Дельта-5-десатураза и ее применение для получения полиненасыщенных жирных кислот

Иллюстрации

Показать все

Изобретение относится к области биотехнологии. Представлен выделенный полинуклеотид для экспрессии дельта-5-десатуразы, включающий нуклеотидную последовательность: 1) кодирующую полипептид дельта-5-десатуразы, причем полипептид обладает по меньшей мере 80% идентичности SEQ ID NO:2; 2) кодирующую полипептид дельта-5-десатуразы, причем нуклеотидная последовательность обладает по меньшей мере 90% идентичности SEQ ID NO:1 или SEQ ID NO:3; 3) кодирующую полипептид дельта-5-десатуразы, причем нуклеотидная последовательность гибридизуется в жестких условиях с нуклеотидной последовательностью, представленной в SEQ ID NO:1 или SEQ ID NO:3; 4) комплемент нуклеотидной последовательности 1)-3). Описаны рекомбинанатная ДНК-конструкция, клетка-хозяин, трансгенное растение с масличными семенами, трансгенное семя, содержащие указанный полинуклеотид. Предложены способы: трансформации клетки-хозяина, экспрессии полиненасыщенных жирных кислот с длинными цепями в клетке растения, получения по меньшей мере одной полиненасыщенной жирной кислоты в растении, с использованием указанного полинуклеотида. Описана возможность применения указанных трансгенных семян для получения пищевых продуктов для питания людей, кормов для животных, получения масла и лецитина. Изобретение позволяет получить измененный профиль полиненасыщенных жирных кислот по сравнению с профилем полиненасыщенных жирных кислот нетрансформированного растения. 15 н. и 9 з.п. ф-лы, 12 табл., 15 ил., 20 пр.

Реферат

По настоящей заявке испрашивается приоритет предварительной заявки на патент США № 60/801172, поданной 17 мая 2006, полное содержание которой включено в настоящее описание посредством ссылки.

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится к области биотехнологии. Более конкретно, настоящее изобретение относится к идентификации фрагментов нуклеиновых кислот, кодирующих фермент дельта-5-десатуразу жирных кислот, и применению этой десатуразы для получения полиненасыщенных жирных кислот (PUFA) с длинными цепями.

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

Важность PUFA бесспорна. Например, некоторые PUFA являются важными биологическими компонентами здоровых клеток и признаются «существенными» жирными кислотами, которые не могут быть синтезированы de novo у млекопитающих, а вместо этого должны быть получены или вместе с пищей, или с помощью дальнейшего уменьшения насыщенности и элонгации линолевой кислоты (LA; 18:2 омега-6) или α-линолевой кислоты (ALA; 18:3 омега-3); составными частями плазматических мембран клеток, в которых их можно обнаружить в таких формах, как фосфолипиды или триацилглицерины необходимыми для правильного развития (особенно при развитии головного мозга детей младшего возраста) и для формирования и восстановления ткани; и предшественниками нескольких биологически активных эйкозаноидов, важных для млекопитающих (например, простациклинов, эйкозаноидов, лейкотриенов, простагландинов). Кроме того, прием в большом количестве PUFA омега-3 с длинными цепями вызывает эффекты защиты сердечно-сосудистой системы (Dyerberg, J. et al., Amer. J. Clin. Nutr., 28: 958-966 (1975); Dyerberg, J. et al., Lancet, 2(8081): 117-119 (July 15, 1978); Shimokawa, H., World Rev. Nutr. Diet., 88: 100-108 (2001); von Schacky, C. and Dyerberg, J., World Rev. Nutr. Diet., 88: 90-99 (2001)). И в многочисленных других исследованиях подтверждается польза для здоровья в широком диапазоне, предоставляемая введением PUFA омега-3 и/или омега-6, против множества симптомов и заболеваний (например, астмы, псориаза, экземы, диабета, рака).

Ряд различных хозяев, включающих растения, водоросли, грибы и дрожжи, исследуются в качестве средств для коммерческого получения PUFA. С помощью генной инженерии продемонстрировано, что природные способности некоторых хозяев (даже тех, которые природно ограничены в продукции жирных кислот LA и ALA) можно в значительной степени изменить для получения в результате продукции на высоком уровне различных PUFA омега-3/омега 6 с длинными цепями. Независимо от того, является ли это результатом естественных возможностей или рекомбинантной технологии, для продукции арахидоновой кислоты (ARA; 20:4 омега-6), эйкозапентаеновой кислоты (EPA; 20:5 омега-3) и докозагексаеновой кислоты (DHA; 22:6 омега-3) может быть необходима экспрессия дельта-5-десатуразы.

Большинство идентифицированных до настоящего времени ферментов дельта-5-десатураз имеют первичную способность превращать дигомо-гамма-линоленовую кислоту (DGLA; 20:3 омега-6) в ARA, при этом вторичной активностью является превращение эйкозатетраеновой кислоты (ЕТА; 20:4 омега-3) в ЕРА (причем из ЕРА после реакции с дополнительной С20/22-элонгазой и дельта-4-десатуразой впоследствии синтезируется DHA). Дельта-5-десатураза играет роль как в пути с участием дельта-6-десатуразы/дельта-6-элонгазы (который главным образом обнаружен в водорослях, мхах, грибах, нематодах и у людей и который характеризуется продукцией гамма-линоленовой кислоты (GLA; 18:3 омега-6) и/или стеаридоновой кислоты (STA; 18:4 омега-3)), так и в пути с участием дельта-9-элонгазы/дельта-8-десатуразы (который функционирует в некоторых организмах, таких как жгутиковые, и который характеризуется продукцией эйкозадиеновой кислоты (EDA; 20:2 омега-6) и/или эйкозатриеновой кислоты (ETrA; 20:3 омега-3)) (фиг.1).

Основываясь на том, какую роль ферменты дельта-5-десатуразы играют в синтезе, например, ARA, EPA и DHA, прилагалось значительное усилие для идентификации и характеристики этих ферментов из различных источников. В качестве таковых, многочисленные дельта-5-десатуразы были раскрыты как в открытых источниках информации (например, № доступа в GenBank - AF199596; № AF226273, № AF320509, № AB072976, № AF489588, № AJ510244, № AF419297, № AF07879, № AF067654 и № AB022097), так и в патентных источниках информации (например, патенты США № 5972664 и 6075183). Также в находящейся в совладении и в процессе одновременного рассмотрения заявке, имеющей № предварительной заявки 60/801119 (поданной 17 мая 2006), раскрываются аминокислотная и нуклеотидная последовательности фермента дельта-5-десатуразы из вида CCMP626 рода Peridium, в то время как в находящейся в совладении и в процессе одновременного рассмотрения заявке, имеющей № предварительной заявки 60/915733 (ВВ1614) (поданной 3 мая 2007), раскрываются аминокислотная и нуклеотидная последовательности фермента дельта-5-десатуразы из Euglena anabaena.

Настоящее изобретение относится к идентификации и выделению дополнительных генов, кодирующих дельта-5-десатуразы из Euglena gracilis, которые могли бы быть пригодны для гетерологичной экспрессии в ряде организмов-хозяев для применения в продукции жирных кислот омега-3/омега-6.

КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к выделенному полинуклеотиду, включающему

(а) нуклеотидную последовательность, кодирующую полипептид, обладающий активностью дельта-5-десатуразы, причем полипептид обладает по меньшей мере 70%, 75%, 80%, 85%, 90%, 95% или 100% идентичности аминокислотной последовательности, на основе способа выравнивания Clustal W, при сравнении с аминокислотной последовательностью, представленной в SEQ ID NO: 2;

(b) нуклеотидную последовательность, кодирующую полипептид, обладающий активностью дельта-5-десатуразы, причем нуклеотидная последовательность обладает по меньшей мере 70%, 75%, 80%, 85%, 90%, 95% или 100% идентичности последовательности, на основе способа выравнивания BLASTN, при сравнении с нуклеотидной последовательностью, представленной в SEQ ID NO: 1 или SEQ ID NO: 3;

(с) нуклеотидную последовательность, кодирующую полипептид, обладающий активностью дельта-5-десатуразы, причем нуклеотидная последовательность гибридизуется в жестких условиях с нуклеотидной последовательностью, представленной в SEQ ID NO: 1 или SEQ ID NO: 3; или

(d) комплемент нуклеотидной последовательности (а), (b) или (с), причем комплемент и нуклеотидная последовательность состоят из одинакового числа нуклеотидов и комплементарны на 100%.

Во втором варианте осуществления настоящее изобретение относится к рекомбинантной ДНК-конструкции, включающей любой из выделенных полинуклеотидов по настоящему изобретению, функционально связанный с по меньшей мере одной регуляторной последовательностью.

В третьем варианте осуществления настоящее изобретение относится к клетке, содержащей в своем геноме рекомбинантную ДНК-конструкцию по настоящему изобретению. Такие клетки могут быть клетками растений или дрожжевыми клетками.

В четвертом варианте осуществления настоящее изобретение относится к способу трансформации клетки, включающему трансформацию клетки рекомбинантной конструкцией по настоящему изобретению или выделенным полинуклеотидом по настоящему изобретению и отбор тех клеток, которые трансформированы рекомбинантной конструкцией или выделенным полинуклеотидом.

В пятом варианте осуществления настоящее изобретение относится к трансгенному семени, содержащему в своем геноме рекомбинантную конструкцию по настоящему изобретению, или трансгенному семени, полученному от растения, полученного способом по настоящему изобретению. Также представляет интерес масло или побочные продукты, получаемые из таких трансгенных семян.

В шестом варианте осуществления настоящее изобретение относится к способу получения полиненасыщенных жирных кислот с длинными цепями в клетке растения, включающему

(а) трансформацию клетки рекомбинантной конструкцией по настоящему изобретению; и

(b) отбор тех трансформированных клеток, которые продуцируют полиненасыщенные жирные кислоты с длинными цепями.

В седьмом варианте осуществления настоящее изобретение относится к способу получения по меньшей мере одной полиненасыщенной жирной кислоты в клетке растения с масличными семенами, включающему

(а) трансформацию клетки растения с масличными семенами первой рекомбинантной ДНК-конструкцией, включающей выделенный полинуклеотид, кодирующий по меньшей мере один полипептид дельта-5-десатуразы, функционально связанный с по меньшей мере одной регуляторной последовательностью, и по меньшей мере одной дополнительной рекомбинантной ДНК-конструкцией, включающей выделенный полинуклеотид, функционально связанный с по меньшей мере одной регуляторной последовательностью, кодирующий полипептид, выбираемый из группы, состоящей из дельта-4-десатуразы, дельта-5-десатуразы, дельта-6-десатуразы, дельта-8-десатуразы, дельта-12-десатуразы, дельта-15-десатуразы, дельта-17-десатуразы, дельта-9-десатуразы, дельта-9-элонгазы, С14/16-элонгазы, С16/18-элонгазы, С18/20-элонгазы и С20/22-элонгазы;

(b) регенерацию растения с масличными семенами из трансформированной клетки стадии (а); и

(с) отбор тех полученных от растений стадии (b) семян, которые имеют измененный уровень полиненасыщенных жирных кислот по сравнению с уровнем в семенах, полученных от не трансформированного растения с масличными семенами.

В восьмом варианте осуществления настоящее изобретение относится к растению с масличными семенами, содержащему в своем геноме рекомбинантную конструкцию по настоящему изобретению. Подходящие растения с масличными семенами включают, без ограничения, сою, виды Brassica, подсолнечник, кукурузу, хлопок, лен и сафлор.

В девятом варианте осуществления настоящее изобретение относится к растению с масличными семенами, содержащему

(а) первую рекомбинантную ДНК-конструкцию, включающую выделенный полинуклеотид, кодирующий по меньшей мере один полипептид дельта-5-десатуразы, функционально связанный с по меньшей мере одной регуляторной последовательностью, и

(b) по меньшей мере одну дополнительную рекомбинантную ДНК-конструкцию, включающую выделенный полинуклеотид, функционально связанный с по меньшей мере одной регуляторной последовательностью, кодирующий полипептид, выбираемый из группы, состоящей из дельта-4-десатуразы, дельта-5-десатуразы, дельта-6-десатуразы, дельта-8-десатуразы, дельта-12-десатуразы, дельта-15-десатуразы, дельта-17-десатуразы, дельта-9-десатуразы, дельта-9-элонгазы, С14/16-элонгазы, С16/18-элонгазы, С18/20-элонгазы и С20/22-элонгазы.

Также представляют интерес трансгенные семена, полученные из таких растений с масличными семенами, а также масло или побочные продукты, получаемые из этих трансгенных семян. Предпочтительным побочным продуктом является лецитин.

В десятом варианте осуществления настоящее изобретение относится к пищевому продукту или корму, включающему масло или семя по настоящему изобретению, или пищевому продукту или корму, включающему ингредиент, получаемый в процессе переработки семян.

В одиннадцатом варианте осуществления настоящее изобретение относится к потомству растений, полученному от растения, полученного способом по настоящему изобретению, или растения с масличными семенами по настоящему изобретению.

КРАТКОЕ ОПИСАНИЕ ФИГУР И СПИСКА ПОСЛЕДОВАТЕЛЬНОСТЕЙ

На фиг. 1 иллюстрируется путь биосинтеза жирных кислот омега-3/омега-6.

На фиг. 2 показана хроматограмма липидного профиля экстракта клеток Euglena gracilis, описанного в примере 1.

На фиг. 3 показана часть выравнивания белков дельта-5-десатураз и белков дельта-8-десатураз и между ними, используя анализ Clustal W (программа MegAlignTM программного обеспечения DNASTAR).

На фиг. 4 графически представлена взаимосвязь между SEQ ID NO: 1, 2, 4, 5, 6, 8 и 10, каждая из которых относится к дельта-5-десатуразе Euglena gracilis.

На фиг. 5А иллюстрируется стратегия клонирования, используемая для амплификации гена дельта-5-десатуразы Euglena gracilis (EgD5). На фиг. 5В представлена карта плазмиды pZUF17, в то время как на фиг. 5С представлена карта плазмиды pDMW367.

На фиг. 6 предоставляются карты следующих плазмид: (А) pKUNF12T6E; (B) pEgD5S и (C) pDMW369.

На фиг. 7 показано сравнение последовательности ДНК гена дельта-5-десатуразы Euglena gracilis (обозначенного «EgD5»; SEQ ID NO: 1) и синтетического гена (обозначенного «EgD5S»; SEQ ID NO: 3), оптимизированного в отношении кодонов для экспрессии в Yarrowia lipolytica.

На фиг. 8А и 8В показано выравнивание Clustal V (с использованием параметров по умолчанию) дельта-8-десатуразы Pavlova lutheri (SEQ ID NO: 18), дельта-8-десатуразы Pavlova salina (SEQ ID NO: 64), дельта-8-десатуразы Euglena gracilis (SEQ ID NO: 16) и двух различных дельта-6-десатураз жирных кислот Rhizopus stolonifer (SEQ ID NO: 51 и 63).

На фиг. 9 представлена карта плазмиды pY98.

На фиг. 10A представлены профили жирных кислот Yarrowia lipolytica, который экспрессирует pY98 (SEQ ID NO: 76; включающую ген дельта-5-десатуразы Mortierella alpina (обозначенный «MaD5»)), или pDMW367 (SEQ ID NO: 23; включающую ген дельта-5-десатуразы Euglena gracilis, обозначенный «EgD5») и которому обеспечивали различные субстраты. На фиг. 10В представлено сравнение специфичности MaD5 и EgD5 в отношении субстратов омега-3 и омега-6.

На фиг. 11 представлены карты следующих плазмид: (А) pKR916; (B) pKR1037 и (C) pKR328.

На фиг. 12А представлены средние профили жирных кислот для десяти случаев наличия наибольшей дельта-5-десатуразной активности, когда в зародыши сои трансформируют фермент Mortierella alpina (MaD5). На фиг. 12В представлены средние профили жирных кислот для десяти случаев наличия наибольшей дельта-5-десатуразной активности, когда в зародыши сои трансформируют фермент Euglena gracilis (EgD5). Жирные кислоты определяют как 16:0 (пальмитат), 18:0 (стеариновая кислота), 18:1 (олеиновая кислота), LA, ALA, EDA, SCI, DGLA, ARA, ERA, JUP, ЕТА и ЕРА. Жирные кислоты, перечисленные как «другие», включают 18:2 (5,9), GLA, STA, 20:0, 20:1(11), 20:2 (7,11) или 20:2 (8,11) и DPA. Относительное содержание каждой из этих «других» жирных кислот составляет менее 3% от жирных кислот в целом. Составы жирных кислот для отдельного зародыша выражали в виде весового процента (вес%) от жирных кислот в целом, а средний состав жирных кислот представляет собой среднее шести отдельных зародышей для каждого случая. На фиг. 12В показано, что активность EgD5 в зародышах сои является очень высокой, при этом среднее превращение (% правильной дельта-5-десатурации) составляет от 77% до 99% в десяти случаях наличия наибольшей дельта-5-десатуразной активности.

На фиг. 13 представлена активность дельта-5-десатуразы в отношении «правильных» субстратов («% правильной дельта-5-десатурации»), откладываемая по X-оси, в сравнении с активностью дельта-5-десатуразы в отношении «неправильных» субстратов («% неправильной дельта-5-десатурации»), откладываемой по Y-оси, для MaD5 (смотри фиг. 12А) и EgD5 (смотри фиг. 12В). По сравнению с MaD5 специфичность EgD5 в отношении субстратов больше в отношении «правильных» субстратов по сравнению с «неправильными» субстратами.

Полнее настоящее изобретение можно понять из следующего подробного описания и описаний сопроводительных последовательностей, составляющих часть настоящей заявки.

Следующие последовательности соответствуют 37 C.F.R. § 1.821-1.825 («требованиям к заявкам на патенты, содержащим сообщения о нуклеотидных последовательностях и/или аминокислотных последовательностях - правилам для последовательностей») и согласуются со стандартом ST.25 (1998) Всемирной организации по защите интеллектуальной собственности (WIPO) и требованиями к списку последовательностей Европейского патентного ведомства и РСТ (правилами 5.2 и 49.5 (a-bis), и разделом 208 и приложением С Административных инструкций). Для символов и формата, используемых для данных в виде нуклеотидных и аминокислотных последовательностей, соблюдаются правила, изложенные в 37 C.F.R. § 1.822.

SEQ ID NO: 1-26, 48, 49, 51-54, 61-64, 67-72 и 75-76 представляют собой ORF, кодирующие гены, или белки (или их части), или плазмиды, определенные в таблице 1.

Таблица 1 Краткое изложение SEQ ID NO нуклеиновых кислот и белков
Описание и сокращение НуклеиноваякислотаSEQ ID NO. БелокSEQ ID NO.
Дельта-5-десатураза Euglena gracilis («EgD5») 1(1350 п.о.) 2(449 АК)
Синтетическая дельта-5-десатураза,происходящая из Euglena gracilis, оптимизированная в отношении кодонов дляэкспрессии в Yarrowia lipolytica («EgD5S») 3(1350 п.о.) 2(449 АК)
Фрагмент EgD5 Euglena gracilis в pT-F10-1 4(590 п.о.) 5(196 АК)
Фрагмент EgD5 Euglena gracilis вpT-EgD5-5'C2 6(797 п.о.) -
5' последовательность EgD5 Euglena gracilis, родственная SEQ ID NO: 4 7(559 п.о.) -
Фрагмент EgD5 Euglena gracilis вpT-EgD5-5'2nd 8(273 п.о.) -
5' последовательность EgD5 Euglena gracilis, родственная SEQ ID NO: 6 9(20 п.о.) -
Фрагмент EgD5 Euglena gracilis вpT-EgD5-3' 10(728 п.о.) -
3' последовательность EgD5 Euglena gracilis, родственная SEQ ID NO: 4 11(464 п.о.) -
Дельта-5-десатураза Pythium irregulare (№ доступа в GenBank - AAL13311) - 12(456 АК)
Дельта-5-десатураза Phytophthora megasperma (№ доступа в GenBank - CAD53323) - 13(477 АК)
Дельта-5-десатураза Phaeodactylum tricornutum (№ доступа в GenBank - AAL92562) - 14(469 АК)
Дельта-5-десатураза Dictyostelium discoideum (№ доступа в GenBank - XP_640331) - 15(467 АК)
Дельта-8-десатураза Euglena gracilis (публикации РСТ-заявок № WO 2006/012325и WO 2006/012326) - 16(421 АК)
Дельта-8-десатураза Pavlova lutheri (CCMP459) 17(1269 п.о.) 18(423 АК)
Консервативный район 1 - 19(7 АК)
Консервативный район 2 - 20(7 АК)
Дельта-8-десатураза сфинголипидов Thalassiosira pseudonana (№ доступа в GenBank - AAX14502) - 21(476 АК)
Плазмида pZUF17 22(8165 п.о.) -
Плазмида pDMW367 23(8438 п.о.) -
Плазмида pKUNF12T6E 24(12649 п.о.) -
Синтетический ген С18/20-элонгазы,происходящий из Thraustochytrium aureum (патент США № 6677145),оптимизированный в отношении кодонов дляэкспрессии в Yarrowia lipolytica («EL2S») 25(819 п.о.) 26(272 АК)
Плазмида pEgD5S 48(4070 п.о.) -
Плазмида pDMW369 49(8438 п.о.) -
Дельта-6-десатураза жирных кислот Rhizopus stolonifer (NCBI № доступа - AAX22052) - 51(459 АК)
Дельта-8-десатураза Pavlova lutheri- часть вставки кДНК из клонаeps1c.pk002.f22(5'-конец вставки кДНК) 52(695 п.о.) -
Дельта-8-десатураза Pavlova lutheri- полностью секвенированная ESTeps1c.pk002.f22:fis(полная последовательность вставки) 53(1106 п.о.) -
Дельта-8-десатураза Pavlova lutheri- трансляция нуклеотидов 1-864полностью секвенированной ESTeps1c.pk002.f22:fis(полной последовательности вставки;SEQ ID NO:53) - 54(287 АК)
Дельта-8-десатураза Pavlova lutheri- полная 5'-концевая последовательностьот прогулки по геному 61(1294 п.о.) -
Дельта-8-десатураза Pavlova lutheri- собранная последовательность 62(1927 п.о.) -
Дельта-6-десатураза жирных кислот Rhizopus stolonifer (NCBI № доступа - ABB96724) - 63(459 АК)
Дельта-8-десатураза Pavlova salina - 64(427 АК)
Дельта-5-десатураза Mortierella alpina 67(1338 п.о.) 66(446 АК)
Плазмида pY5-22 69(6473 п.о.) -
Плазмида pY5-22GPD 70(6970 п.о.) -
Промотор глицеральдегид-3-фосфат-дегидрогеназы Yarrowia lipolytica (GPD) 71(968 п.о.) -
Плазмида PYZDE2-S 72(8630 п.о.) -
Плазмида PKR136 75(6339 п.о.) -
Плазмида pY98 76(8319 п.о.) -
Дельта-9-элонгаза Euglena gracilis («EgD9е») 77(774 п.о.) -
Дельта-8-десатураза Euglena gracilis («EgD8») 78(1263 п.о.) -
Плазмида pKR906 81(4311 п.о.) -
Плазмида pKR72 82(7085 п.о.) -
Плазмида pKS102 83(2540 п.о.) -
Плазмида pKR197 84(4359 п.о.) -
Плазмида pKR911 85(5147 п.о.) -
Плазмида pKR680 86(6559 п.о.) -
Плазмида pKR913 87(9014 п.о.) -
Плазмида pKR767 88(5561 п.о.) -
Плазмида pKR916 89(11889 п.о.) -
Плазмида pKR974 90(5661 п.о.) -
Плазмида pKR1032 91(5578 п.о.) -
Плазмида pKR1037 92(11907 п.о.) -
Плазмида pKR328 93(8671 п.о.) -
Дельта-5-десатураза Saprolegnia diclina («SdD5») 94(1413 п.о.) -

SEQ ID NO: 27-30 соответствуют вырожденным олигонуклеотидным праймерам 5-1А, 5-1В, 5-1С и 5-1D соответственно, которые кодируют консервативный район 1.

SEQ ID NO: 31-34 соответствуют вырожденным олигонуклеотидным праймерам 5-5AR, 5-5BR, 5-5СR и 5-5DR соответственно, которые кодируют консервативный район 2.

SEQ ID NO: 35-40 соответствуют праймерам ODMW480, CDSIII 5', ODMW479, DNR CDS 5', YL791 и YL792 соответственно, используемым для 5'-RAGE.

SEQ ID NO: 41-43 соответствуют праймерам ODMW469, AUAP и ODMW470, соответственно, используемым для 3'-RAGE.

SEQ ID NO: 44-47 соответствуют праймерам YL794, YL797, YL796 и YL795 соответственно, используемым для амплификации полноразмерной кДНК EgD5.

SEQ ID NO: 50 соответствует праймеру T7, используемому для секвенирования библиотеки кДНК Pavlova lutheri (CCMP459).

SEQ ID NO: 55 и 56 соответствуют праймерам SeqE и SeqW соответственно, используемым для секвенирования клонов Pavlova lutheri (CCMP459).

SEQ ID NO: 57 и 58 соответствуют универсальному праймеру AP1 и праймеру GSP PvDES соответственно, используемым для амплификации геномной ДНК Pavlova lutheri (CCMP459).

SEQ ID NO: 59 и 60 соответствуют праймерам M13-28Rev и PavDESseq соответственно, используемым для секвенирования геномных вставок Pavlova lutheri (CCMP459).

SEQ ID NO: 65 и 66 соответствуют праймеру AP и олигонуклеотидному праймеру Smart IV соответственно, используемым для синтеза кДНК Pavlova lutheri.

SEQ ID NO: 73 и 74 соответствуют праймерам GPDsense и GPDantisense соответственно, используемым для амплификации промотора GPD.

SEQ ID NO: 79 и 80 соответствуют праймерам oEugEL1-1 и oEugEL1-2 соответственно, используемым для амплификации дельта-9-элонгазы Euglena gracilis (EgD9e).

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Все упоминаемые здесь патенты, заявки на патенты и публикации полностью включаются в настоящее описание посредством ссылки. Они, в частности, включают следующие находящиеся в процессе одновременного рассмотрения заявки правопреемников заявителей: патент США № 7125672, патент США № 7189559, патент США № 7192762, патент США № 7198937, патент США № 7202356, заявки на патенты США № 10/840579 и № 10/840325 (поданные 6 мая 2004), заявку на патент США № 10/869630 (поданную 16 июня 2004), заявку на патент США № 10/882760 (поданную 1 июля 2004), заявки на патенты США № 10/985254 и № 10/985691 (поданные 10 ноября 2004), заявку на патент США № 11/024544 (поданную 29 декабря 2004), заявку на патент США № 11/166993 (поданную 24 июня 2005), заявку на патент США № 11/183664 (поданную 18 июля 2005), заявку на патент США № 11/185301 (поданную 20 июля 2005), заявку на патент США № 11/190750 (поданную 27 июля 2005), заявку на патент США № 11/198975 (поданную 8 августа 2005), заявку на патент США № 11/225354 (поданную 13 сентября 2005), заявку на патент США № 11/253882 (поданную 19 октября 2005), заявки на патенты США № 11/264784 и № 11/264737 (поданные 1 ноября 2005), заявку на патент США № 11/265761 (поданную 2 ноября 2005), заявку на патент США № 11/737772 (поданную 20 апреля 2007), заявку на патент США № 11/787772 (поданную 17 апреля 2007), заявку на патент США № 11/740298 (поданную 26 апреля 2007), заявки на патенты США № 60/801172 и № 60/801119 (поданные 17 мая 2006), заявку на патент США № 60/853563 (поданную 23 октября 2006), заявку на патент США № 60/855177 (поданную 30 октября 2006), заявки на патенты США № 11/601563 и № 11/601564 (поданные 16 ноября 2006), заявку на патент США № 11/635258 (поданную 7 декабря 2006), заявку на патент США № 11/613420 (поданную 20 декабря 2006), заявку на патент США № 60/909790 (поданную 3 апреля 2007), заявку на патент США № 60/911925 (поданную 16 апреля 2007), заявку на патент США № 60/910831 (поданную 10 апреля 2007) и заявку на патент США № 60/915733 (ВВ1614) (поданную 3 мая 2007). Они, кроме того, включают следующие находящиеся в процессе одновременного рассмотрения заявки правопреемников заявителей: публикацию заявки на патент № 2005/0136519, касающуюся продукции PUFA в растениях, и патент США № 7129089, касающийся промотора аннексина и его применения для экспрессии трансгенов в растениях.

Как используются в настоящем описании и в прилагаемой формуле изобретения, формы единственного числа включают формы множественного числа, если только из контекста ясно следует иное. Таким образом, например, ссылка на «растение» включает множество таких растений, ссылка на «клетку» включает одну или несколько клеток и их эквивалентов, известных квалифицированным в данной области техники специалистам, и т.д.

В соответствии с данным изобретением авторы идентифицируют новый фермент дельта-5-десатуразу Euglena gracilis и ген, кодирующий этот фермент, который можно использовать для манипуляции биохимическими путями для получения целебных PUFA. Таким образом, данное изобретение находит множество применений.

Полученные с помощью раскрытой здесь методологии PUFA, или их производные, можно использовать в качестве диетических заместителей, или добавок, в частности, составов для детей младшего возраста, для пациентов, подвергаемых внутривенному кормлению, или для профилактики или лечения нарушения питания. В альтернативном случае очищенные PUFA (или их производные) можно включить в кулинарные масла, жиры или маргарины, приготовленные так, что при стандартном использовании реципиент будет получать желаемое количество для добавки к рациону. PUFA можно также включить в составы для детей младшего возраста, дополнения к питанию или другие пищевые продукты, и они могут найти применение в качестве противовоспалительных или понижающих холестерин агентов. Необязательно композиции могут использоваться для фармацевтического применения (для человека или ветеринарного).

Дополнение рационов людей или животных PUFA, получаемых рекомбинантным способом, может привести к увеличению уровней добавленных PUFA, а также продуктов их метаболизма. Например, лечение ЕРА может привести не только к увеличению уровней ЕРА, но также нижеследующих продуктов ЕРА, таких как эйкозаноиды (т.е. простагландины, лейкотриены, тромбоксаны). Сложные регуляторные механизмы могут сделать желательным объединение различных PUFA или добавление различных конъюгатов PUFA для того, чтобы предотвратить, контролировать или преодолеть такие механизмы для достижения желаемых уровней конкретных PUFA у индивидуума.

Определения

В настоящем описании используется ряд терминов и сокращений. Предоставляются следующие определения.

«Открытая рамка считывания» - сокращенно ORF.

«Полимеразная цепная реакция» - сокращенно ПЦР.

«Американская коллекция типовых культур» - сокращенно АТСС.

«Полиненасыщенная жирная кислота(ы)» - сокращенно PUFA.

«Триацилглицерины» - сокращенно TAG.

Используемый здесь термин «изобретение» или «настоящее изобретение», как предусматривается, не ограничивается каким-либо одним конкретным вариантом осуществления по настоящему изобретению, а применяется обычно к любому и всем вариантам осуществления по настоящему изобретению, охарактеризованным в формуле изобретения и описании.

Термин «жирные кислоты» относится к длинноцепочечным алифатическим кислотам (алкановым кислотам) с варьирующими длинами цепей, от приблизительно С12 до С22 (хотя известны кислоты как с более длинными, так и более короткими цепями). Преобладающие длины цепей находятся между С16 и С22. Структура жирных кислот представляется с помощью простой системы обозначений «Х:Y», где Х представляет собой общее число атомов углерода (С) в конкретной жирной кислоте, а Y представляет собой число двойных связей. Дополнительные детали, касающиеся дифференциации между «насыщенными жирными кислотами» и «ненасыщенными жирными кислотами», между «мононенасыщенными жирными кислотами» и «полиненасыщенными жирными кислотами» (или «PUFA») и между «жирными кислотами омега-6» (омега-6 или n-6) и «жирными кислотами омега-3» (омега-3 или n-3), предоставлены в публикации заявки на патент США № 2005/0136519.

Жирные кислоты описываются здесь с помощью простой системы обозначений «Х:Y», где Х представляет собой общее число атомов углерода (С) в конкретной жирной кислоте, а Y представляет собой число двойных связей. Число, следующее за обозначением жирной кислоты, указывает положение двойной связи от карбоксильного конца жирной кислоты с аффиксом «с» для цис-конфигурации двойной связи (например, пальмитиновая кислота (16:0), стеариновая кислота (18:0), олеиновая кислота (18:1, 9с), петроселиновая кислота (18:1, 6с), LA (18:2, 9c, 12c), GLA (18:3, 6c, 9c, 12c) и ALA (18:3, 9c, 12c, 15c). Если не указано иное, 18:1, 18:2 и 18:3 относятся к олеиновой кислоте, LА и ALA соответственно. Если специально не написано иное, предполагается, что двойные связи находятся в цис-конфигурации. Например, предполагается, что двойные связи в 18:2 (9,12) находятся в цис-конфигурации.

Номенклатура, используемая для описания PUFA в настоящем описании, продемонстрирована ниже в таблице 2. В колонке, озаглавленной «Сокращенное обозначение», используется ссылочная омега-система для указания числа атомов углерода, числа двойных связей и положение двойной связи, ближайшей к омега-углероду, считая от омега-углерода (которому присваивают номер 1 для этой цели). В остальной части таблицы суммируются общепринятые названия жирных кислот омега-3 и омега-6 и их предшественников, сокращения, которые будут использоваться на протяжении описания, и химическое название каждого соединения.

Таблица 2 Номенклатура полиненасыщенных жирных кислот и предшественников
Общепринятоеназвание Сокращение Химическое название Сокращенноеобозначение
Миристиновая - Тетрадекановая 14:0
Пальмитиновая пальмитат Гексадекановая 16:0
Пальмитолеиновая - 9-гексадеценовая 16:1
Стеариновая - Октадекановая 18:0
Олеиновая - цис-9-октадеценовая 18:1
Линолевая LA цис-9,12-октадекадиеновая 18:2омега-6
γ-Линолевая GLA цис-6,9,12-октадекатриеновая 18:3омега-6
Эйкозадиеновая EDA цис-11,14-эйкозадиеновая 20:2омега-6
Дигомо-γ-линолевая DGLA цис-8,11,14-эйкозатриеновая 20:3омега-6
Арахидоновая ARA цис-5,8,11,14-эйкозатетраеновая 20:4омега-6
α-Линоленовая ALA цис-9,12,15-октадекатриеновая 18:3омега-6
Стеаридоновая STA цис-6,9,12,15-октадекатетраеновая 18:4омега-3
Эйкозатриеновая ETrA илиERA цис-11,14,17-эйкозатриеновая 20:3омега-3
Сциадоновая SCI цис-5,11,14-эйкозатриеновая 20:3bомега-6
Юнипероновая JUP цис-5,11,14,17-эйкозатетраеновая 20:4bомега-3
Эйкозатетраеновая ETA цис-8,11,14,17-эйкозатетраеновая 20:4омега-3
Эйкозапентаеновая EPA цис-5,8,11,14,17-эйкозапентаеновая 20:5омега-3
Докозапентаеновая DPA цис-7,10,13,16,19-докозапентаеновая 22:5омега-3
Докозагексаеновая DHA цис-4,7,10,13,16,19-докозагексаеновая 22:6омега-3

Термины «триацилглицерин», «масло» или «TAG» относятся к нейтральным липидам, состоящим из трех ацильных остатков жирных кислот, этерифицированных до молекулы глицерина (и такие термины будут использоваться здесь взаимозаменяемо на протяжении описания по настоящему изобретению). Такие масла могут содержать длинноцепочечные PUFA, а также более короткие насыщенные и ненасыщенные жирные кислоты и насыщенные жирные кислоты с более длинными цепями. Таким образом, «биосинтез масла», как правило, относится к синтезу TAG в клетке.

«Процент (%) PUFA в общей липидной и масляной фракциях» относится к проценту PUFA относительно жирных кислот в целом в этих фракциях. Термин «общая липидная фракция» или «липидная фракция» относится к сумме всех липидов (т.е нейтральных и полярных) в содержащем или продуцирующем масло организме, включая, таким образом, те липиды, которые находятся в фосфатидилхолиновой (РС) фракции, фосфатидилэтаноламиновой (РЕ) фракции и триацилглицериновой (TAG или масляной) фракции. Однако термины «липид» и «масло» будут использоваться взаимозаменяемо на протяжении этого описания.

Метаболический путь или биосинтетический путь, в биохимическом смысле, можно рассматривать как ряд химических реакций, происходящих в клетке, катализируемых ферментами, с достижением или образованием метаболического продукта, используемого или сохраняемого клеткой, или инициации другого метаболического пути (затем называемой этапом создания потока). Многие из этих путей являются сложными и включают модификацию шаг за шагом первоначального вещества с формированием продукта, имеющего точную химическую структуру, которая является желаемой.

Термин «путь биосинтеза PUFA» относится к метаболическому процессу, который превращает олеиновую кислоту в LA, EDA, GLA, DGLA, ARA, ALA, STA, ETrA, ETA, EPA, DPA и DHA. Этот процесс хорошо описан в литературе (например, смотри публикацию РСТ-заявки № WO 2006/052870). Вкратце, в этот процесс вовлечена элонгация углеродной цепи благодаря добавлению атомов углерода и уменьшения насыщенности молекулы благодаря добавлению двойных связей, с помощью ряда специальных ферментов уменьшения насыщенности и элонгации (т.е. «ферментов пути биосинтеза PUFA»), присутствующих в мембране эндоплазматического ретикулума. Более конкретно «ферменты пути биосинтеза PUFA» относятся к любому из следующих ферментов (и генов, которые кодируют указанные ферменты), связанных с биосинтезом PUFA, включающих дельта-4-десатуразу, дельта-5-десатуразу, дельта-6-десатуразу, дельта-12-десатуразу, дельта-15-десатуразу, дельта-17-десатуразу, дельта-9-десатуразу, дельта-8-десатуразу, дельта-9-элонгазу, С14/16-элонгазу, С16/18-элонгазу, С18/20-элонгазу и С20/22-элонгазу.

Термин «путь биосинтеза жирных кислот омега-3/омега-6» относится к множеству генов, которые при экспрессии в соответствующих условиях кодируют ферменты, которые катализируют продукцию одной из двух или обеих жирных кислот омега-3 и омега-6. Как правило, гены, вовлеченные в путь биосинтеза жирных кислот омега-3/омега-6, кодируют ферменты пути биосинтеза PUFA. На фиг. 1 проиллюстрирован характерный путь, обеспечивающий превращение миристиновой кислоты через различные промежуточные химические соединения в DHA, который демонстрирует, каким образом обе жирные кислоты омега-3 и омега-6 могут быть продуцированы из общего источника. В природе путь делится на две части, причем одна часть будет создавать жирные кислоты омега-3, а другая часть - только жирные кислоты омега-6. Та часть, которая создает только жирные кислоты омега-3, будет упоминаться здесь как путь биосинтеза жирных кислот омега-3, в то время как та часть, которая создает только жирные кислоты омега-6, будет упоминаться здесь как путь биосинтеза жирных кислот омега-6.

Термин «функциональный», используемый здесь в контексте с путем биосинтеза жирных кислот омега-3/омега-6, означает, что некоторые (или все) гены в этом пути экспрессируют активные ферменты, приводящие к in vivo катализу или превращению субстрата. Следует понимать, что термин «путь биосинтеза жирных кислот омега-3/омега-6» или «функциональный путь биосинтеза жирных кислот омега-3/омега-6» не подразумевает, что необходимы все гены, перечисленные в вышеприведенном параграфе, поскольку для ряда продуктов жирных кислот будет только необходима экспрессия подмножества генов этого пути.

Термин «путь с участием дельта-6-десатуразы/дельта-6-элонгазы» относится к пути биосинтеза PUFA, который минимально включает по меньшей мере одну дельта-6-десатуразу и по меньшей мере одну С18/20-элонгазу, делая, таким образом, возможным биосинтез DGLA и/или ETA из LA и ALA соответственно с GLA и/или STA в качестве промежуточных жирных кислот. При экспрессии других десатураз и элонгаз могут также синтезироваться ARA, EPA, DPA и DHA.

Термин «путь с участием дельта-9-элонгазы/дельта-8-десатуразы» относится к пути биосинтеза PUFA, который минимально включает по меньшей мере одну дельта-9-элонгазу и по меньшей мере одну дельта-8-десатуразу, делая, таким образом, возможным биосинтез DGLA и/или ETA из LA и ALA соответственно с EDA и/или ETrA в качестве промежуточных жирных кислот. При экспрессии других десатураз и элонгаз могут также синтезироваться ARA, EPA, DPA и DHA.

Термин «промежуточная жирная кислота» относится к любой жирной кислоте, продуцируемой в пути метаболизма жирных кислот, которая может далее превратиться в намеченный продукт в виде жирной кислоты в этом пути под действием других ферментов метаболического пути. Например, когда продуцируется ЕРА с использованием пути с участие