPS. Транспорт 336 данных AAS принимает данные AAS из интерфейса услуг, а также данные периодически доступной полосы пропуска