Способ и устройство для охлаждения потока углеводородов

Иллюстрации

Показать все

Изобретение относится к области переработки природного газа. Способ охлаждения потока природного газа осуществляют следующим образом. Поток (10) смешанного хладагента, включающий первый смешанный хладагент, пропускают через один или большее количество теплообменников (12) с получением охлажденного потока (20) смешанного хладагента. По меньшей мере, часть охлаждающего потока (30), включающего второй смешанный хладагент, расширяют (14) с получением одного или более расширенных охлаждающих потоков (40а), из которых, по меньшей мере, один может быть пропущен через один или большее количество теплообменников (12) для охлаждения потока (10) смешанного хладагента с получением тем самым потока (20) смешанного хладагента, который используют для охлаждения (22) потока (70) углеводородов. Непрерывно контролируют температуру (Т1) и расход (F1), по меньшей мере, части охлажденного потока (20) смешанного хладагента, и непрерывно контролируют расход (F2) потока (30), используя данные по расходу F1 и температуре Т1. Использование изобретения позволит повысить точность и скорость регулирования, повысить эффективность работы компрессора. 4 н. и 14 з.п. ф-лы, 4 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к способу и устройству для охлаждения, по усмотрению сжижения, потока углеводородов, в частности, но не исключительно, потока природного газа.

Уровень техники

Известны различные способы сжижения потока природного газа с получением в результате сжиженного природного газа (СПГ). Сжижение потока природного газа желательно по ряду причин. К примеру, природный газ легче хранить и транспортировать на большие расстояния в виде жидкости, а не в газообразном состоянии, поскольку он занимает меньший объем, и отсутствует необходимость его хранения при высоком давлении.

В патентном документе US 4404008 описан способ охлаждения и сжижения потока газа богатого метаном, который обменивается теплотой в противотоке с хладагентом, включающим единственную компоненту, например, пропан, а затем с многокомпонентным хладагентом, например, с низшими углеводородами. Однокомпонентный хладагент используют также для охлаждения многокомпонентного хладагента после сжатия упомянутого многокомпонентного хладагента. Схема, представленная в патентном документе US 4404008, как теперь считается, отражает общепринятый способ сжижения природного газа, согласно которому многокомпонентный хладагент предварительно охлаждают однокомпонентным хладагентом путем их пропускания через один и тот же теплообменник.

Задача изобретения по патентному документу US 4404008 заключается в перераспределении тепловой нагрузки с ее передачей от контура циркуляции многокомпонентного хладагента контуру циркуляции однокомпонентного хладагента. Это достигается за счет использования в контуре циркуляции многокомпонентного хладагента промежуточного охлаждения.

Однако управление контуром предварительного охлаждения с многокомпонентным хладагентом при использовании существующих способов может быть неудовлетворительным.

Согласно одному аспекту настоящее изобретение обеспечивает способ охлаждения потока углеводородов, например, потока природного газа, включающий, по меньшей мере, следующие стадии:

(a) обеспечение потока смешанного хладагента, включающего первый смешанный хладагент;

(b) пропускание потока смешанного хладагента через один или большее количество теплообменников с получением охлажденного потока смешанного хладагента;

(c) непрерывный контроль температуры (Т1) и расхода (F1), по меньшей мере, части охлажденного потока смешанного хладагента;

(d) обеспечение охлаждающего потока, включающего второй смешанный хладагент;

(e) непрерывный контроль расхода (F2), по меньшей мере, части охлаждающего потока, обеспечиваемого на стадии (d);

(f) расширение, по меньшей мере, части охлаждающего потока с получением одного или большего количества расширенных охлаждающих потоков;

(g) пропускание, по меньшей мере, одного из одного или большего количества расширенных охлаждающих потоков через один или более теплообменников стадии (b) с охлаждением потока смешанного хладагента, обеспечивая тем самым охлажденный поток смешанного хладагента;

(h) регулирование расхода (F2) охлаждающего потока с использованием результатов измерения расхода (F1) и температуры (Т1), по меньшей мере, части охлажденного смешанного потока хладагента;

(i) использование охлажденного потока смешанного хладагента для охлаждения потока углеводородов.

В соответствии с другим аспектом настоящее изобретение обеспечивает устройство для охлаждения потока углеводородов, например, потока природного газа, содержащее, по меньшей мере:

средство контроля расхода для непрерывного контроля расхода (F2), по меньшей мере, части охлаждающего потока, включающего второй смешанный хладагент;

одно или большее количество расширительных устройств для расширения, по меньшей мере, части охлаждающего потока с получением тем самым одного или более расширенных охлаждающих потоков;

один или большее количество теплообменников, размещенных для приема и охлаждения потока смешанного хладагента, включающего первый смешанный хладагент, в противотоке, по меньшей мере, с одним из одного или большего количества расширенных охлаждающих потоков, с получением в результате охлажденного потока смешанного хладагента;

средство контроля температуры и средство контроля расхода для осуществления непрерывного контроля температуры (Т1) и расхода (F1), по меньшей мере, части охлажденного потока смешанного хладагента;

блок управления для регулирования расхода (F2) охлаждающего потока, используя измеренные величины расхода (F1) и температуры (Т1), по меньшей мере, части охлажденного потока смешанного хладагента;

по меньшей мере, один основной теплообменник, размещенный ниже по потоку от одного или большего количества указанных теплообменников, служащий для приема охлажденного потока смешанного хладагента и потока углеводородов и для охлаждения потока углеводородов в противотоке с охлажденным смешанным потоком хладагента.

Согласно еще одному аспекту изобретение обеспечивает способ охлаждения потока смешанного хладагента, включающий, по меньшей мере, стадии:

(a) обеспечения потока смешанного хладагента, включающего первый смешанный хладагент;

(b) пропускание потока смешанного хладагента через один или большее количество теплообменников с получением охлажденного потока смешанного хладагента;

(c) непрерывный контроль температуры (Т1) и расхода (F1), по меньшей мере, части охлажденного потока смешанного хладагента;

(d) обеспечение охлаждающего потока, включающего второй смешанный хладагент;

(e) непрерывный контроль расхода (F2), по меньшей мере, части охлаждающего потока, полученного на стадии (d);

(f) расширение, по меньшей мере, части охлаждающего потока с получением одного или большего количества расширенных охлаждающих потоков;

(g) пропускание, по меньшей мере, одного из одного или большего количества расширенных охлаждающих потоков через один или более теплообменников стадии (b) для охлаждения потока смешанного хладагента с получением в результате потока охлажденного смешанного хладагента;

(h) регулирование расхода (F2) охлаждающего потока, используя измеренные величины расхода (F1) и температуры (Т1), по меньшей мере, части охлажденного потока смешанного хладагента, при этом поток углеводородов, например, поток природного газа, также пропускают, по меньшей мере, через один из теплообменников стадии (b), где он охлаждается с получением охлажденного потока углеводородов.

Согласно еще одному аспекту настоящее изобретение обеспечивает устройство для охлаждения потока смешанного хладагента, содержащее, по меньшей мере:

средство контроля расхода для непрерывного контроля расхода (F2), по меньшей мере, части охлаждающего потока, включающего второй смешанный хладагент;

одно или большее количество расширительных устройств для расширения, по меньшей мере, части охлаждающего потока с получением тем самым одного или большего количества расширенных охлаждающих потоков;

один или большее количество теплообменников, размещенных для приема и охлаждения потока смешанного хладагента, включающего первый смешанный хладагент и поток углеводородов, например, поток природного газа, в противотоке, по меньшей мере, с одним из одного или большего количества расширенных охлаждающих потоков с получением в результате охлажденного потока смешанного хладагента;

средство контроля температуры и средство контроля расхода, предназначенные для непрерывного контроля температуры (Т1) и расхода (F1), по меньшей мере, части охлажденного потока смешанного хладагента;

блок управления для регулирования расхода (F2) охлаждающего потока, используя измеренные величины расхода (F1) и температуры (Т1), по меньшей мере, части охлажденного потока смешанного хладагента.

Воплощения настоящего изобретения будут описаны ниже с помощью приведенного примера и со ссылками на сопровождающие не ограничивающие изобретение чертежи.

Фиг.1 - принципиальная схема для осуществления способа охлаждения смешанного потока хладагента.

Фиг.2 - иллюстрация способа охлаждения потока углеводородов при использовании схемы, представленной на фиг.1.

Фиг.3 - схема для сжижения потока углеводородов.

Фиг.4 - графические зависимости от времени сравнительного расхода потока и расхода потока, охлаждающего поток смешанного хладагента, в соответствии с настоящим изобретением.

Для целей настоящего описания один и тот же ссылочный номер позиции будет использован как для трубопровода, так и для потока, транспортируемого по этому трубопроводу. Одинаковые элементы устройства обозначены на схемах одинаковыми номерами позиций.

В раскрытых в описании способах и устройствах охлажденный поток смешанного хладагента получают с использованием охлаждающего потока путем проведения стадий, включающих:

пропускание потока смешанного хладагента через один или большее количество теплообменников с получением охлажденного потока смешанного хладагента;

непрерывный контроль температуры (Т1) и расхода (F1), по меньшей мере, части охлажденного смешанного потока хладагента;

непрерывный контроль расхода (F2), по меньшей мере, части охлаждающего потока;

расширение, по меньшей мере, части охлаждающего потока с получением одного или большего количества расширенных охлаждающих потоков;

пропускание, по меньшей мере, одного из одного или большего количества расширенных охлаждающих потоков через один или большее количество теплообменников с охлаждением потока смешанного хладагента и получением в результате охлажденного потока смешанного хладагента.

Расход (F2) охлаждающего потока регулируют, используя измеренные величины расхода (F1) и температуры (Т1), по меньшей мере, части охлажденного потока смешанного хладагента.

Таким образом, расход охлаждающего потока регулируют, используя для этого как расход, так и температуру, по меньшей мере, части охлажденного потока смешанного хладагента, поскольку непрерывное измерение температуры и расхода, по меньшей мере, части охлажденного смешанного потока хладагента обеспечивает более точную и более оперативную обратную связь для управления расходом, по меньшей мере, части охлаждающего потока, который, следовательно, можно быстрее регулировать.

Кроме того, более оперативная обратная связь, регулирование и контроль расхода охлаждающего потока повышают эффективность работы компрессора (компрессоров), в частности, привода (приводов) компрессора (компрессоров) для сжатия потока смешанного хладагента и/или охлаждающего потока. Это уменьшает потребление энергии в способе охлаждения потока смешанного хладагента, в частности, в способе, используемом для охлаждения, по усмотрению сжижения, потока углеводородов.

Другое преимущество заключается в том, что количество, т.е. масса или объем охлажденного потока смешанного хладагента может быть быстрее отрегулирован для лучшего выбора режима последующего охлаждения потока смешанного хладагента, в частности, с обеспечением увеличенного расхода потока смешанного хладагента, и, следовательно, большего количества охлажденных и/или сжиженных углеводородов в потоке, например, большего количества полученного сжиженного природного газа.

Понятно, что непрерывный контроль и регулирование расхода в контексте настоящего описания изобретения включает, в частности, непрерывный контроль и регулирование количества хладагента в единицу времени. Непрерывный контроль и измерение расхода и температуры могут быть осуществлены с использованием какого-либо подходящего датчика расхода и температуры. В уровне техники известно много таких датчиков.

Поток смешанного хладагента предпочтительно имеет состав, включающий одну или более групп хладагентов, включающих азот, метан, этан, этилен, пропан, пропилен, бутаны и пентаны. В настоящем описании и в пунктах формулы изобретения этот хладагент называется первым смешанным хладагентом.

Охлаждающий поток также представляет собой поток смешанного хладагента, охарактеризованного выше. Он включает второй смешанный хладагент, по усмотрению имеющий состав, который отличается от состава первого смешанного хладагента в потоке смешанного хладагента.

Расширение, по меньшей мере, части охлаждающего потока может включать прохождение указанной части охлаждающего потока через расширительное устройство, которое может быть подходящим образом обеспечено в виде клапана, по усмотрению дополненного или замененного другими клапанами или расширительными устройствами, такими, как турбина.

Охлаждающий поток или, по меньшей мере, его часть может также проходить через один или большее количество теплообменников, охлаждающих поток смешанного хладагента, выполняющих функцию охладителей охлаждающего потока перед его расширением. Вместо этого или дополнительно охлаждающий поток, кроме того, может (для его охлаждения) проходить через один или большее количество теплообменников, через которые не проходит поток смешанного хладагента.

Теплообменником (теплообменниками) на стадии (b) способа согласно настоящему изобретению может быть один или большее количество теплообменников, выбранных из группы, включающей: один или более ребристых пластинчатых теплообменников, один или более катушечных теплообменников, или их комбинацию.

Если охлаждающий поток перед его расширением протекает через один или большее количество теплообменников, расход охлаждающего потока может непрерывно контролироваться перед каким-либо одним или каким-либо рядом теплообменников, или после какого-либо одного или какого-либо ряда теплообменников, но перед расширением, по меньшей мере, части охлаждающего потока, осуществляемым подходящим образом при прохождении через расширительное устройство, представляющее собой, например, один или большее число клапанов.

В другом воплощении настоящего изобретения поток смешанного хладагента пропускают через какое-либо количество теплообменников, от 1 до 6, предпочтительно включающее не более трех теплообменников, более предпочтительно не более двух теплообменников.

Предпочтительно, в частности, в случае использования ряда теплообменников пропускать расширенный поток хладагента через каждый теплообменник, охлаждающий поток смешанного хладагента. В такой схеме охлаждающий поток может быть разделен, отделен и/или распределен до и/или после прохождения каждого из теплообменников, при этом некоторую часть потока направляют непосредственно в один или большее количество последовательно размещенных теплообменников, используемых на стадии (b), причем часть этого потока расширяют при прохождении через одно или большее количество расширительных устройств, например, клапанов с получением одного или большего числа расширенных охлаждающих потоков для одного или более теплообменников.

По усмотрению, температуру и расход охлажденного потока смешанного хладагента непрерывно контролируют после прохождения каждого теплообменника.

Предпочтительно средний молекулярный вес охлаждающего потока больше среднего молекулярного веса потока смешанного хладагента.

Теплообменники, используемые для получения охлажденного потока смешанного хладагента, можно считать теплообменниками «предварительного охлаждения».

Охлажденный поток смешанного хладагента используют надлежащим образом для охлаждения, предпочтительно сжижения потока углеводородов. С этой целью поток углеводородов может быть последовательно охлажден в одном или более дополнительных теплообменниках, в частности, в одном или более основных криогенных теплообменниках, используемых для сжижения потока углеводородов, например, природного газа.

Использование охлажденного потока смешанного хладагента для охлаждения потока углеводородов может, таким образом, включать пропускание охлажденного потока смешанного хладагента, по меньшей мере, через один основной теплообменник, и пропускание потока углеводородов, по меньшей мере, через один основной теплообменник для охлаждения с помощью охлажденного потока смешанного теплообменника или, по меньшей мере, его части.

Вообще, это может быть осуществлено способами и устройствами для охлаждения потока углеводородов, которые включают первую ступень охлаждения, содержащую один или большее количество теплообменников предварительного охлаждения, через которые проходит поток смешанного хладагента, по усмотрению, также поток углеводородов и охлаждающий поток; и вторую ступень охлаждения, которая содержит, по меньшей мере, один основной теплообменник, через который протекают охлажденный поток смешанного хладагента и поток углеводородов (которым может быть более холодный поток углеводородов, если он был пропущен через теплообменник предварительного охлаждения) с получением охлажденного потока углеводородов.

Потоком углеводородов может быть какой-либо походящий охлаждаемый поток газа, но обычно таким потоком является поток природного газа, добытый из месторождений нефти или природного газа. В качестве альтернативы поток природного газа может быть также получен из другого источника, включающего, кроме того, источник синтетического газа, например, процесс Фишера-Тропша.

Обычно поток природного газа включает, главным образом, метан. Предпочтительно охлаждаемый поток углеводородов содержит, по меньшей мере, 60 мол.% метана, более предпочтительно, по меньшей мере, 80 мол.% метана.

В зависимости от используемого источника природный газ может содержать переменное количество углеводородов, более тяжелых, чем метан, таких, как этан, пропан, бутаны и пентаны, а также некоторые ароматические углеводороды. Поток природного газа может также содержать неуглеводороды, например H2O, N2, CO2, H2S и другие сернистые соединения и тому подобные.

При желании поток углеводородов, включающий природный газ, перед его использованием может быть предварительно обработан. Эта предварительная обработка может включать удаление нежелательных компонент, таких как CO2 и H2S, или другие стадии, например, предварительное охлаждение, предварительное сжатие или тому подобные. Поскольку эти стадии хорошо известны специалистам в данной области техники, далее они здесь рассмотрены не будут.

Углеводороды более тяжелые, чем метан, обычно также необходимо удалить из природного газа в силу различных причин, например, вследствие того, что они имеют различные температуры замораживания или сжижения, и это может привести к закупориванию элементов установки по сжижению метана. Удаленные из природного газа углеводороды С2-4 могут быть использованы в качестве источника сжиженного нефтяного газа (СНГ).

Термин «поток углеводородов» подразумевает также композицию перед проведением какой-либо обработки, и такая обработка включает очистку, обезвоживание и/или промывание газа, а также любой состав, который был частично, в основном или полностью обработан с целью извлечения и/или удаления одного или большего числа соединений или веществ, включающих, но не в качестве ограничения, серу, соединения серы, двуокись углерода, воду и углеводороды С2+.

По усмотрению поток углеводородов, который желательно охладить, пропускают, по меньшей мере, через один из теплообменников, через который проходят поток смешанного хладагента и охлаждающий поток. Такая схема проведения процесса включает прохождение потока углеводородов через все указанные теплообменники, или через один или большее количество указанных теплообменников, как правило, по меньшей мере, через конечный теплообменник ряда последовательно размещенных теплообменников одной ступени охлаждения, по усмотрению, процесса сжижения.

Охлажденный поток смешанного хладагента перед его пропусканием через какой-либо следующий теплообменник, например через основной теплообменник, может быть последовательно разделен на поток легких углеводородов и поток тяжелых углеводородов. В этом случае дополнительно или в качестве альтернативы может быть осуществлен непрерывный контроль расхода для потока тяжелых углеводородов вместо непрерывного контроля расхода, по меньшей мере, части охлажденного потока смешанного хладагента, как это описано ранее.

Измеренные значения температуры и расхода охлажденного потока смешанного хладагента и расхода охлаждающего потока могут быть надлежащим образом направлены в блок управления, который управляет процессом расширения на стадии (f), например, путем управления работой расширительного устройства, например, клапана.

Способ охлаждения потока углеводородов распространяется на сжижение потока углеводородов, например, природного газа с получением потока сжиженных углеводородов, например, сжиженного природного газа.

На фиг.1 представлена принципиальная схема охлаждения потока 10 смешанного хладагента, проходящего посредством входа 11 через один или большее количество теплообменников, показанных на фиг.1 в виде одного единственного теплообменника 12, с получением охлажденного потока 20 смешанного хладагента, отводимого через выход 15.

Поток 10 смешанного хладагента включает первый смешанный хладагент, который может содержать одну или большее количество компонент из группы, в которую входят: азот, метан, этан, этилен, пропан, пропилен, бутаны и пентаны. Предпочтительно поток 10 смешанного хладагента включает менее 10 мол.% N2, 30-60 мол.% С2, менее 20 мол.% С3 и менее 10 мол.% С4, при этом общее количество указанных компонент составляет 100%.

На фиг.1 показаны непрерывно контролируемые температура Т1 и расход F1 охлажденного потока 20 хладагента. Непрерывный контроль и измерение температуры и расхода этого потока могут быть осуществлены с помощью любого подходящего контрольно-измерительного устройства, выполненного в виде какого-либо известного блока, прибора или другого известного в уровне техники устройства.

На фиг.1 показан также охлаждающий поток 30. Охлаждающий поток 30 включает второй смешанный хладагент, представляющий собой смесь двух или большего числа углеводородов, таких, как азот и один или большее количество углеводородов. Предпочтительно средний молекулярный вес этого потока превышает средний молекулярный вес первого смешанного хладагента в потоке 10 смешанного хладагента. Охлаждающий поток предпочтительно содержит 0-20 мол.% C1, 20-80 мол.% С2, 20-80 мол.% С3, менее 20 мол.% С4 и менее 10 мол.% C5, при этом общее количество указанных компонент составляет 100%.

Охлаждающий поток 30 поступает через вход 16 в теплообменник 12, проходит через него и выходит через выход 17 с получением более холодного охлаждающего потока 40 перед расширительным устройством, показанным здесь в виде клапана 14. В качестве одной альтернативы отсутствует необходимость пропускания охлаждающего потока через теплообменник 12 перед достижением клапана 14, или же, в качестве другой альтернативы, охлаждающий поток 30 может проходить через один или большее количество других теплообменников (не показаны) вместо или в дополнение к прохождению теплообменника 12, показанного на фиг.1, перед прохождением охлаждающим потоком клапана 14.

Клапан 14 обеспечивает расширение более холодного охлаждающего потока 40 (или охлаждающего потока 30) с получением расширенного охлаждающего потока 40а, который возвращают в теплообменник 12 через вход 18. Расширенный охлаждающий поток 40а является значительно более холодным по сравнению с другими потоками в теплообменнике 12, обеспечивая тем самым охлаждение других таких потоков, и вытекает из теплообменника 12 через выход 19 с получением выходящего потока 50.

Расход F2 охлаждающего потока 30 можно непрерывно контролировать и, по усмотрению, измерять или перед его поступлением в теплообменник 12 в точке, обозначенной на фиг.1 позицией F22, или предпочтительно после прохождения через теплообменник 12, в точке с более холодным охлаждающим потоком 40, обозначенным на фиг.1 позицией F2. Соотношение между расходами охлаждающего потока 30 в теплообменнике 12 и более холодного охлаждающего потока 40 после теплообменника 12 известно в уровне техники, так, что непрерывный контроль с использованием измеренного расхода F22 может обеспечить такую же информацию в способе согласно настоящему изобретению при непрерывном контроле с использованием результатов измерения скорости F2. Поэтому понятно, что в описании изобретения и в пунктах формулы, там, где упоминается расход F2, имеется в виду также или расход F2 и/или расход F22.

Подобным же образом использование расхода F1 предполагает непрерывный контроль и/или измерение, по меньшей мере, частично расхода выше по потоку от теплообменника 12, например, в трубопроводе 10.

Измеренные значения температуры Т1 и расхода F1 охлажденного потока 20 смешанного хладагента и расхода F2 более холодного потока 40 (и/или расхода F22 охлаждающего потока 30) передают по линиям 21 в блок С1 управления, который управляет работой клапана 14 по линии 21а. Управление клапаном 14 обеспечивает управление расходом F2 более холодного охлаждающего потока 40 (и/или расходом F22), а также расходом расширенного охлаждающего потока 40а, поступающего в теплообменник 12 (и, следовательно, степенью охлаждения, которая может быть обеспечена расширенным охлаждающим потоком 40а в теплообменнике 12, и, таким образом, степенью охлаждения потока 20 смешанного хладагента).

Таким образом, за счет управления функционированием клапана 14 и использования результатов измерения расхода F2 более холодного охлаждающего потока (и/или расхода F22 охлаждающего потока 30) можно также регулировать температуру Т1 потока 20 смешанного хладагента с тем, чтобы последовательно оптимизировать температуру Т1 охлажденного потока 20 смешанного хладагента. Выгоды и преимущества такого решения будут отмечены ниже.

Фиг.2 иллюстрирует схему установки (устройства) 1 для охлаждения, предпочтительно сжижения, потока 60 углеводородов, которым предпочтительно является поток природного газа. Поток 60 углеводородов предпочтительно обработан для отделения от него, по меньшей мере, некоторых тяжелых углеводородов, и для отделения примесей, например, двуокиси углерода, азота, гелия, воды, серы и соединений серы, включая, но не в качестве ограничения, кислые газы.

Поток 60 углеводородов протекает через первую ступень 6 охлаждения, которая включает один или большее количество первых теплообменников, выполненных такими же или подобными теплообменнику (теплообменникам) 12, показанному на фиг.1. Предпочтительно указанные один или большее количество теплообменников на фиг.2 являются теплообменниками 12 предварительного охлаждения, приспособленными для охлаждения потока 60 углеводородов до температуры менее 0°С, более предпочтительно до температуры в интервале от -10°С до -70°C. Кроме того, через теплообменник (теплообменники) 12 проходят охлаждающий поток 30 и поток 10 смешанного хладагента. Функционирование теплообменника (теплообменников) 12 подобно его функционированию, описанному выше для схемы, представленной на фиг.1, так что из теплообменника (теплообменников) 12 предварительного охлаждения выходит более холодный охлаждающий поток 40, проходящий затем через клапан 14, где он расширяется с получением расширенного охлаждающего потока 40а, который, являясь более холодным, чем все другие потоки в теплообменнике (теплообменниках) 12, перед выходом из теплообменника в качестве выходящего потока 50 первой ступени обеспечивает охлаждение этих потоков. Таким образом, получают охлажденный поток 20 смешанного хладагента и охлаждают поток 60 хладагента с получением более холодного потока 70 углеводородов.

Температуру Т1 и расход F1 охлажденного потока 20 смешанного хладагента непрерывно контролируют, и их измеренные значения поступают в блок управления С1. Измеренное значение расхода F2 более холодного охлаждающего потока 40 также поступает в блок управления С1.

Охлажденный поток 20 смешанного хладагента и поток 70 охлажденных углеводородов поступают затем во вторую ступень 7 охлаждения, включающую один или большее количество вторых теплообменников 22, предпочтительно один основной криогенный теплообменник, предназначенный для дальнейшего снижения температуры более холодного потока 70 углеводородов до температуры ниже -100°C, более предпочтительно для сжижения охлажденного потока 70 углеводородов с получением охлажденного, предпочтительно сжиженного потока 80 углеводородов. Если потоком углеводородов 60 является поток природного газа, основной теплообменник предпочтительно обеспечивает получение сжиженного природного газа, имеющего температуру менее -140°C.

Охлажденный поток 20 смешанного хладагента протекает также через основной теплообменник 22 с получением дополнительно охлажденного потока 90 смешанного хладагента, который проходит через основной клапан 27 с получением расширенного потока 90а смешанного хладагента, который, являясь более холодным по сравнению с другими потоками в основном теплообменнике 22, обеспечивает охлаждение всех других таких потоков, и затем вытекает, как выходящий поток 100 второй ступени.

Указанный выходящий поток 100 второй ступени сжимают с помощью одного или большего числа компрессоров 28 для основного хладагента известным в уровне техники образом и получают сжатый охлажденный поток 100а, который затем может быть охлажден с помощью одного или большего количества охладителей 32, использующих в качестве хладагента внешнюю среду, например, с помощью водяных и/или воздушных охладителей, известных в уровне техники, с тем, чтобы получить поток 10 смешанного хладагента, подготовленный для рециркуляции в теплообменник (теплообменники) 12 предварительного охлаждения. Компрессор 28 для сжатия основного хладагента приводится в действие с помощью привода 28а, которым может быть одна или большее количество газовых турбин, паровых турбин и/или электрические приводы, известные в уровне техники.

Подобным образом, поток 50 первой ступени, выходящий из теплообменника (теплообменников) 12 предварительного охлаждения, сжимают с помощью одного или большего числа компрессоров 24 ступени предварительного охлаждения известным в уровне техники образом и получают сжатый охлажденный поток 50а, который затем проходит через один или большее количество охладителей 32, использующих в качестве хладагента внешнюю среду, например, с помощью водяных и/или воздушных охладителей, с тем, чтобы получить охлаждающий поток 30, подготовленный к рециркуляции и повторному вводу в теплообменник (теплообменники) 12 предварительного охлаждения. Компрессор 28 ступени предварительного охлаждения приводится в действие с помощью одного или более приводов 24а, известных в уровне техники, например, с помощью газовых турбин, паровых турбин, электрических приводов и т.п.

Приводы 24а, 28а компрессоров, как правило, потребляют значительное количество энергии, и обычно потребляют значительную часть общей энергии, подводимой к установке 1 сжижения, иллюстрируемой на фиг.2. Наибольшая эффективность приводов компрессора, например, газовых турбин достигается в случае поддержания их при постоянной скорости вращения (числе оборотов), и более предпочтительно при «полной» скорости вращения. Таким образом, изменение скорости вращения таких приводов обычно нежелательно и снижает их эффективность, поскольку приводит к значительному изменению нагрузки приводимого ими в действие компрессора (компрессоров). Поэтому в уровне техники в качестве наиболее эффективного средства предпочтительно поддерживают приводы компрессора «полностью нагруженными».

Однако нагрузку компрессоров 24, 28 для сжатия хладагента можно изменять в зависимости от ряда возможных переменных параметров или условий в установке 1 для охлаждения. Например, возможны изменения расхода, массы, температуры и т.п.потока 60 углеводородов, изменение окружающих условий для установки 1, в частности, возможна высокая температура окружающей среды, которая может оказывать влияние на эффективность работы охладителей, использующих окружающую среду, например, охладителей 26, 32, показанных на фиг.2. Какая-либо неэффективность теплообмена для одного или более потоков, протекающих в теплообменнике предварительного охлаждения или в основном теплообменнике 12, 22, или использование одного или большего количества потоков или аппаратов в установке 1 охлаждения, осуществляющих одну или более функций, например, охлаждение в устройстве для разделения воздуха (не показано), также может оказывать влияние на нагрузку компрессоров 24, 28 для сжатия хладагента и их приводов 24а, 28а.

Таким образом, желательно оптимизировать процессы охлаждения в теплообменнике 12 предварительного охлаждения и в основном теплообменнике 22 с тем, чтобы оптимизировать работу приводов 24а, 28а компрессоров и таким образом поддерживать наибольшую эффективность их работы.

Предложенный способ позволяет лучше сбалансировать режим охлаждения теплообменника (теплообменников) 12 предварительного охлаждения, обеспечиваемого расширенным охлаждающим потоком 40а, путем регулирования клапана 14, используя непрерывный контроль, предпочтительно измерение температуры Т1 и расхода F1 охлажденного потока 20 смешанного хладагента, полученного в теплообменнике (теплообменниках) 12 предварительного охлаждения, при этом измеренные значения этих параметров могут быть использованы для непосредственного управления работой клапана 14, и, следовательно, также для управления расходом F2 потока 40, направляемого в теплообменник (теплообменники) предварительного охлаждения 12 (и/или соответствующим расходом F22 более холодного охлаждающего потока 30 перед теплообменником 12 предварительного охлаждения).

Описанный выше способ является, в особенности, выгодным в том случае, когда охлаждающий поток образован смешанным хладагентом, включающим одну или более групп компонент, выбранных из числа следующих: азот, метан, этан, этилен, пропан, пропилен, бутаны и пентаны.

Описанный способ является также в особенности выгодным, если теплообменник (теплообменники) 12 включает один или большее количество теплообменников, выбранных из группы, включающей: один или более ребристых пластинчатых теплообменника, один или более катушечных теплообменников, или комбинацию указанных теплообменников. В отличие от испарительных теплообменников регулирование таких теплообменников не может быть легко осуществлено по уровню в них жидкости.

Описанный выше способ является в особенности выгодным также в том случае, когда желательно поддерживать привод 28а компрессора 28 для основного хладагента при «максимальной» скорости или скорости при «полной нагрузке» с минимальным отклонением. То есть, в этом случае максимальная выходная мощность привода равна потребляемой мощности компрессора для хладагента. Температуру Т1 охлажденного потока 20 смешанного хладагента, поступающего в основной теплообменник 22, можно изменять путем управления клапаном 14 и расходом F2 более холодного охлаждающего потока 40 с тем, чтобы обеспечить желательную температуру Т1 потока 20 смешанного хладагента.

Следует отметить, что температура Т1 и расход F1 охлажденного потока 20 смешанного хладагента не обязательно взаимосвязаны или соответствуют друг другу. Так, можно получить одинаковые результаты измерения расхода при различных температурах, и различные измеренные расходы при одной и той же температуре. Таким образом, настоящее изобретение является выгодным благодаря измерению как температуры Т1, так и расхода F1 охлажденного потока 20 смешанного хладагента, что обеспечивает лучшие механизм управления работой клапана 14 и обратную связь, и, следовательно, баланс режимов охлаждения теплообменника (теплообменников) 12 предварительного охлаждения и основного теплообменника 22.

На фиг.3 представлена установка (устройство) 2 для сжижения, в которой поток 60 углеводородов поступает в первый теплообменник 12а предварительного охлаждения и затем во второй теплообменник 12b предварительного охлаждения, образующие часть первой ступени 8 охлаждения, после чего охлажденный поток 70 углеводородов поступает в основн