Белок, проявляющий интерфероноподобные противовирусную и антипролиферативную биологические активности (варианты), белковая конструкция, кодирующий полинуклеотид (варианты), вектор экспрессии, клетка-хозяин, композиция и применение белка в качестве противовирусного, антипролиферативного, противоракового или иммуномодулирующего агента и способ лечения состояния, чувствительного к интерферонотерапии, рака или вирусного заболевания

Иллюстрации

Показать все

Изобретение относится к области биотехнологии, конкретно к получению интерфероноподобных белков, и может быть использовано в медицине. Получен рекомбинантный белок, созданный путем технологии перетасовки (шаффлинга; от англ. shuffling) генов, обладающий повышенными противовирусной и антипролиферативной активностями по сравнению с существующим в природе человеческим интерфероном-альфа-2b (HulFN-α2b). Полученный полипептид используют в составе композиции в качестве противовирусного, антипролиферативного, противоракового или иммуномодулирующего агента. Изобретение позволяет использовать полученный высокоактивный интерфероноподобный белок для лечения состояния, чувствительного к интерферонотерапии, рака или вирусного заболевания. 11 н. и 38 з.п. ф-лы, 9 ил., 8 табл., 7 пр.

Реферат

Область изобретения

Эта заявка относится к рекомбинантным белкам, обладающим биологическими активностями подобно человеческим интерферонам.

Предшествующий уровень техники

В этой заявке принята номенклатура интерферонов (IFN), опубликованная в Nature (1).

Человеческие интерфероны (HuIFN), которые были открыты Isaacs и Lindenmann в 1957 году (2), представляют собой хорошо известное семейство цитокинов, секретируемых большим разнообразием эукариотических клеток под воздействием различных стимулов, таких как вирусная инфекция или воздействие митогенов. IFN может вызывать многие изменения в клеточном поведении, включая влияние на рост и дифференцировку клеток и модулирование иммунной системы (3-7). HuIFN были классифицированы на шесть подгрупп, а именно IFN-α, IFN-β, IFN-γ, IFN-ω, IFN-ε и IFN-κ. HuIFN-α (лейкоцитарный интерферон) продуцируется в человеческих лейкоцитах и, вместе с минорными количествами HuIFN-β (интерферон фибробластов), в лимфобластоидных клетках. Кроме того, по своим химическим и биологическим характеристикам HuIFN были классифицированы на две общие категории, а именно на тип I и тип II. Тип I состоит из подгрупп IFN-α и INF-β, а также не так давно открытых подгрупп IFN-ω, IFN-ε и IFN-κ. Тип II имеет только один член: IFN-γ (иммунный интерферон).

Разные подгруппы интерферонов имеют разные структурные и биологические характеристики. HuIFN-β представляет собой N-гликопротеин (8, 9), который был очищен до гомогенного состояния и охарактеризован. Он гетерогенен по размеру, главным образом из-за своей углеводной группировки. Однако имеется только один ген IFN-β человека, кодирующий белок из 166 аминокислот. IFN-β имеет низкую гомологию с IFN-α, проявляя приблизительно 30-40% идентичности.

В противоположность единственности гена IFN-β, HuIFN-α представляет собой подгруппу, состоящую из мультигенного семейства по существу из 14 генов. Минорные варианты, образованные отличиями в одной или двух аминокислотах, являются причиной множественных аллелей (10). Исключив псевдоген 1FNAP22, имеем 13 генов, кодирующих 13 белков. Каждый белок содержит 165-166 аминокислот. Белок, кодируемый геном IFNA13, идентичен белку IFNA1. Таким образом, имеются 12 индивидуальных белков интерферона-альфа: IFNA1, IFNA2, IFNA4, IFNA5, IFNA6, IFNA7, IFNA8, IFNA10, IFNA14, IFNA16, IFNA17 и IFNA21. Гомология аминокислотной последовательности среди подтипов IFN-α обычно составляет 80-85% (11).

Зрелый IFN-ω демонстрирует 60% гомологии нуклеотидной последовательности с семейством разновидностей IFN-α, но он длиннее на 6 аминокислот на своем С-конце. IFN-ω имеет более отдаленное родство с интерфероном-β (имеет приблизительно 30% гомологии последовательности). Человеческий IFN-ω не классифицируется в группе IFN-α, поскольку по своим антигенным свойствам отличается от IFN-α и различается по своему взаимодействию с рецептором IFN-α, тип I (12). IFN-ω секретируется инфицированными вирусами лейкоцитами в виде главного компонента человеческих лейкоцитарных интерферонов.

Зрелый белок человеческого IFN-ε содержит 185 аминокислот, имея приблизительно 33% и 37% гомологии последовательности с IFN-α2 и IFN-β, соответственно (13, 14). Функция и биофизические свойства IFN-ε по существу детально не охарактеризованы; однако он действует подобно интерферонам, тип I. Кроме того, IFN-ε может играть роль в выполнении репродуктивной функции (15).

IFN-κ, состоящий из 180 аминокислот человеческий цитокин, представляет собой недавно идентифицированный IFN, тип I. Кодирующая последовательность IFN-κ приблизительно на 30% идентична другим интерферонам, тип I, обнаруженным у людей. Характерной особенностью IFN-κ является заметная конститутивная экспрессия его транскрипта в неиндуцированных клетках, в частности кератиноцитах. IFN-κ может играть роль в регуляции системных или местных иммунных функций посредством его воздействия на клетки врожденной иммунной системы (16). Однако IFN-κ демонстрирует низкую противовирусную активность (17).

По-видимому, человеческий интерферон, тип I, связывается с двумя рецепторными субъединицами, IFNAR-1 и -2, которые широко распространены на клеточной поверхности различных типов клеток. Вовлечение лиганда приводит к индукции фосфорилирования тирозинкиназ TYK2 и JAK-1 (янус-киназа 1), которые связаны с IFNAR-1 и -2, соответственно. После фосфорилирования белки STAT (signal transducer and activator of transcription) высвобождаются из комплекса с рецептором и образуют гомодимеры, а также гетеродимеры (18, 19). После высвобождения димеры STATA ассоциируют с интерфероночувствительным фактором 9 (IRF-9), связывающимся с ДНК-белком, образуя комплекс, называемый IFN-стимулируемый генный фактор-3 (ISGF-3), который мигрирует в ядро. Далее комплекс ISGF-3 связывается с элементом ДНК, расположенным "вверх по течению" у всех IFN-индуцибельных генов. Это так называемый "классический" путь сигнальной трансдукции.

Непрерывно открывают новые способы действия и биохимические пути, регулируемые IFN, тип I. Например, расположенные "вниз по течению" от Р13К (фосфоинозитид-3ОН-киназа) в пути сигнальной трансдукции ядерный фактор каппа-В (NF-κВ) и PKC-d ассоциируют с антиапоптотическими эффектами, наблюдаемыми в нейтрофилах, инкубированных с IFN-β (20).

Более 300 генов, называемые интерферон-индуцируемые гены, чувствительны к воздействию IFN. Наиболее изученными белками IFN являются белки с противовирусными свойствами. Например, фермент семейства 2,5-олигосинтетаз (OAS-1 и -2) катализирует синтез коротких олигоаденилатов, которые связываются с и активируют РНКазу L (RNAseL), фермент, расщепляющий вирусные и клеточные РНК, таким образом ингибируя синтез белка. Дц(двухцепочечная)-РНК-активированная протеинкиназа (PKR) фосфорилирует фактор инициации трансляции elF2a, что также приводит к ингибированию синтеза вирусных и клеточных белков. Совсем недавно также было обнаружено, что PKR необходима для активации фактора транскрипции NF-κВ, центрального действующего субъекта в индукции воспалительных цитокинов, иммунном модулировании и апоптозе. Белки Мх (миксовирус-устойчивость) ингибируют репликацию РНК вирусов посредством либо предотвращения транспорта вирусных частиц в клетке, либо транскрипции вирусной РНК. РНК-специфическая аденозин-деаминаза (ADAR) превращает аденозин в инозин, вызывая таким образом гипермутацию вирусных РНК-геномов (21).

HuIFN обладают широким спектром биологических активностей, включая противовирусную, противоопухолевую и иммунорегуляторную функции. Клинические возможности человеческих интерферонов широко исследованы и суммированы ниже.

Что касается противоопухолевых применений, то HuIFN могут опосредовать противоопухолевые эффекты либо косвенно путем регулирования иммуномодуляторных и антиангиогенезных ответов, либо путем непосредственного воздействия на пролиферацию или клеточную дифференцировку опухолевых клеток (22). Интерферонотерапия использована в лечении различных лейкозов (23), например лейкозного ретикулоэндотелиоза (24), острого и хронического миелоидного лейкоза (25-27), остеосаркомы (28), базалиомы (29), глиомы (30), почечно-клеточного рака (31), множественной миеломы (32), меланомы (33), саркомы Капоши (23) и болезни Ходжкина (34). Комбинированная терапия с использованием IFN-α с цитарабином (ara-С), 5-FU (5-фторурацилом), гидроксимочевиной и IL-2 (интерлейкином-2) хорошо изучена и в большинстве случаев демонстрирует значительно более хорошие результаты по сравнению с терапией только одним HuIFN-α (3). Сообщали также о синергическом лечении прогрессирующего рака комбинацией HuIFN и темозоломида (35).

Что касается противовирусных применений, то HuIFN использованы клинически для противовирусной терапии, например в лечении СПИДа (36), вирусного гепатита, включая хронический гепатит В, гепатит С (37, 38), инфекции папиллома-вирусом (39), инфекции вирусом герпеса (40), вирусного энцефалита (41) и в профилактике ринита и респираторных инфекций (40).

Кроме того, HuIFN использованы клинически для антибактериальной терапии (42), например аэрозолизированный HuIFN-γ (43) и HuIFN-α использованы на пациентах с диагнозом туберкулез легких с множественной лекарственной устойчивостью (44). HuIFN-γ использован в лечении туберкулеза мозга с множественной лекарственной устойчивостью (45).

Кроме того, HuIFN использованы клинически для иммуномодулирующей терапии, например для предупреждения отторжения "трансплантат против хозяина" или уменьшения прогрессирования аутоиммунных заболеваний, таких как множественный склероз (46, 47) и синдром Шегрена (48). IFN-β одобрен FDA в Соединенных Штатах для лечения множественного склероза. Недавно появилось сообщение о том, что у пациентов с множественным склерозом снижено продуцирование интерферонов типа I и интерлейкина-2 (49). К тому же, иммуномодулирующая терапия с использованием HuIFN-α по-видимому будет представлять собой эффективную терапию у пациентов с хроническим миелоидным лейкозом (CML), переносящих рецидив после трансплантации костного мозга (50).

Что касается применения их с составе вакцин, то HuIFN использованы клинически в качестве адъюванта в лечении меланомы (51) и также могут быть использованы в качестве адъюванта или соадъюванта для повышения или моделирования иммунного ответа в случаях профилактической или терапевтической вакцинации для многих других заболеваний (52).

HuIFN-α2a был первым ингибитором ангиогенеза, который использован в клинических испытаниях, и оказался эффективным у детей для лечения представляющей угрозу для жизни гемангиомы (53, 54). Другим клиническим показанием является гигантоклеточная опухоль кости. Kaban и др. докладывали о поразительной регрессии большой, быстро растущей, рецидивирующей гигантоклеточной опухоли нижней челюсти (55).

Несмотря на то, что HuIFN имеют многие важные клинические применения, они демонстрируют значительные побочные эффекты и другие ограничения. Большинство цитокинов, включая HuIFN, имеют относительно короткие периоды полувыведения из кровотока, так как они индуцируются in vivo для осуществления локального и кратковременного действия. Поскольку обычно HuIFN вводят в виде системных терапевтических средств, то их необходимо вводить часто и в относительно больших дозах. Частые парентеральные введения неудобны и болезненны. Кроме того, токсичные побочные эффекты, ассоциированные с введение HuIFN, часто оказываются такими тяжелыми, что некоторые люди не могут переносить такого лечения. По всей вероятности эти побочные эффекты ассоциируются с системным введением высоких дозировок. Кроме того, в клинических исследованиях обнаружено, что некоторые пациенты продуцируют антитела к rHuIFN ("r" от рекомбинантный), что нейтрализует его биологическую активность (56).

Несомненно, что разработка новых интерфероновых белков с повышенной эффективностью является срочной необходимостью для многочисленных применений, например противораковых терапий, а также противовирусной, иммунотерапии, антипаразитической, антибактериальной терапии, или для любого медицинского состояния или ситуации, где требуются повышенная интерфероновая активность и/или сниженные побочные эффекты. В целом, с высокой вероятностью можно сказать, что HuIFN будут играть главную роль в следующем поколении новых противоопухолевых и противовирусных терапий (10).

В данной области техники хорошо известно, что большинство эффективных способов для улучшения фармацевтических свойств цитокиновых лекарственных средств состоит в изменении самого цитокинового белка. За это время установлены различные стратегии и методики изменения интерфероновых пептидов. Как правило, в настоящее время используют три стратегии для создания мутантов HuIFN-α.

Первая стратегия заключается в получении гибридов IFN. Некоторые исследователи воспользовались преимуществом наличия в IFN-кодирующих последовательностях существующих в природе сайтов расщепления рестрикционными эндонуклеазами (РЭ), чтобы соединять вместе гомологические кодирующие фрагменты (57, 58). Обзор по получению ряда гибридных IFN приведен Horisberger и Di Marco (11); в этой статье дается общее представление способа конструирования таких молекул. Описаны конкретные примеры способов конструирования гибридных интерферонов. Некоторые исследователи воспользовались преимуществом ПЦР-амплификации для конструирования мутантных IFN-α, чтобы таким образом создать конкретно желаемые нуклеиновокислотные фрагменты и затем улучшить возможности соединенных вместе новых кусков разных IFN (59). В патенте США №6685933 (60) также описаны методики ПЦР-амплификации для создания гибридов человеческих IFN. Гибриды интерферонов могут быть созданы внутри интерфероновой подгруппы, как, например, описано в патенте США №5137720 (61) и патенте США №6685933 (60), или между по меньшей мере двумя разными интерфероновыми классификационными группами, как, например, описано в патенте США №6174996 (62) и патенте США №6685933 (60). В дополнение к этому, исходные гены гибрида могут происходить из одного вида (главным образом от человека), например гибриды между HuIFN-α и HuIFN-ω, или от более чем одного вида животных, например гибриды между человеческим и мышиным интерферонами-α (63).

Вторая стратегия конструирования интерфероновых мутантов заключается в использовании сайтнаправленного точечного мутагенеза путем введения изменений одного или более нуклеотидов в молекулы ДНК IFN (64). В последнее время в качестве руководящего принципа белкового мутагенеза используются направленная мутация и вычислительные методы (65).

Третья стратегия конструирования HuIFN, тип I, заключается в перетасовке (шаффлинге; от англ. shuffling) фрагментов гена IFN, полученных в результате переваривания их РЭ, ПЦР-амплификации, химического синтеза или переваривания ДНКазой, с последующим применением ПЦР для случайного соединения фрагментов вместе и затем их амплификации. Полученные в результате ПЦР-продукты фактически представляют собой пул перегруппированных фрагментов гена интерферона-альфа, которые могут быть использованы для конструирования библиотеки ДНК, из которой могут быть выделены клоны ДНК с желаемыми фенотипами (66). Например, Chang и др. описали способ конструирования и скрининга шаффлинг-библиотеки для HuIFN с целью идентификации производных HuIFN с повышенной противовирусной и антипролиферативной активностями в клетках мыши (67).

Человеческий интерферон-альфа-con-1 (консенсусный интерферон) представляет собой рекомбинантный в природе не существующий HuIFN-α из 166 аминокислот. Он был создан путем оценки самых высококонсервативных аминокислот в каждой соответствующей области на основании известных клонированных последовательностей HuIFN-α. Он имеет 89% гомологии последовательности на аминокислотном уровне по отношению к HuIFN-α2b и удельную противовирусную активность, составляющую приблизительно 109 IU (международных единиц)/мг. Человеческий интерферон-альфа-con-1 апробирован для лечения хронической инфекции HCV (вирус гепатита С) у пациентов 18 лет или старше с компенсированным заболеванием печени (68).

Несмотря на то, что некоторые рекомбинантные интерфероновые белки известны в предшествующем уровне техники, существует необходимость в получении новых интерфероноподобных белков и белковых композиций, имеющих повышенные биологические активности.

Сущность изобретения

Согласно изобретению описан выделенный полинуклеотид, кодирующий белок, имеющий биологические активности подобно человеческим интерферонам. В одном воплощении полинуклеотид содержит нуклеотидную последовательность, по меньшей мере на 93% идентичную SEQ ID No: 1. В других воплощениях нуклеотидная последовательность по меньшей мере на 95% идентична или по меньшей мере на 98% идентична SEQ ID No: 1.

В одном воплощении изобретение включает белок, выбранный из группы, состоящей из белков, каждый из которых имеет аминокислотную последовательность, по меньшей мере на 85% идентичную SEQ ID No: 2. Предпочтительно, белок является несуществующим в природе белком и имеет повышеную противовирусную и антипролиферативную активность по сравнению с человеческим интерфероном-альфа-2b (HuIFN-α2b). Например, белок может иметь противовирусную активность по меньшей мере в 2 раза больше, чем HuIFN-α2b, и антипролиферативную активность по меньшей мере в 10 раз больше, чем HuIFN-α2b. В конкретных воплощениях аминокислотная последовательность данного белка по меньшей мере на 90% идентична или по меньшей мере на 95% идентична SEQ ID No: 2

Данное изобретение охватывает рекомбинантные векторы, содержащие последовательность данного полинуклеотида, и клетки хозяина, содержащие эти векторы. Изобретение также охватывает полипептидные фрагменты, проявляющие биологические активности подобно человеческим интерферонам. Кроме того, изобретение включает белковые конструкции и другие композиции, проявляющие интерфероноподобные биологические активности, такие как конъюгаты, содержащие белок и другой компонент, например неорганический полимер. Кроме того, изобретение включает способы и применения белка и композиций для терапевтических целей, например в качестве противовирусных или противораковых агентов. Кроме того, изобретение может быть применено для лечения других состояний, чувствительных к интерферонотерапии.

Краткое описание графических материалов

На Фиг.1 изображена полная последовательность ДНК, кодирующая новый белок по изобретению, упоминаемый в данном описании как Novaferon™ (SEQ ID No: 1) (А). На Фиг.1 также показана предсказанная аминокислотная последовательность Новаферона (SEQ ID No: 2) (В) и выравнивание этой аминокислотной последовательности Новаферона относительно последовательности ДНК Новаферона (С). Первая аминокислота, цистеин, в зрелом белке Новафероне обозначена как остаток 1.

На Фиг.2 показано выравнивание нуклеотидной последовательности гена Новаферона относительно гена HuIFN-α14 (номер в Genebank: NM_002172) (А) и выравнивание аминокислотной последовательности белка Новаферона относительно белка HuIFN-α14 (транслированного, номер в Genebank: NM_002172) (В). Первая аминокислота, цистеин, в зрелом белке Новафероне обозначена как остаток 1. Новаферон имеет приблизительно 93% идентичности последовательности (462/498) с HuIFN-α14 на нуклеотидном уровне и приблизительно 87% идентичности последовательности (144/166) на аминокислотном уровне. Отличающиеся нуклеотиды показаны как пустое место в середине линии.

На ФИГ.3 показано выравнивание нуклеотидной последовательности гена Новаферона относительно гена HuIFN-α2b (номер в Genebank: NM_000605) (А) и выравнивание аминокислотной последовательности белка Новаферона относительно белка HuIFN-α2b (транслированного с гена HuIFN-α2b с номером в Genebank: NM_000605) (В). Первая аминокислота, цистеин, в зрелом белке Новафероне обозначена как остаток 1. Новаферон имеет приблизительно 89% идентичности последовательности (445/498) с HuIFN-α2b на нуклеотидном уровне и приблизительно 81% идентичности последовательности (135/166) на аминокислотном уровне. Отличающиеся нуклеотиды показаны как пустое место в середине линии.

Фиг.4 представляет собой график, показывающий антипролиферативное ингибирование in vitro клеток Дауди под действием Новаферона по сравнению с HuIFN-α2b.

Фиг.5 представляет собой график, показывающий противоопухолевые эффекты in vivo Новаферона и HuIFN-α2b на бестимусных мышах с ксенотрансплантатами РС-3 рака предстательной железы человека.

Фиг.6 представляет собой график, показывающий противоопухолевые эффекты in vivo Новаферона и HuIFN-α2b на бестимусных мышах с ксенотрансплантатами Hep G2 рака печени человека.

Фиг.7 представляет собой график, показывающий противоопухолевые эффекты in vivo Новаферона и HuIFN-α2b на бестимусных мышах с ксенотрансплантатами А-375 меланомы человека.

Фиг.8 представляет собой график, показывающий противоопухолевые эффекты in vivo Новаферона и HuIFN-α2b на бестимусных мышах с ксенотрансплантатами LS 180 рака толстой кишки.

Фиг.9 представляет собой график, показывающий противоопухолевые эффекты in vivo Новаферона и HuIFN-α2b на бестимусных мышах с ксенотрансплантатами HL 60(3) лейкоза человека.

Подробное описание

На всем протяжении следующего далее описания приведены конкретные подробности с целью обеспечения более всестороннего понимания изобретения. Однако изобретение может быть осуществлено на практике без этих подробностей. В других случаях, чтобы избежать внесения ненужной неопределенности в изобретение, подробно не показаны или не описаны хорошо известные факторы. Соответственно, описание и фигуры следует рассматривать в иллюстративном, а не в ограничивающем смысле.

Определение терминов

Перед тем, как дать подробное описание настоящего изобретения, следует понимать, что это изобретение не ограничено конкретными белковыми молекулами, методологией, протоколами, клеточными линиями, векторами и реагентами, описанными во всем своем возможном разнообразии. Также следует понимать, что используемая в данном описании терминология предназначена только для описания конкретных воплощений и не предназначена для ограничения объема настоящего изобретения, который будет ограничен только прилагаемой формулой изобретения.

С целью более полного понимания изобретения, изложенного в данном описании, применены следующие далее термины, и их определение показано ниже. Следует понимать, что используемая в данном описании терминология предназначена только для описания конкретных воплощений и не предназначена для ограничения объема настоящего изобретения, который будет ограничен только прилагаемой формулой изобретения.

Если не определено иное, все технические и научные термины, используемые в данном описании, имеют те же значения, которые обыкновенно понимаются специалистом обычной квалификации в данной области техники, к которой это изобретение соответствует. Все публикации, упомянутые в данном описании, включены в данное описание посредством ссылки с целью описания и раскрытия клеточных линий, векторов и методологий, обзоры по которым приведены в этих публикациях и которые могли быть использованы в связи с данным изобретением. Ничто в данном описании не должно быть истолковано как допущение того, что данное изобретение дает право датировать более ранним числом такие открытия на основании предшествующего изобретения.

Термин "интерферон" относится к семейству секретируемых белков, продуцируемых рядом эукариотических клеток под воздействием различных окружающих стимулов, включая вирусную инфекцию или подвергание воздействию митогена. В дополнение к обладанию противовирусными свойствами показано, что интерфероны воздействуют на большое разнообразие клеточных функций. Все интерфероновые единицы выражены в данном описании со ссылкой на международные стандарты ВО3 (Всемирная организация здравоохранения) 94/786 (rHuIFN-α-консенсус) и 95/650 (rHuIFN-α2a).

Термин "интерфероноподобный" (или «подобные интерферону») относится к функциональным и/или структурным признакам, демонстрируемым известными интерферонами или аналогами интерферонов либо сходным с таковыми известных интерферонов или аналогов интерферонов. Например, термин "интерфероноподобные биологические активности" включает в себя противовирусную и антипролиферативную активности. В данном описании приведены и другие примеры интерфероноподобных биологических активностей, и они будут очевидны специалисту в данной области техники. Термин во множественном числе "активности" включает в себя термин в единственном числе "активность"; то есть изобретение охватывает рекомбинантные белки или другие белковые конструкции или композиции, демонстрирующие по меньшей мере одну интерфероноподобную активность.

Термин "консенсусный интерферон" относится к типу синтетического интерферона, имеющего аминокислотную последовательность, представляющую собой приблизительное усреднение последовательностей всех известных подтипов человеческих альфа-интерферонов. Сообщалось, что консенсусный интерферон обладает более высокой (приблизительно в 5 раз) противовирусной, антипролиферативной активностью и активностью в отношении активации NK-клеток, чем любой природный подтип человеческого IFN-α.

Термин "выделенный", использованный в данном описании, относится к таким молекулам, как ДНК или РНК, которые извлечены из их нативного окружения. Например, молекулы рекомбинантных ДНК, содержащиеся в векторе, считаются выделенными для задач настоящего изобретения. Дополнительные примеры выделенных молекул ДНК включают молекулы рекомбинантных ДНК, содержащиеся в гетерологических клетках хозяина, или очищенные (частично или по существу) молекулы ДНК в растворе. "Выделенная" ДНК также включает молекулы ДНК, полученные из библиотеки, которая может содержать природные или искусственные представляющие интерес фрагменты ДНК, а также химически синтезированные нуклеиновые кислоты. Следовательно, выделенные нуклеиновые кислоты могут быть получены рекомбинантной технологией.

Термин "нуклеотидная последовательность" относится к последовательности нуклеотидов, содержащей молекулу олигонуклеотида, полинуклеотида или нуклеиновой кислоты и их фрагменты или части. В случае молекулы ДНК последовательность может содержать ряд дезоксирибонуклеотидов, а в случае молекулы РНК последовательность может содержать соответствующий ряд рибонуклеотидов. Олигонуклеотидная, полинуклеотидная молекула или молекула нуклеиновой кислоты может быть одно- или двухцепочечной, а нуклеотидная последовательность может представлять собой смысловую или антисмысловую цепь.

Термины "олигонуклеотидный фрагмент" или "полинуклеотидный фрагмент", "часть", или "сегмент", или "зонд", или "праймер" используются взаимозаменяемо и относятся к последовательности нуклеотидных остатков длиной по меньшей мере приблизительно 5 нуклеотидов. Предпочтительно, фрагменты могут быть использованы для гибридизации с целевой нуклеотидной последовательностью. Праймер служит в качестве сайта инициации полимеризации нуклеотидов, катализируемой либо ДНК-полимеразой, либо РНК-полимеразой, либо обратной транскриптазой. Фрагмент или сегмент может однозначно идентифицировать каждую полинуклеотидную последовательность по настоящему изобретению. Предпочтительно, фрагмент содержит последовательность, в значительной степени схожую с SEQ ID No: 1.

Термины "белок", или "пептид", или "олигопептид", или "полипептид" относятся к существующим в природе или синтетическим молекулам, содержащим последовательность аминокислот.

Термин "открытая рамка считывания" или ОРС означает ряд нуклеотидных триплетов для кодирования аминокислот без какого-либо терминирующего кодона и обычно обозначает последовательность, транслируемую в белок.

Термин "последовательность, кодирующая зрелый белок" относится к последовательности, которая кодирует белок или пептид без сигнальной или лидерной последовательности. Этот белок может быть получен путем процессинга в клетке, в результате которого удаляется любая лидерная/сигнальная последовательность. Белок может быть получен синтезом или только путем использования полинуклеотида, кодирующего последовательность, кодирующую только зрелый белок.

Термины "очищенный" или "по существу очищенный", которые использованы в данном описании, означают, что указанный белок представлен по существу в отсутствие других биологических макромолекул, например других белков, полипептидов и тому подобного. Белок очищен таким образом, что он составляет по меньшей мере 95% по массе от присутствующих указанных биологических макромолекул (но вода, буферы и другие небольшие молекулы, особенно молекулы с молекулярной массой менее 1000 дальтон, могут присутствовать).

Термин "рекомбинантный экспрессирующий носитель или вектор" относится к плазмиде, или фагу, или вирусу, или вектору для экспрессии белка из последовательности ДНК (РНК). Экспрессирующий вектор может содержать транскрипционную единицу, содержащую набор из (1) генетических элемента или элементов, играющих регуляторную роль в генной экспрессии, например промоторов или энхансеров, (2) структурной или кодирующей последовательности, которая транскрибируется в мРНК и транслируется в белок, и (3) соответствующих последовательностей инициации и терминации транскрипции. Структурные единицы, предназначенные для применения в экспрессирующих системах дрожжей или эукариот, предпочтительно содержат лидерную последовательность, позволяющую осуществлять внеклеточную секрецию транслируемого белка клеткой-хозяином. Альтернативно, когда рекомбинантный белок экспрессируется без лидерной или транспортной последовательности, он может содержать на аминоконце остаток метионина. Этот остаток впоследствии может быть или может не быть отщеплен от экспрессированного рекомбинантного белка с получением конечного продукта.

Термин "существенное сходство" относится к нуклеиновой кислоте или ее фрагменту, которая(ый) имеет высокую степень идентичности последовательности с другой нуклеиновой кислотой после оптимального выравнивания ее с другой нуклеиновой кислотой или ее комплементарной цепью. Идентичность или гомологичность последовательности может быть определена с использованием программного обеспечения для анализа последовательностей, например BLASTN. Считается, что первая нуклеиновая кислота имеет существенное сходство со второй нуклеиновой кислотой, если они показывают идентичность последовательности по меньшей мере приблизительно 85-95% или более после их оптимального выравнивания. Например, для определения идентичности или гомологичности последовательности между двумя разными нуклеиновыми кислотами используется программа BLASTN "BLAST (Basic Local Aligment Search Tool) 2 Sequences". Эта программа доступна для общественного пользования из Национального центра по биотехнологической информации (National Center for Biotechnology Information (NCBI)) (69). В качестве неограничивающего примера, такие сравнения могут быть выполнены с использованием программного обеспечения, установленного в режиме установок по умолчанию (expect=10, filter=default, open gap=5, extension gap=2 penalties, gap x dropoff=50). Аналогично считается, что первый белок или полипептид имеет существенное сходство со вторым белком или полипептидом, если они показывают идентичность последовательности по меньшей мере приблизительно 85-95% или более после их оптимального выравнивания и сравнения с применением программного обеспечения BLAST (blastp) с установками по умолчанию.

В качестве другой иллюстрации, полинуклеотид, имеющий нуклеотидную последовательность, по меньшей мере, например, на 95% "идентичную" ссылочной нуклеотидной последовательности, кодирующей белок, означает, что нуклеотидная последовательность данного полинуклеотида идентична ссылочной последовательности за исключением того, что данная полинуклеотидная последовательность может включать до пяти включительно точечных мутаций на каждые 100 нуклеотидов ссылочной нуклеотидной последовательности, кодирующей белок. Другими словами, для получения полинуклеотида, имеющего нуклеотидную последовательность, по меньшей мере на 95% идентичную ссылочной нуклеотидной последовательности, до 5% нуклеотидов включительно в ссылочной последовательности могут быть делегированы или заменены другим нуклеотидом или ряд нуклеотидов до 5% включительно от всех нуклеотидов в ссылочной последовательности может быть вставлен в ссылочную последовательность.

Термины "комплементарный" или "комплементарность", которые использованы в данном описании, относятся к природному связыванию полинуклеотидов путем спаривания оснований в рекомендуемых солевых и температурных условиях. Например, последовательность "A-G-T" связывается с комплементарной последовательностью "Т-С-А". Комплементарность между двумя одноцепочечными молекулами может быть "частичной", при этом связываются только несколько нуклеиновых кислот, или может быть полной, когда существует тотальная комплементарность между одноцепочечными молекулами. Степень комплементарности между цепями нуклеиновых кислот оказывает существенные эффекты на эффективность и строгость гибридизации между цепями нуклеиновых кислот. Это особенно важно в реакциях амплификации, которая зависит от связывания между цепями нуклеиновых кислот.

Термин "трансформация" означает введение ДНК в организм с тем, чтобы ДНК была способна к репликации, либо в виде внехромосомного элемента, либо путем хромосомной интеграции. Термин "транфекция" относится к доставке экспрессирующего вектора в подходящую клетку хозяина, независимо от того, будут или нет какие-либо кодирующие последовательности действительно экспрессироваться.

Термины "лечение", "подвергание лечению" и их грамматические эквиваленты используются в широком смысле и включают терапевтическое лечение, предупреждение, профилактику и ослабление некоторых нежелательных симптомов или состояний.

Термины "биологическая активность" и "биологические активности", которые использованы в данном описании, относятся к структурным, регуляторным, биохимическим или другим биологическим функциям в живых системах, например схожим или идентичным таковым существующих или несуществующих в природе молекул.

Термин "антипролиферация" и "антипролиферативный", который использован в данном описании, относится к замедлению и/или предотвращению роста и деления клеток, приводящему к уменьшению общего количества клеток и/или уменьшению процента клеток-мишеней в любой одной или всех фазах клеточного цикла. Кроме того, клетки могут быть конкретизированы, как находящиеся в состоянии ареста на конкретной стадии клеточного цикла: G1 (промежуток (дар) 1), S-фаза (синтез ДНК), G2 (промежуток 2) или М-фаза (митоз). Термин "антипролиферативная активность", который использован в данном описании, относится к активности белка, белковой конструкции или композиции, ингибирующей клеточную пролиферацию, особенно неопластическую клеточную пролиферацию, например раковых клеток, либо in vitro, либо in vivo.

Термин "противоопухолевый" или "противораковый", который использован в данном описании, относится к противодействию или предотвращению образования злокачественных опухолей. "Противоопухолевая активность" или "противораковая активность" при использовании в данном описании относится к активности белка, белковой конструкции или композиции, ингибирующей клеточную пролиферацию, особенно неопластическую клеточную пролиферацию, например раковых клеток, либо in vitro, либо in vivo.

Термин "IC50" или "половина максимальной ингибирующей концентрации" представляет собой концентрацию ингибитора, как например белка, которая необходима для 50% ингибирования клеточного роста in vitro.

Термины "противовирусный" и "против вируса", которые использованные в данном описании, относятся к замедлению и/или предотвращению вирусной инфекции клеток или воздействию на репликацию вируса в клетках in vitro и/или in vivo, приводящему к замедлению или остановке размножения вируса или уменьшению общего количества вирусных частиц. "Противовирусная активность", которая использована в данном описании, означает активность белка, белковой конструкции или композиции, ингибирующую вирусные инфекции или воздействующую на репликацию вируса или in vitro, и/или in vivo.

Белок Новаферон

Настоящее изобретение относится к получению и охарактеризованию нового человеческого интерфероноподобного белка, обозначенного в данном описании как "Novaferon"™. Как подробно описано ниже, белок Новаферон проявляет повышенные противовирусную и антипролиферативную биологические активности по сравнению с существующим в природе HuIFN-α2b, как измерено в стандартных in vitro тестах. В частности, белок Новаферон показывает 12,5-кратное увеличение в противовирусной активности при тестировании в системе Wish-VSV (Wish-клетки/вирус везикулярного стоматита) и приблизительно 400-кратное улучшение в антипролиферативном ингибировании роста клеток Дауди по сравнению с HuIFN-α2b в одних и тех же тестируемых системах.

В одном воплощении белок Новаферон кодируется полинуклеотидом, состоящим из 498 нуклеотидов, которые показаны на SEQ ID No: 1 и Фиг.1(А). Зрелый белок Новаферон состоит из 166 аминокислот, которые показаны на SEQ ID No: 2 и Фиг.1(В). Полинуклеотидные и аминокислотные последовательности и их варианты, охваченные изобретением, описаны с дальнейшими подробностями ниже.

Для сравнительных целей авторами изобретения была исследована гомология Новаферона с существующими в природе HuIFN. С использованием blast-поисков было обнаружено, что Новаферон имеет наивысшую гомолог