Композиции взрывчатой эмульсии и способы их получения
Иллюстрации
Показать всеИзобретение относится к эмульсионному взрывчатому составу и способу его получения. Чувствительная к детонации композиция взрывчатой эмульсии включает окислительную фазу, содержащую перенасыщенный раствор нитрата аммония, горючую фазу, содержащую эмульгирующий агент и вещество, понижающее температуру кристаллизации, а именно нитрат гексамина. Способ получения композиции взрывчатой эмульсии включает получение водного раствора нитрата аммония и поддержание его при температуре 90°С и более, получение масляной фазы, включающей эмульгатор, смешение нитрата аммония, масляной фазы и вещества, понижающего температуру кристаллизации, и поддержание температуры 90°С или более в течение менее 8 часов после введения вещества, понижающего температуру кристаллизации. Взрывчатые эмульсии согласно группе изобретений обладают хорошей устойчивостью к кристаллизации при ударе и/или сдвиговых напряжениях, высокой скоростью детонации и сохраняют свойства при длительном хранении. 2 н. и 18 з.п. ф-лы, 3 ил., 1 табл.
Реферат
Область техники, к которой относится изобретение
Настоящее изобретение относится к чувствительным к детонации композициям взрывчатой эмульсии, содержащим нитрат гексамина и/или один или несколько других аминов или нитратов аминов, и способам их получения.
Уровень техники
Эмульсионные взрывчатые вещества обычно получают в виде эмульсии типа вода в масле при температурах процесса между 40 и 100°C. Водная (окислительная) фаза обычно состоит из перенасыщенного раствора нитрата аммония (НА) и нитратов щелочных металлов, таких как нитрат натрия, нитрат кальция и т.д., или других веществ, понижающих температуру кристаллизации, при повышенных температурах. Окислительная фаза будет кристаллизоваться (сгущаться) при охлаждении до температуры ниже температуры перенасыщения и должна оставаться горячей в процессе получения. В зависимости от композиции окислительной фазы и применяемых веществ, понижающих температуру кристаллизации, температура кристаллизации обычной окислительной фазы будет лежать в диапазоне от 30 до 100°C.
Масляная (горючая) фаза обычно состоит из минерального или растительного масла, по меньшей мере, одного поверхностно-активного вещества и других модификаторов вязкости, таких как воски, высокомолекулярные масла и т.д. Масляную фазу также поддерживают горячей в процессе получения, для того чтобы предотвратить преждевременную кристаллизацию окислительной фазы. Эмульсию получают в мешалке с большими сдвиговыми усилиями, при помощи которой окислитель разлетается на микрометровые капельки, покрытые масляной фазой. Одним необыкновенным свойством эмульсионных взрывчатых веществ типа вода в масле является то, что как только образуется эмульсия, окислительную фазу можно охлаждать до температуры ниже температуры ее перенасыщения, не вызывая при этом кристаллизацию капель окислителя. Однако чрезмерное переохлаждение будет вызывать быструю кристаллизацию капель окислителя, что приводит к тому, что эмульсия становится инертной в качестве взрывчатого вещества. Применяемые в контексте данного документа ссылки на температуру кристаллизации эмульсии относятся к температуре кристаллизации окислительной фазы, под которой подразумевается температура, при которой началась бы кристаллизация в растворе нитрата аммония и вещества, понижающего температуру кристаллизации.
Чувствительность эмульсионных взрывчатых веществ к детонации при ударе зависит от содержания воды в эмульсии. Чувствительные к детонации эмульсии можно получить, применяя только нитрат аммония и воду в окислительной фазе, но исходная температура кристаллизации (температура сгущения) данных растворов так высока, что невозможно получить удовлетворительную стабильность при хранении продукта. Проблема заключается в том, что капли раствора окислителя в эмульсии переохлаждаются при комнатной температуре, и если степень переохлаждения слишком высока, то капли будут кристаллизоваться и эмульсия станет инертной к детонатору. Для понижения температуры сгущения чувствительных к детонации эмульсий широко применяют нитрат натрия и перхлорат натрия, тогда как содержание воды поддерживают на достаточно низком уровне, чтобы сохранить чувствительность к детонации.
Патенты США, которые описывают применение эмульсий в качестве взрывчатых веществ и применение веществ, понижающих температуру сгущения, включают патент США № 3447978 изобретателя Harold F. Bluhm; и патенты США № 4110134; 4138281; 4149916; 4149917 изобретателя Charles G. Wade. Кроме того, патент США № 5244475 изобретателей C. Mick Lownds и Steven C. Grow раскрывает применение кросс-сшивающих агентов в эмульсионных взрывчатых веществах.
Несмотря на то что добавление нитрата натрия к раствору окислителя понижает температуру кристаллизации эмульсии, также экспериментально обнаружено, что нитрат натрия фактически уменьшает чувствительность эмульсии. Во взрывчатых веществах применяется тот факт, что микросферы или пузырьки газа действуют в качестве "активных участков" в процессе реакции детонации, что, как известно, повышает чувствительности эмульсионных взрывчатых веществ. Таким образом, в эмульсии, применяющие нитрат натрия в качестве вещества, понижающего температуру кристаллизации, нужно добавлять еще микросферы или пузырьки газа в качестве сенсибилизирующего агента, чтобы сохранить чувствительность к детонации.
Эмульсии, в которых для понижения температуры кристаллизации применяют нитрат натрия, можно получить только при плотностях менее 1,22 г/см3. Эмульсии, в которых для понижения температуры сгущения применяют перхлорат натрия, можно получить при плотностях менее 1,32 г/см3. Это обеспечивает более высокую скорость детонации, более высокую удельную энергоемкость в целом и вообще улучшенные эксплуатационные характеристики. Следовательно, для чувствительных к детонации эмульсий высшего качества в качестве вещества, понижающего температуру сгущения, выбирают перхлорат натрия.
В Соединенных Штатах Америки применение перхлората натрия во взрывчатых веществах запрещено в нескольких штатах из-за опасений загрязнения подземных вод. Кроме того, перхлорат натрия становится все дороже, и некоторые страны начинают вводить ограничения на импорт и перевозку перхлората натрия. Следовательно, необходимо найти менее дорогую и более подходящую альтернативу, при этом сохраняя преимущества перхлората натрия (высокую скорость детонации, высокую удельную энергоемкость и т.д.).
Возможными альтернативными веществами, понижающими температуру сгущения, являются нитрат натрия, нитрат кальция, монометиламина нитрат (ММАН) и раствор нитрата гексамина (РНГ). Как указано выше, затруднение с нитратом натрия заключается в том, что он уменьшает чувствительность эмульсии таким образом, что необходимо применять больше микросфер. Применение дополнительных микросфер повышает затраты и ухудшает общие показатели в целом.
Монометиламина нитрат представляет собой очень хорошее вещество, понижающее температуру сгущения, и его широко применяют в чувствительных к детонации водно-гелевых взрывчатых веществах, но не в эмульсиях. Единственным затруднением в случае монометиламина нитрата является то, что его ввоз в Соединенные Штаты Америки является незаконным. Трудность заключается в том, что когда кристаллы монометиламина нитрата высыхают, они становятся чувствительными к детонации. Следовательно, монометиламин нитрат нужно получать на месте, если его необходимо применять во взрывчатом веществе. Также необходимо тщательно следить за тем, чтобы небольшие количества не высохли и не образовали чувствительные кристаллы. Это требует тщательной проверки систем трубопроводов на наличие протечек и точной конструкции, чтобы монометиламина нитрат не осаждался и не кристаллизовался в каком-либо месте системы. Кроме факторов риска, связанных с перевозкой, хранением и применением монометиламина нитрата, также крайне дорогой является постройка завода, на котором можно безопасно получать монометиламина нитрат. Одной причиной такой дороговизны является то, что безводный монометиламин, один из расходных компонентов в любом процессе получения монометиламина нитрата, является горючим газом и его нужно хранить под давлением, чтобы удерживать его в жидком состоянии.
Нитрат гексамина также является веществом, понижающим температуру сгущения, и его можно применять при получении взрывчатых веществ с хорошей чувствительностью и высокими значениями скорости детонации (СД) вплоть до плотностей, по меньшей мере, 1,35 г/см3. Однако нитрат гексамина имеет один главный недостаток в качестве вещества, понижающего температуру сгущения, который до сих пор препятствует его применению в эмульсионных взрывчатых веществах. При высоких температурах нитрат гексамина быстро разлагается на формальдегид и аммиак, ухудшая эффективность добавления нитрата гексамина в качестве вещества, понижающего температуру кристаллизации.
Сущность изобретения
Настоящее изобретение относится к чувствительной к детонации композиции взрывчатой эмульсии, содержащей окислительную фазу и горючую фазу. Окислительная фаза содержит перенасыщенный раствор нитрата аммония в воде. Горючая фаза содержит, по меньшей мере, одно масло и необходимый эмульгирующий агент для обеспечения дисперсии окислительной фазы в горючей фазе. Кроме нитрата аммония и водного раствора в окислительной фазе и масла и эмульгирующих агентов в горючей фазе, композиция взрывчатой эмульсии может содержать один или несколько воск(ов), сшивающих агентов, гранулированный нитрат аммония, алюминий, микросферы, пузырьки газа или другие общепринятые компоненты. Кроме того, композиция взрывчатой эмульсии настоящего изобретения содержит, по меньшей мере, одно вещество, понижающее температуру кристаллизации. Данное вещество, понижающее температуру кристаллизации, состоит по существу из по меньшей мере одного амина и нитрата амина.
Настоящее изобретение, кроме того, направлено на способ получения чувствительной к детонации композиции взрывчатой эмульсии в реакторе. Данный реактор может включать один или несколько смесителей, блендеров, холодильников, нагревателей, резервуаров или другое технологическое оборудование, которое необходимо для осуществления способа, описанного в данном описании. Композицию взрывчатой эмульсии можно получить путем введения в реактор раствора нитрата аммония в воде, масляной фазы и вещества, понижающего температуру кристаллизации. Раствор нитрата аммония можно поддерживать при температуре приблизительно 90°C или выше, так чтобы избежать насыщения или перенасыщения раствора и чтобы предотвратить кристаллизацию раствора нитрата аммония до попадания в реактор. Раствор нитрата аммония, масляную фазу и вещество, понижающее температуру кристаллизации, перемешивают в реакторе с образованием эмульсии типа вода в масле. Реактор поддерживают при температуре приблизительно 90°C или более в течение менее чем приблизительно 24 часов после того, как в реактор добавляют вещество, понижающее температуру кристаллизации. Более предпочтительно реактор поддерживают при температуре приблизительно 90°C или более в течение менее чем приблизительно 12 часов и еще более предпочтительно в течение менее чем приблизительно 1 часа.
Вышеописанный способ можно осуществить во множестве вариантов осуществления, в том числе в вариантах периодического процесса и непрерывного процесса. Например, реактор может содержать реактор периодического действия. Раствор нитрата аммония, масляную фазу и вещество, понижающее температуру кристаллизации, можно вводить в реактор периодического действия в любом порядке и перемешивать с образованием композиции взрывчатой эмульсии. Аналогично реактор может содержать реактор непрерывного действия, в том числе, по меньшей мере, смеситель для приготовления эмульсии, предназначенный для смешивания раствора нитрата аммония и масляной фазы. В некоторых вариантах осуществления предпочтительным может оказаться отдельное хранение раствора нитрата аммония, масляной фазы и вещества, понижающего температуру кристаллизации, до момента, когда они смешиваются в смесителе для приготовления эмульсии, и/или до введения в смеситель для приготовления эмульсии с образованием сырьевого потока, направленного в смеситель для приготовления эмульсии.
Эти и другие характеристики и преимущества настоящего описания станут еще более очевидными из приведенного ниже описания, или их можно изучить применением на практике способов, изложенных в дальнейшем в этом документе.
Краткое описание чертежей
Чтобы было совершенно понятно, каким образом получаются вышеизложенные и другие характеристики и преимущества настоящего изобретения, будет представлено более подробное описание кратко описанных выше настоящих композиций и способов в виде ссылки на конкретные варианты их осуществления, которые проиллюстрированы прилагаемыми чертежами. Понимая, что данные чертежи изображают лишь типичные варианты осуществления данных способов и, следовательно, что не нужно считать, что они ограничивают применение данных способов, настоящие способы и композиции будут описаны и интерпретированы с дополнительной точностью и подробностью посредством применения сопутствующих фигур, на которых:
Фиг. 1 представляет собой технологическую схему процесса, иллюстрирующую способ получения композиций взрывчатой эмульсии настоящего изобретения;
Фиг. 2 представляет собой схематическую последовательность технологических операций, иллюстрирующую примерный периодический процесс получения композиций взрывчатой эмульсии; и
Фиг. 3 представляет собой схематическую последовательность технологических операций, иллюстрирующую примерный непрерывный процесс получения композиций взрывчатой эмульсии.
Подробное описание
Предпочтительные в настоящий момент варианты осуществления лучше всего можно понять, посредством ссылки на чертежи. Будет совершено понятно, что элементы, которые в общем описаны и проиллюстрированы на Фигурах в контексте данного документа, можно было бы расположить и скомпоновать, применяя огромное множество различных вариантов. Таким образом, подразумевается, что приведенное ниже более подробное описание способов получения композиций взрывчатой эмульсии, представленных на Фиг. с 1 по 3, не ограничивает объем настоящего изобретения, а просто представляет собой предпочтительные в настоящий момент варианты осуществления.
Фиг. 1 иллюстрирует схему технологического процесса способа получения чувствительной к детонации композиции взрывчатой эмульсии. В самом элементарном описании способы получения взрывчатых эмульсий в рамках объема настоящего изобретения включают источник окислителя 12, источник горючего вещества 14 и источник вещества, понижающего температуру кристаллизации, 16, определенные количества которых подаются в реактор 18, в котором они смешиваются с образованием эмульсии 64. Кроме того, для изменения одной или более характеристик эмульсионного взрывчатого вещества один или более источников вспомогательных компонентов 20 могут обеспечить дополнительные компоненты в реакторе 18. Эмульсия 64, полученная в реакторе 18, выходит из реактора и упаковывается, хранится или обрабатывается каким-либо другим способом в конечном процессоре 22 для применения в качестве композиции чувствительного к детонации эмульсионного взрывчатого вещества. В некоторых вариантах осуществления такой процесс от введения в реактор вещества, понижающего температуру кристаллизации, до упаковки композиции эмульсионного взрывчатого вещества может занимать менее приблизительно 24 часов, менее приблизительно 12 часов или более предпочтительно менее приблизительно 1 часа. В других вариантах осуществления в ходе данного процесса можно получить устойчивую композицию эмульсионного взрывчатого вещества в течение менее приблизительно 24 часов, менее приблизительно 12 часов или менее приблизительно 1 часа, при этом стадию упаковки можно осуществлять позже.
Источник окислителя 12 может быть предназначен для хранения или содержания окислительной фазы 24, которую необходимо подавать в реактор 18 в сырьевом потоке окислителя 26. Вариант комплектации источника окислителя 12 может варьироваться в зависимости от композиции окислительной фазы 24 и способа, которым окислительная фаза подается в реактор 18. Например, источник окислителя 12 может быть оснащен смесителем 44. Кроме того или в качестве альтернативы, окислительная фаза 24 может кристаллизоваться при температурах окружающей среды, и источник окислителя 12 может содержать нагреватель и/или другие элементы температурного контроля для поддержания окислительной фазы 24 при температуре выше температуры ее кристаллизации. Аналогично, другие источники, такие как источник горючего вещества 14, источник вещества, понижающего температуру кристаллизации, 16 и источники вспомогательных компонентов 20, могут включать нагреватели, смесители 44 и/или другие элементы, подходящие для поддержания хранящегося компонента в подходящей форме и состоянии.
Одна примерная окислительная фаза 24 включает раствор нитрата аммония, содержащий приблизительно 87,5% нитрата аммония и приблизительно 12,5% воды. В качестве окислительной фазы можно применять и другие концентрации раствора нитрата аммония. Аналогично, окислительная фаза 24 может содержать другие компоненты, на которые предпочтительно не оказывают отрицательного воздействия условия в источнике окислителя 12 и которые предпочтительно не воздействуют отрицательно на способность окислительной фазы подаваться в реактор в качестве потока жидкости. Было установлено, что примерная 87,5/12,5 окислительная фаза имеет температуру кристаллизации приблизительно 85°C. Таким образом, источник окислителя 12, предназначенный для хранения окислительной фазы 24, содержащей примерный раствор нитрата аммония, может содержать нагреватель в сборе, предназначенный для того, чтобы регулировать температуру окислительной фазы 24 до температуры выше 85°C и предпочтительно приблизительно 95°C. Растворы нитрата аммония и нитрата аммония хорошо известны, и их применение во взрывчатых веществах аналогично убедительно подтверждено документальными доказательствами. Предполагается, что окислительная фаза 24 может включать подходящую концентрацию раствора нитрата аммония или раствора, состоящего из нитрата аммония, смешанного с другими нитратными солями, такими как нитрат калия, нитрат натрия, нитрат кальция и т.д., и может быть сформирована любым подходящим образом.
Источник горючего вещества 14, как и источник окислителя 12, может быть предназначен для хранения и/или подачи горючей фазы 28, которую нужно подавать в реактор 18 в сырьевом потоке горючего вещества 30. Главным образом предполагают, что горючая фаза 28 для взрывчатой эмульсии типа вода в масле обычно включает, по меньшей мере, одно минеральное или растительное масло 32. Горючая фаза 28 также может содержать один или несколько эмульгирующих агентов 34 и/или модификаторов вязкости 36. Отношение масла 32 к эмульгирующим агентам 34 и/или модификаторам вязкости 36 может варьироваться в зависимости от остальных компонентов в эмульсионном взрывчатом веществе и/или предполагаемого применения эмульсионных взрывчатых веществ, которые получают. Примерные соотношения будут представлены ниже, хотя в соответствии с заключением, сделанным на основании настоящего описания, можно реализовывать и другие соотношения.
В продолжение обсуждения технологической схемы способа Фиг. 1, источник вещества, понижающего температуру кристаллизации, 16 представляет собой различные технологические модули, которые можно применять для подачи веществ, понижающих температуру кристаллизации, 38 в реактор 18. Применяемое вещество, понижающее температуру кристаллизации, 38 может также называться веществом, понижающим температуру сгущения, 38. В то время как ряд веществ, понижающих температуру сгущения, применяют в известных эмульсионных взрывчатых веществах, настоящие вещества, понижающие температуру сгущения, состоят по существу по меньшей мере из одного раствора амина и раствора нитрата амина. Одним примерным веществом, понижающим температуру сгущения, является раствор нитрата гексамина. Другие подходящие растворы амина могут содержать мочевину и моно-, ди- и триэтаноламин. Другие подходящие растворы нитрата амина могут включать нитрат мочевины и нитраты этаноламина (например, нитраты моно-, ди- и триэтаноламина). Вещество, понижающее температуру кристаллизации, 38 можно подавать в реактор 18 в сырьевом потоке вещества, понижающего температуру кристаллизации, 40.
Как проиллюстрировано на Фиг. 1, каждый из сырьевого потока окислителя 26, сырьевого потока горючего вещества 30 и сырьевого потока вещества, понижающего температуру кристаллизации, 40 включает насос 42 на линии потока. Насосы 42 представляют собой наглядные примеры многообразия оборудования, которое может быть включено в сырьевые потоки и/или в источники компонентов 12, 14, 16, 20 для упрощения способов, описанных в контексте данного документа.
Чувствительные к детонации эмульсионные взрывчатые вещества известны уже много лет. Описанные выше основные ингредиенты нитрата аммония и источник горючего вещества дополнялись за эти годы множеством других компонентов, которые обеспечивают множество преимуществ данным эмульсиям. Источник вспомогательного компонента 20 на Фиг. 1 представляет собой большую установку, которую можно применять для введения одного или несколько вспомогательных компонентов 50 в реактор 18 в сырьевом(ых) потоке(ах) вспомогательного компонента 48. Примерные вспомогательные компоненты 46 могут включать нитрат аммония в гранулированной форме (гранула) 52, алюминий 54 и микросферы 56.
Как указано в описании ниже Фиг. 2 и 3, реактор 18 может быть укомплектован множеством подходящих операций, включая многообразие технологического оборудования 58. Схематическое изображение Фиг. 1 иллюстрирует, что данный реактор 18 содержит любой подходящий вариант комплектации, который объединяет окислительную фазу 22, горючую фазу 28 и вещество, подавляющее кристаллизацию, 38 для получения чувствительного к детонации эмульсионного взрывчатого вещества, описанного в описании настоящего изобретения. Аналогично, конечный процессор 22 представляет собой и является наглядным примером разнообразия технологического оборудования, которое можно применять для упаковки, хранения, перевозки и т.д. конечной эмульсионной композиции.
Как представлено выше, вещество, понижающее температуру кристаллизации, 38 может состоять по существу из по меньшей мере, одного раствора амина и/или раствора нитрата амина. Одним примерным раствором нитрата амина является раствор нитрата гексамина, который можно получить смешением гексамина и азотной кислоты в воде. Раствор нитрата гексамина можно получить в любой концентрации, и в рамках объема настоящего изобретения можно применять многообразие подходящих концентраций. Примерный раствор нитрата гексамина содержит 61,4% нитрата гексамина в воде.
Раствор нитрата гексамина, содержащий 61,4% нитрата гексамина, можно получить посредством добавления воды в реактор, который может быть источником вещества, понижающего температуру кристаллизации, 16 или другим реактором, который снабжает водой источник вещества, понижающего температуру кристаллизации, 16. Затем к воде добавляют гексамин при перемешивании и охлаждении реакции. Затем можно медленно добавлять азотную кислоту, при этом продолжая перемешивать и охлаждать реакцию для поддержания температуры ниже приблизительно 50°C. Затем реакцию охлаждают до приблизительно 25°C для хранения и применения, как, например, в источнике вещества, понижающего температуру кристаллизации, 16. Для получения раствора нитрата гексамина, содержащего 61,4% нитрата гексамина, к воде можно добавлять гексамин и азотную кислоту до получения конечного массового состава из 30,4 массовых процентов воды, 43,9 массовых процентов гексамина и 25,7 массовых процентов азотной кислоты (68%). Конечный раствор нитрата гексамина (61,4%) при 25°C может иметь плотность 1,240±0,005 г/см3 и pH от приблизительно 2,5 до приблизительно 7,0. Растворы нитрата гексамина различных концентраций могут иметь различные свойства. Например, в рамках объема настоящего изобретения находятся плотности между приблизительно 1,1 г/см3 и приблизительно 1,4 г/см3.
При высоких температурах раствор нитрата гексамина имеет тенденцию разлагаться на аммиачный и формальдегидный газы. Кроме запаха аммиака и/или формальдегида, который может присутствовать, когда начинает разлагаться раствор нитрата гексамина, разложение также можно проследить по повышению pH раствора. Таким образом, можно отслеживать pH раствора нитрата гексамина в источнике вещества, понижающего температуру кристаллизации, 16 с целью контроля качества вещества, понижающего температуру кристаллизации, 38, которое подается в реактор 18. Вещества, понижающие температуру кристаллизации, различных композиций могут иметь различные температуры, при которых начинается разложение, и могут давать в результате различные продукты разложения, но в рамках объема настоящего изобретения для различных веществ, понижающих температуру кристаллизации, можно проследить схожие характеристики и/или свойства. Было определено, что примерный раствор нитрата гексамина имеет температуру кристаллизации между приблизительно 5°C и приблизительно 10°C; было определено, что разложение начинается при температурах свыше приблизительно 30°C. Следовательно, раствор нитрата гексамина (61,4%) можно предпочтительно хранить при температурах между приблизительно 10°C и приблизительно 30°C, чтобы избежать кристаллизации и разложения. Таким образом, источник вещества, понижающего температуру кристаллизации, 16 может быть предназначен для поддержания вещества, понижающего температуру кристаллизации, 38 в рамках данного температурного диапазона.
Чувствительные к детонации эмульсионные взрывчатые вещества имеют многообразные применения, и композиция эмульсионных взрывчатых веществ может изменяться для удовлетворения желаемым применениям. Примерные модификации композиции эмульсионного взрывчатого вещества могут содержать переменное наличие и/или концентрации одного или нескольких вспомогательных компонентов. Например, подходящая композиция эмульсионного взрывчатого вещества может содержать композицию без вспомогательных компонентов, таких как алюминий и гранулированный нитрат аммония. Подобную композицию можно применять для обеспечения низкоэнергетического, недорогого для применения взрывчатого вещества со всеми возможными диаметрами (например, диаметрами от 1" до 3,5"). Примерные применения данной "низкоэнергетической" композиции могут включать применение в качестве инициирующего заряда на основе нитрата аммония и жидкого топлива и для обычных буровзрывных работ, где требуется высокая СД, но не нужна высокая суммарная энергия. Кроме того, "высокоэнергетическую, с небольшим диаметром" композицию можно получить добавлением к композиции 6,0% алюминия и варьированием некоторых других концентраций соответственно. Опять же, кроме того, примерную "высокоэнергетическую, с большим диаметром" композицию можно получить добавлением 5,9% алюминия и 15% гранулированного нитрата аммония. Примерные концентрации различных компонентов показаны в приведенной ниже таблице для каждой из примерных композиций, описанных выше.
Низкоэнергетическая, мас.% | Высокоэнергетическая, с небольшим диаметром, мас.% | Высокоэнергетическая, с большим диаметром, мас.% | Примерные композиции, мас.% | |
НА(в растворе) | 75,91 | 70,27 | 59,70 | 50-80 |
НА (гранулиро-ванный) | 0,0 | 0,0 | 15,00 | 0-30 |
Нитрат гексамина | 4,62 | 4,59 | 3,65 | 0,1-10,0 |
Эмульгатор | 1,76 | 2,00 | 1,39 | 1-3 |
Воск | 2,00 | 2,00 | 1,58 | 1-3 |
Минеральноемасло | 0,16 | 0,0 | 0,16 | 0,0-5,0 |
Алюминий | 0,0 | 6,0 | 6,0 | 0-10 |
Вода | 13,75 | 13,14 | 10,72 | 5-15 |
Микросферы | 1,80 | 2,00 | 1,80 | 1-5 |
Итого | 100,00 | 100,00 | 100,00 | 100,00 |
Суммарная энергия | 749 кал/г | 983 кал/г | 1019 кал/г | 600-1200 кал/г |
Баланс кислорода | -0,34% | -6,84% | -2,77% | -10%-+1% |
Плотность | 1,25 | 1,25 | 1,25 | 1,0-1,4 |
Температура сгущения | <80ºC | <80ºC | <80ºC | <80ºC |
Концентрации, показанные в предшествующей таблице и в приведенном выше обсуждении, даны только для иллюстрации. В рамки объема настоящего изобретения попадают и другие концентрации, такие, которые могут подходить для изменения профиля взрывчатого вещества композиции, для удовлетворения желаемому применению. Подходящие концентрации могут включать композиции с концентрациями, лежащими в рамках диапазонов, определенных в четвертой колонке приведенной выше таблицы.
Вещества, понижающие температуру кристаллизации, 38 преимущественно применяют для понижения температуры кристаллизации или температуры сгущения окислительной фазы 24. В прошлом вещества, понижающие температуру кристаллизации, хранили вместе с окислительной фазой, которая к тому же была в растворе, и подавали в эмульсионный реактор 18 вместе. Однако раствор нитрата аммония, применяемый в качестве окислительной фазы 24, обычно хранят при повышенных температурах, чтобы избежать кристаллизации. Например, было определено, что примерный раствор нитрата аммония (87,5%) имеет температуру кристаллизации приблизительно 85°C и, следовательно, обычно его хранят при температурах выше приблизительно 90°C. Из-за разложения веществ, понижающих температуру кристаллизации, настоящего изобретения в способах настоящего изобретения вещество, понижающее температуру кристаллизации, 38 хранят отдельно от окислительной фазы 24 до их введения в реактор 18, с целью включения в композицию эмульсионного взрывчатого вещества. Таким образом, период времени, в течение которого вещество, понижающее температуру кристаллизации, подвергается повышенной температуре, сокращается, тем самым минимизируя разложение данного вещества, понижающего температуру сгущения, и сохраняя его функциональность в течение срока хранения композиции взрывчатой эмульсии.
Композиции эмульсионного взрывчатого вещества обычно оценивают по их взрывчатым свойствам (например, суммарной энергии, скорости детонации, чувствительности к детонации и т.д.), а также по их устойчивости при хранении (например, универсальности условий хранения и сохранению взрывчатых свойств с течением времени). Конкретная композиция может обладать идеальными взрывчатыми свойствами, но очень плохими характеристиками устойчивости при хранении, делающими ее практически неподходящей для практического применения. Как описано выше, было определено, что композиции эмульсионного взрывчатого вещества сохраняют свои взрывчатые свойства при температурах ниже температуры кристаллизации раствора нитрата аммония сразу после образования эмульсии. Однако при отсутствии веществ, понижающих температуру сгущения, 38 в эмульсионной композиции данные композиции переохлаждаются в большей степени при нормальных условиях хранения (например, в условиях комнатной температуры), чем композиции с веществами, понижающими температуру сгущения. Это приводит к довольно короткому сроку хранения, что обусловлено, по меньшей мере, отчасти разницей между температурой сгущения раствора нитрата аммония (приблизительно 85°C) и температурой хранения (приблизительно 25°C).
Было определено, что применяемые в прошлом вещества, понижающие температуру сгущения, такие как перхлорат натрия, понижают температуру сгущения взрывчатой эмульсии до приблизительно 80°C, что обеспечивает увеличенный срок хранения при нормальных условиях хранения. Было определено, что при добавлении вещества, понижающего температуру кристаллизации, настоящего изобретения, раствора нитрата гексамина (61,4%), в композицию эмульсионного взрывчатого вещества температура сгущения окислительной фазы составляла приблизительно 75°C. Считается, что другие вещества, понижающие температуру кристаллизации, лежащие в рамках объема настоящего изобретения, понижают температуру сгущения окислительной фазы таким же образом. В зависимости от природы применяемого вещества, понижающего температуру кристаллизации, количество применяемого вещества, понижающего температуру кристаллизации, 38 относительно остальных компонентов может варьироваться. Таким образом, соотношение вещества, понижающего температуру кристаллизации, может варьироваться в композициях в рамках объема настоящего изобретения, но оно должно быть достаточным для обеспечения температуры кристаллизации менее чем приблизительно 80°C.
Не ограничиваясь, в настоящее время считают, что примерные композиции, описанные выше, будут иметь срок хранения один год и более без значительного понижения взрывчатых свойств композиции взрывчатой эмульсии. Например, композиции в рамках объема настоящего изобретения могут проявлять менее чем 10% уменьшение скорости детонации при измерении через один год. Кроме того или в качестве альтернативы, композиции в соответствии с настоящим изобретением могут сохранять более чем 90% суммарной энергии после хранения в течение одного года. Например, было определено, что если оставить раствор нитрата гексамина в растворе нитрата аммония при температурах выше чем приблизительно 90°C более чем на 24 часа, то нитрат гексамина почти полностью разлагается, тем самым исключая какое-либо понижение температуры кристаллизации, которое можно было предполагать при добавлении раствора нитрата гексамина. Взрывчатые вещества, состоящие из подобных растворов, уже не являются чувствительными к детонации и/или не могут передать волну детонации от инициирующего заряда.
В то время как вещества, понижающие температуру кристаллизации, лежащие в рамках объема настоящего изобретения, можно добавлять в композиции взрывчатой эмульсии, при этом не воздействуя отрицательно на взрывчатые свойства композиции и в то же время сохраняя и/или улучшая свойства устойчивости при хранении, известно, что некоторые растворы аминов и растворы нитрата амина увеличивают энергетический потенциал окислительной фазы 24. Эмульсионные взрывчатые вещества оптимально имеют нулевой кислородный баланс, таким образом, постдетонационные продукты почти не содержат или не содержат избыточного количества углерода или кислорода. Следовательно, отношение окисляющих компонентов к горючим компонентам варьируется до достижения желаемого кислородного баланса. Нитрат аммония имеет положительный кислородный баланс +20%, тогда как масла и воски горючей фазы обычно имеют отрицательные кислородные балансы в диапазоне от -300% до -350%. Таким образом, отношение нитрата аммония к горючей фазе обычно в большей степени смещено в сторону нитрата аммония.
Однако растворы амина и растворы нитрата амина, применяемые в настоящих способах, также имеют отрицательный кислородный баланс, как например -48% для растворов нитрата гексамина, что требует регулирования отношения окислительной фазы к горючей фазе по сравнению с общепринятыми композициями взрывчатой эмульсии. Однако если отношение горючей фазы к окислительной фазе становится слишком низким, то вязкость эмульсии увеличивается и может стать такой высокой, что продукт невозможно будет откачивать или упаковывать подходящим образом. В прошлом во взрывчатых веществах на водной основе применяли нитрат гексамина, не сталкиваясь с такой проблемой вязкости, так как непрерывной фазой в водных гелях является окислительная фаза и отношение окислительной фазы к горючей фазе можно увеличивать, не увеличивая вязкость водного геля.
Как видно из приведенной выше таблицы, показывающей наглядные примеры концентраций различных компонентов в настоящих эмульсиях, концентрация раствора нитрата гексамина крайне низкая (3-5%) по сравнению с концентрацией общепринятых веществ, понижающих температуру сгущения, таких как перхлорат натрия, которая обычно может приближаться к 10%. Несмотря на то что множество растворов амина и растворов нитрата амина соответственно попадают в рамки объема настоящего изобретения, при определении пригодности данного раствора и при определении концентрации данного раствора в конечной композиции эмульсионного взрывчатого вещества следует принимать во внимание кислородный баланс растворов.
Чувствительные к детонации композиции взрывчатой эмульсии обычно содержат эмульгаторы в горючей фазе, которые способствуют диспергированию окислительной фазы в горючей фазе. Кроме того, эмульгирующие агенты обычно выбирали и вводили в концентрациях, достаточных для того, чтобы препятствовать кристаллизации окислительной фазы в эмульсии в ответ на удар и/или сдвиговые напряжения. Было обнаружено, что при введении в качестве вещества, понижающего температуру