Функционирование в сжатом режиме и управление мощностью при прерывистой передаче и/или приеме
Иллюстрации
Показать всеИзобретение относится к области беспроводной связи. Техническим результатом является обеспечение поддержки функционирования абонентского устройства связи (UE) в сжатом режиме и режиме непрерывной пакетной передачи (СРС). Указанный технический результат достигается тем, что UE может получать назначение разрешенных субкадров для СРС-режима и назначение интервалов отсутствия сигнала при передаче для сжатого режима. Интервалы отсутствия сигнала при передаче могут быть совмещены с интервалами времени бездействия между разрешенными субкадрами. UE может обмениваться данными в течение разрешенных субкадров, не перекрывающих интервалы отсутствия сигнала при передаче, и может пропускать обмены данными в течение разрешенных субкадров, перекрывающих интервалы отсутствия сигнала при передаче. UE может выполнять измерения сот в течение интервалов отсутствия сигнала при передаче, также UE может получать разрешенные субкадры и пропущенные субкадры, обмениваться данными в течение разрешенных субкадров, не соответствующих пропущенным субкадрам, и пропускать обмены данными в течение пропущенных субкадров. В еще одном аспекте, UE может принимать команды по совместно используемому каналу управления для того, чтобы быстро активировать и деактивировать сжатый режим. 8 н. и 30 з.п. ф-лы, 13 ил., 3 табл.
Реферат
Притязание на приоритет согласно 35 U.S.C. §119
Настоящая Заявка на патент притязает на приоритет Предварительной заявки на патент (США) порядковый номер 60/863128, озаглавленной "COMPRESSED MODE OPERATION AND REVERSE LINK POWER CONTROL ADJUSTMENT WITH DISCONTINUOUS TRANSMISSION AND/OR RECEPTION", поданной 26 октября 2006 года, права на которую принадлежат правообладателю настоящей заявки и таким образом явно содержащейся в данном документе по ссылке.
Уровень техники
Область техники, к которой относится изобретение
Настоящее раскрытие сущности, в общем, относится к связи, а более конкретно к методикам для функционирования пользовательского оборудования (UE) в системе беспроводной связи.
Уровень техники
Системы беспроводной связи широко развернуты, чтобы предоставлять различные услуги связи, например голосовые, видео, пакетные данные, обмен сообщениями, широковещательная передача и т.д. Эти системы могут быть системами множественного доступа, допускающими поддержку нескольких пользователей посредством совместного использования доступных системных ресурсов. Примеры таких систем множественного доступа включают в себя системы множественного доступа с кодовым разделением каналов (CDMA), системы множественного доступа с временным разделением (TDMA), системы множественного доступа с частотным разделением (FDMA), системы с ортогональным FDMA (OFDMA) и системы FDMA с одной несущей (SC-FDMA).
UE (к примеру, сотовый телефон) может допускать функционирование на различных частотах и/или в различных беспроводных системах. UE может обмениваться данными с обслуживающей сотой на конкретной частоте в одной системе, но может периодически выполнять измерения для сот на других частотах и/или в других системах. Измерения сот могут давать возможность UE устанавливать, лучше ли какая-нибудь сота на другой частоте и/или в другой системе, чем обслуживающая сота. Это может происходить, например, в случае если UE является мобильным и перемещается в другую зону покрытия. Если лучшая сота на другой частоте и/или в другой системе найдена, как указано посредством измерений сот, то UE может попытаться переключиться на лучшую соту и принимать обслуживание от этой соты.
Чтобы выполнять измерения сот для других частот и/или других систем, UE, возможно, должно отстраивать свое приемное устройство от частоты, используемой посредством обслуживающей соты. Система может предоставлять интервалы отсутствия сигнала при передаче для того, чтобы давать возможность UE отстраивать свое приемное устройство и выполнять измерения для других частот и/или других систем. Функционирование UE может быть усложнено вследствие этих интервалов отсутствия сигнала при передаче.
Сущность изобретения
В данном документе описываются методики для того, чтобы поддерживать функционирование UE в сжатом режиме с интервалами отсутствия сигнала при передаче и/или в режиме непрерывной пакетной передачи (CPC) с прерывистой передачей (DTX) и/или c прерывистым приемом (DRX). В аспекте изобретения, UE может получать назначение разрешенных субкадров для CPC-режима и назначение интервалов отсутствия сигнала при передаче для сжатого режима. Интервалы отсутствия сигнала при передаче могут быть совмещены с интервалами времени бездействия между разрешенными субкадрами. Например, каждый интервал отсутствия сигнала при передаче может начинаться в течение бездействия между последовательными разрешенными субкадрами. Разрешенные субкадры могут быть заданы, по меньшей мере, посредством одной первой комбинации, интервалы отсутствия сигнала при передаче могут быть заданы, по меньшей мере, посредством одной второй комбинации, и каждая вторая комбинация может в несколько раз превышать по длительности каждую первою комбинацию. UE может обмениваться данными в течение разрешенных субкадров, которые не перекрывают интервалы отсутствия сигнала при передаче, и может пропускать обмены данными в течение разрешенных субкадров, которые перекрывают интервалы отсутствия сигнала при передаче. UE может выполнять измерения сот (к примеру, для других частот и/или других систем) в течение интервалов отсутствия сигнала при передаче.
В другом аспекте, UE может определять разрешенные субкадры и пропущенные субкадры, к примеру, для CPC-режима. Пропущенные субкадры могут быть поднабором разрешенных субкадров. UE может обмениваться данными в течение разрешенных субкадров, не соответствующих пропущенным субкадрам, и может пропускать обмены данными в течение пропущенных субкадров. UE может выполнять измерения сот в течение продленного времени бездействия между разрешенными субкадрами и покрывать пропущенные субкадры. UE, возможно, не должен функционировать в сжатом режиме из-за продленного времени бездействия.
В еще одном аспекте, UE может получать конфигурацию для сжатого режима и может принимать команды относительно совместно используемого канала управления, чтобы активировать и отключать сжатый режим. Конфигурация для сжатого режима может отправляться через сигнализацию верхнего уровня, а команды могут отправляться как сигнализация нижнего уровня. UE может функционировать на основе конфигурации для сжатого режима, когда активирован в соответствии с командой, принимаемой через совместно используемый канал управления. Команды могут использоваться для того, чтобы быстро отключать сжатый режим перед пакетом данных для UE и быстро вновь активировать сжатый режим после пакета данных.
В еще одном аспекте, UE может определять мощность передачи, используемую для первой передачи, отправленной в первом интервале времени, и может определять мощность передачи, чтобы использовать для второй передачи во втором интервале времени, на основе мощности передачи, используемой для первой передачи, и регулирования мощности. Второй интервал времени может быть отделен от первого интервала времени на период бездействия, который может соответствовать интервалу отсутствия сигнала при передаче в сжатом режиме или времени бездействия между разрешенными субкадрами в CPC-режиме. Регулирование мощности может быть определено на основе оценок без обратной связи, полученных для первой и второй передач. Регулирование мощности также может быть заранее определенным положительным значением, увеличивающимся значением в течение начальной части второй передачи и т.д.
Далее более подробно описаны различные аспекты и признаки изобретения.
Краткое описание чертежей
Фиг. 1 иллюстрирует систему беспроводной связи.
Фиг. 2 показывает формат кадра в универсальной системе мобильных телекоммуникаций (UMTS).
Фиг. 3 показывает последовательность комбинаций интервалов отсутствия сигнала при передаче для сжатого режима.
Фиг. 4 показывает передачу по нисходящей линии связи в сжатом режиме.
Фиг. 5 показывает некоторые физические каналы в UMTS.
Фиг. 6 показывает совмещение интервала отсутствия сигнала при передаче со временем бездействия в CPC-режиме.
Фиг. 7 показывает пропуск разрешенных субкадров для того, чтобы получать продленное время бездействия.
Фиг. 8 показывает команду, чтобы быстро активировать или отключить сжатый режим.
Фиг. 9 показывает процесс функционирования UE с интервалами отсутствия сигнала при передаче, совмещенными с интервалами времени бездействия.
Фиг. 10 показывает процесс функционирования UE посредством пропуска некоторых разрешенных субкадров.
Фиг. 11 показывает процесс функционирования UE с быстрой активацией и отключением сжатого режима через команды.
Фиг. 12 показывает процесс передачи после периода бездействия посредством UE.
Фиг. 13 иллюстрирует блок-схему UE и узла B.
Подробное описание изобретения
Методики, описанные в данном документе, могут использоваться для различных систем беспроводной связи, таких как системы CDMA, TDMA, FDMA, OFDMA, SC-FDMA и другие системы. Термины "система" и "сеть" зачастую используются взаимозаменяемо. CDMA-система может реализовывать такую технологию радиосвязи, как универсальный наземный радиодоступ (UTRA) cdma2000 и т.д. UTRA включает в себя широкополосную CDMA (W-CDMA) и другие варианты CDMA. Cdma2000 покрывает стандарты IS-2000, IS-95 и IS-856. TDMA-система может реализовывать такую технологию радиосвязи, как глобальная система мобильной связи (GSM). OFDMA-система может реализовывать такую технологию радиосвязи, как усовершенствованный UTRA (E-UTRA), сверхширокополосная передача для мобильных устройств (UMB), IEEE 802.20, IEEE 802.16 (WiMAX), 802.11 (WiFi), Flash-OFDM® и т.д. UTRA и E-UTRA являются частью UMTS. 3GPP Долгосрочное развитие (LTE) является планируемой к выпуску версией UMTS, которая использует E-UTRA. UTRA, E-UTRA, UMTS, LTE и GSM описываются в документах организации, называемой Партнерским проектом третьего поколения (3GPP). Cdma2000 и UMB описываются в документах организации, называемой Партнерским проектом третьего поколения 2 (3GPP2). Эти различные технологии и стандарты радиосвязи известны в данной области техники. Для ясности определенные аспекты методик описываются ниже для UMTS, и терминология 3GPP используется в большей части описания ниже.
Фиг. 1 иллюстрирует систему 100 беспроводной связи с несколькими узлами B 110 и UE 120. Узел B может быть стационарной станцией, которая обменивается данными с UE, и он также может упоминаться как усовершенствованный узел B (eNB), базовая станция, точка доступа и т.д. Каждый узел B 110 предоставляет покрытие связи для конкретной географической области и поддерживает обмен данными для UE, находящихся в зоне покрытия. Полная зона покрытия каждого узла B 110 может быть секционирована на несколько (к примеру, три) меньших областей. В 3GPP, термин "сота" может упоминаться как наименьшая зона покрытия узла B и/или подсистема узла B, обслуживающая эту зону покрытия. В других системах, термин "сектор" может упоминаться как наименьшая зона покрытия и/или подсистема, обслуживающая эту зону покрытия. Для ясности понятие соты из 3GPP используется в описании ниже. Системный контроллер 130 может подключаться к узлам B 110 и предоставлять координацию и управление для этих узлов B. Системный контроллер 130 может быть одним сетевым объектом или набором сетевых объектов.
UE 120 могут быть распределены по системе, и каждое UE может быть стационарным или мобильным. UE также может упоминаться как мобильная станция, терминал, терминал доступа, абонентское устройство, станция и т.д. Оборудованием UE может быть сотовый телефон, персональное цифровое устройство (PDA), беспроводное устройство, карманное устройство, беспроводной модем, портативный компьютер и т.д. UE может обмениваться данными с одним или более узлов B через передачи по нисходящей линии связи и восходящей линии связи. Нисходящая линия связи (или прямая линия связи) относится к линии связи от узлов B к UE, а восходящая линия связи (или обратная линия связи) относится к линии связи от UE к узлам B.
Фиг. 2 показывает формат кадра в UMTS. Временная шкала для передачи данных делится на радиокадры. Каждый радиокадр имеет длительность в 10 миллисекунд (мс) и идентифицируется посредством 12-битового системного номера кадра (SFN), который отправляется по каналу управления. Каждый радиокадр также может быть идентифицирован посредством 8-битового номера кадра при сборке (CFN), который поддерживается UE и Узлом B для вызова. Каждый радиокадр секционируется на 15 временных квантов, которые помечаются от временного кванта 0 до временного кванта 14. Каждый временной квант имеет длительность Tslot=0,667 мс и включает в себя 2560 символов шумоподобной последовательности при 3,84 Mcps. Каждый радиокадр также секционируется на пять субкадров от 0 до 4. Каждый субкадр имеет длительность в 2 мс и включает в себя 3 временных кванта.
UMTS поддерживает сжатый режим в нисходящей линии связи для того, чтобы предоставлять интервалы отсутствия сигнала при передаче, чтобы давать возможность UE выполнять измерения для соседних сот. В сжатом режиме обслуживающая сота может передавать данные в UE в течение только части радиокадра, что в таком случае создает интервал отсутствия сигнала при передаче в оставшейся части радиокадра. UE может временно покидать систему в течение интервала отсутствия сигнала при передаче, чтобы выполнять измерения для соседних сот на других частотах и/или в других системах, без потери данных от обслуживающей соты.
Фиг. 3 показывает последовательность комбинаций интервалов отсутствия сигнала при передаче для сжатого режима в UMTS. В сжатом режиме конкретные для пользователя данные в UE передаются в соответствии с последовательностью комбинаций интервалов отсутствия сигнала при передаче, которая может включать в себя чередующиеся комбинации 1 и 2 интервалов отсутствия сигнала при передаче. Каждая комбинация интервалов отсутствия сигнала при передаче включает в себя один или два интервала отсутствия сигнала при передаче. Каждый интервал отсутствия сигнала при передаче может возникать полностью в рамках одного радиокадра или может охватывать два радиокадра. Последовательность комбинаций интервалов отсутствия сигнала при передаче может быть задана посредством параметров, представленных в табл. 1.
Таблица 1 | |||
Символ | Параметр | Описание | Значение |
TGPRC | Счетчик повторения комбинации интервалов отсутствия сигнала при передаче | Число комбинаций интервалов отсутствия сигнала при передаче в последовательности комбинаций интервалов отсутствия сигнала при передаче | |
TGCFN | CFN интервала отсутствия сигнала при передаче | CFN первого радиокадра для комбинации 1 интервалов отсутствия сигнала при передаче | 0-255 |
TGSN | Номер начального временного кванта интервала отсутствия сигнала при передаче | Номер временного кванта для первого временного кванта интервала отсутствия сигнала при передаче в каждой комбинации интервалов отсутствия сигнала при передаче | временной квант 1-14 |
TGL1 | Длина 1 интервала отсутствия сигнала при передаче | Длительность первого интервала отсутствия сигнала при передаче в каждой комбинации интервалов отсутствия сигнала при передаче | 1-14 временных квантов |
TGL2 | Длина интервала отсутствия сигнала при передаче 2 | Длительность второго интервала отсутствия сигнала при передаче в каждой комбинации интервалов отсутствия сигнала при передаче | 1-14 временных квантов |
TGD | Расстояние интервала отсутствия сигнала при передаче | Длительность между начальными временными квантами первого и второго интервалов отсутствия сигнала при передаче | 15-269 временных квантов |
TGPL1 | Длина комбинации интервалов отсутствия сигнала при передаче 1 | Длительность комбинации интервалов отсутствия сигнала при передаче 1 | 1-144 кадров |
TGPL2 | Длина комбинации интервалов отсутствия сигнала при передаче 2 | Длительность комбинации интервалов отсутствия сигнала при передаче 2 | 1-144 кадров |
Сжатый режим описывается в документах 3GPP TS 25.212 (раздел 4.4), 25.213 (разделы 5.2.1 и 5.2.2) и 25.215 (раздел 6.1), все из которых являются общедоступными.
Фиг. 4 показывает передачу по нисходящей линии связи в сжатом режиме. Данные могут быть переданы при номинальном уровне мощности в каждом радиокадре без интервала отсутствия сигнала при передаче. Данные для радиокадра с интервалом отсутствия сигнала при передаче могут быть переданы при более высоком уровне мощности, чтобы достигать аналогичной надежности как для данных, передаваемых в радиокадре без интервала отсутствия сигнала при передаче. Интервал отсутствия сигнала при передаче может возникать между двумя сжатыми передачами и может иметь длительность 1-14 временных квантов. UE может быть выделено достаточное число интервалов отсутствия сигнала при передаче надлежащей длительности, чтобы давать возможность UE выполнять измерения для сот на других частотах и/или других системах.
3GPP версия 5 и выше поддерживает высокоскоростной пакетный доступ по нисходящей линии связи (HSDPA). 3GPP версия 6 и выше поддерживает высокоскоростной пакетный доступ восходящей линии связи (HSUPA). HSDPA и HSUPA - это наборы каналов и процедур, которые активируют высокоскоростную передачу пакетных данных по нисходящей линии связи и восходящей линии связи соответственно. Табл. 2 перечисляет некоторые физические каналы, используемые для HSDPA и HSUPA в 3GPP версия 6.
Фиг. 5 показывает некоторые из физических каналов, используемых для HSDPA и HSUPA в UMTS. P-CCPCH используется непосредственно как эталон времени для физических каналов нисходящей линии связи и используется косвенно как эталон времени для физических каналов восходящей линии связи. Для HSDPA, субкадры HS-SCCH совмещаются по времени с P-CCPCH. Субкадры HS-PDSCH задерживаются на τHS-PDSCH=2Tslot от субкадров HS-SCCH. Субкадры HS-DPCCH задерживаются на 7,5 временных квантов от субкадров HS-PDSCH. Для HSUPA, кадровая синхронизация E-HICH смещена на τE-HICH,n символов шумоподобной последовательности от кадровой синхронизации P-CCPCH, где τE-HICH,n задается в 3GPP TS 25.211. E-DPCCH и E-DPDCH совмещены по времени, и их кадровая синхронизация смещена на τDPCH,n+1024 символа шумоподобной последовательности от кадровой синхронизации P-CCPCH, при этом τDPCH,n=256n, и n может варьироваться от 0 до 149. Кадровая синхронизация физических каналов нисходящей линии связи и восходящей линии связи описывается в 3GPP TS 25.211. Для простоты, другие физические каналы, такие как каналы предоставления, не показаны на фиг. 5.
3GPP версия 7 поддерживает CPC, которая дает возможность UE функционировать с DTX и/или DRX, чтобы экономить питание аккумулятора. Для DTX, UE могут быть назначены определенные разрешенные субкадры восходящей линии связи, в которых UE может отправлять передачу по восходящей линии связи в узел B. Разрешенные субкадры восходящей линии связи могут быть заданы посредством комбинации пакетов DPCCH восходящей линии связи. Для DRX, UE могут быть назначены определенные разрешенные субкадры нисходящей линии связи, в которых узел B может отправлять передачу по нисходящей линии связи в UE. Разрешенные субкадры нисходящей линии связи также могут упоминаться как кадры приема и могут быть заданы посредством комбинации приема HS-SCCH. UE может отправлять сигнализацию и/или данные в разрешенных субкадрах восходящей линии связи и может принимать сигнализацию и/или данные в разрешенных субкадрах нисходящей линии связи. UE может отключать питание на время бездействия между разрешенными субкадрами, чтобы экономить питание аккумулятора. CPC описывается в документе 3GPP TR 25.903, озаглавленном "Continuous Connectivity for Packet Data Users," март 2007 года, который является общедоступным.
Для CPC, разрешенные субкадры нисходящей линии связи и восходящей линии связи могут быть заданы посредством параметров, представленных в табл. 3. CPC поддерживает интервал времени передачи (TTI) в 2 мс или 10 мс. Третий столбец табл. 3 задает возможные значения для параметров CPC при условии TTI в 2 мс.
Таблица 3 | ||
Параметр | Описание | Значение |
UE DTX-цикл 1 | Длительность между разрешенными субкадрами восходящей линии связи, когда UE недавно выполняло передачу | 1, 4, 5, 8, 10, 16 или 20 субкадров |
UE DTX-цикл 2 | Длительность между разрешенными субкадрами восходящей линии связи, когда UE не выполняло передачу недавно | 4, 5, 8, 10, 16 или 20 субкадров |
UE DRX-цикл | Длительность между разрешенными субкадрами нисходящей линии связи | 1, 4, 5, 8, 10, 16 или 20 субкадров |
UE DPCCH-пакет 1 | Число разрешенных субкадров восходящей линии связи для UE DTX-цикла 1 | 1, 2 или 5 субкадров |
UE DPCCH пакет 2 | Число разрешенных субкадров восходящей линии связи для UE DTX-цикла 2 | 1, 2 или 5 субкадров |
UE DTX DRX-смещение | Конкретное для UE смещение разрешенных субкадров от опорного времени | От 0 до 159 субкадров |
Фиг. 5 показывает примерную конфигурацию DTX и DRX для UE в CPC. В этом примере UE сконфигурировано следующим образом:
- UE DTX-цикл 1=UE DRX-цикл=4 субкадра,
- UE DTX-цикл 2=8 субкадров, и
- UE DPCCH-пакет 1=UE DPCCH-пакет 2=1 субкадр.
Для конфигурации CPC, заданной выше, разрешенные субкадры нисходящей линии связи разнесены на четыре субкадра и показаны со штриховкой серым. Разрешенные субкадры восходящей линии связи также разнесены на четыре субкадра и показаны со штриховкой серым. Совмещение разрешенных субкадров нисходящей линии связи и разрешенных субкадров восходящей линии связи зависит от τDPCH,n. Разрешенные субкадры нисходящей линии связи и восходящей линии связи могут быть совмещены во времени для того, чтобы продлевать возможное время ожидания для UE. Как показано на фиг. 5, UE может быть активированным в течение разрешенных субкадров нисходящей линии связи и восходящей линии связи и переходить в режим ожидания в течение времени бездействия между разрешенными субкадрами. Фиг. 5 предполагает, что UE не передает данные в восходящей линии связи и, следовательно, не должен отслеживать E-HICH на предмет ACK/NAK. Времена бездействия также могут упоминаться как времена ожидания, времена DTX/DRX и т.д.
UE может функционировать в сжатом режиме и ему может быть назначена последовательность комбинаций интервалов отсутствия сигнала при передаче. UE не может принимать или отправлять данные в течение интервалов отсутствия сигнала при передаче. UE также может функционировать в CPC-режиме и ему могут быть назначены определенные разрешенные субкадры нисходящей линии связи и восходящей линии связи для DTX- и DRX-режима. UE может не принимать или не отправлять данные в течение неразрешенных субкадров. Когда UE функционирует в обоих режимах, интервалы отсутствия сигнала при передаче в сжатом режиме могут влиять на функционирование CPC-режима. Таким образом, может быть желательным поддерживать взаимодействие между сжатым режимом и CPC-режимом.
В аспекте, интервалы отсутствия сигнала при передаче в сжатом режиме могут быть заданы так, чтобы быть совмещенными по времени (или совпадать) с интервалами времени бездействия в CPC-режиме. Параметры для этих двух режимов могут быть выбраны так, чтобы добиваться следующего:
1. Периодичность интервалов отсутствия сигнала при передаче является целым кратным периодичностей разрешенных субкадров нисходящей линии связи и восходящей линии связи, и
2. Интервалы отсутствия сигнала при передаче начинаются в течение интервалов времени бездействия для CPC.
Последовательность комбинаций интервалов отсутствия сигнала при передаче может быть задана так, чтобы включать в себя только комбинацию 1 интервалов отсутствия сигнала при передаче на фиг. 3. Для вышеуказанного условия 1, TGPL1 может быть задан так, чтобы быть целочисленным кратным UE DTX-цикла 1. Для условия 2, TGCFN и TGSN могут быть заданы так, чтобы принимать во внимание UE DTX DRX-смещение. Кроме того, TGL1 может быть задан как функция от интервалов времени бездействия, которая может зависеть от τDPCH,n. Если второй интервал отсутствия сигнала при передаче включается в комбинацию 1 интервалов отсутствия сигнала при передаче, то TGD и TGL2 могут быть заданы как функция от τDPCH,n, UE DTX-цикла 1 и UE DTX DRX-смещения так, что второй интервал отсутствия сигнала при передаче совпадает с интервалами времени бездействия для CPC.
Интервал отсутствия сигнала при передаче в сжатом режиме может иметь длительность 1-14 временных квантов. Время бездействия в CPC-режиме может быть меньшим, чем интервал отсутствия сигнала при передаче. В одной схеме, интервал отсутствия сигнала при передаче может заменять пустотами разрешенные субкадры, которые находятся в пределах интервала отсутствия сигнала при передаче. В этой схеме, данные не передаются в разрешенных субкадрах, которые находятся в пределах интервала отсутствия сигнала при передаче.
Для конфигурации CPC с UE DTX-циклом 1 и UE DRX- циклом, равными четырем субкадрам, как показано на фиг. 5, может быть показано то, что времена бездействия могут варьироваться между 1,5 и 4,5 временными квантами, в зависимости от τDPCH,n. Эти времена бездействия являются примерными и предполагают передачу и прием во всех разрешенных субкадрах. Чтобы получать большее время бездействия, UE может пропускать один активный период, и при этом время бездействия может продлеваться до 13,5-16,5 временных квантов. Продленное время бездействия приблизительно соответствует самой большой возможной длительности интервала отсутствия сигнала при передаче. Для конфигурации CPC с UE DTX-циклом 1 и UE DRX- циклом равными восьми субкадрам, может быть показано то, что времена бездействия могут варьироваться между 7 и 11 временными квантами в одном цикле, в зависимости от τDPCH,n. Тем не менее, время бездействия в 7 временных квантов делится на две длины в 1,5 и 5,5 временных квантов, а время бездействия 11 временных квантов делится на две длины в 4,5 и 6,5 временных квантов. Если UE пропускает один период пробуждения, то время бездействия может быть продлено до 15-16,5 временных квантов, что превышает самую длинную возможную длительность интервала отсутствия сигнала при передаче. В общем, продленное время бездействия, соответствующее или превышающее интервал отсутствия сигнала при передаче, может быть получено посредством пропуска достаточного числа периодов пробуждения.
UE и узел B могут пропускать передачи в разрешенных субкадрах, которые находятся в пределах интервалов отсутствия сигнала при передаче. В нисходящей линии связи, UE может не прослушивать в течение интервалов отсутствия сигнала при передаче, а узел B может исключать отправку данных в UE в течение интервалов отсутствия сигнала при передаче. В восходящей линии связи, UE может избегать отправки передачи в течение интервалов отсутствия сигнала при передаче. Если UE не сконфигурировано для DRX в CPC, то UE может отслеживать все субкадры нисходящей линии связи за исключением тех, которые перекрывают интервалы отсутствия сигнала при передаче.
Фиг. 6 показывает пример совмещения интервала отсутствия сигнала при передаче в сжатом режиме с интервалами времени бездействия в CPC-режиме. Разрешенные субкадры для каждого физического канала на фиг. 5 показаны в верхней части фиг. 6. Времена бездействия для CPC-режима показаны рядом с нижней частью фиг. 6. Один интервал отсутствия сигнала при передаче в сжатом режиме показан в нижней части фиг. 6. Этот интервал отсутствия сигнала при передаче имеет максимальную длительность в 14 временных квантов и совмещен с двумя временами бездействия для CPC-режима. Разрешенные субкадры в одном активном времени, которое находится в пределах интервала отсутствия сигнала при передаче, могут быть пропущены. UE может пропускать передачу и прием в течение пропущенных субкадров. Пропущенный субкадр представляет собой разрешенный субкадр, который пропускается с тем, чтобы данные или сигнализация не отправлялись в течение субкадра.
В другом аспекте, UE может функционировать в CPC-режиме, и продленные времена бездействия для измерений на других частотах и/или в других системах могут быть получены посредством пропуска некоторых разрешенных субкадров. UE не передает в течение пропущенных субкадров восходящей линии связи и не принимает в течение пропущенных субкадров нисходящей линии связи, что является исключениям в общих правилах CPC.
Фиг. 7 показывает пример пропуска разрешенных субкадров для того, чтобы получать продленное время бездействия в CPC-режиме. Разрешенные субкадры для каждого физического канала на фиг. 5 показаны в верхней части фиг. 7. Времена бездействия для CPC-режима показаны в нижней части фиг. 7. Набор разрешенных субкадров в одно активное время может быть пропущен так, чтобы получать продленное время бездействия, которое может покрывать два обычных времени бездействия и одно активное время. UE может выполнять измерения сот в течение продленного времени бездействия.
Пропущенные субкадры могут быть заданы посредством комбинации, которая может быть определена на основе различных факторов, таких как характеристики UE. Например, если UE сконфигурировано так, что времена бездействия в CPC являются достаточно длительными, то разрешенные субкадры не могут быть пропущены. Наоборот, если UE сконфигурировано так, что времена бездействия не являются достаточно длительным, то определенные разрешенные субкадры могут быть пропущены с тем, чтобы получать достаточно длительные продленные времена бездействия. Комбинация пропущенных субкадров может быть передана в UE с помощью механизма передачи сигнализации, используемого для того, чтобы конфигурировать сжатый режим. Комбинация пропущенных субкадров также может быть передана в UE другими способами. Поскольку продленное время бездействия имеет достаточно большую длительность, UE не обязательно должен функционировать в сжатом режиме.
Традиционно, сжатый режим конфигурируется с помощью сигнализации верхнего уровня и активирован все время, пока он не отключен с помощью дополнительных сигнализации верхнего уровня. Использование сигнализации верхнего уровня может иметь результатом большую задержку на конфигурирование и активирование сжатого режима, а также может потреблять больше ресурсов для передачи сигнализации.
В еще одном аспекте, UE может быть сконфигурировано с помощью последовательности комбинаций интервалов отсутствия сигнала при передаче для сжатого режима, и команды, чтобы активировать и отключать сжатый режим, могут отправляться по HS-SCCH. Последовательность комбинаций интервалов отсутствия сигнала при передаче может быть задана так, как описано в 3GPP версии 6, или так, как описано выше, чтобы совмещать интервалы отсутствия сигнала при передаче с интервалами времени бездействия в CPC. DTX/DRX в CPC-режиме может быть активирована и отключена с помощью команд, отправляемых по HS-SCCH. Команды HS-SCCH являются сигнализацией нижнего уровня, которая может отправляться быстрее и эффективнее, чем сигнализация верхнего уровня. Команды HS-SCCH могут использоваться для того, чтобы быстро активировать и отключать сжатый режим для UE. Например, узел B может быстро отключать сжатый режим для UE каждый раз, когда узел B имеет большой объем данных, чтобы отправлять в UE, и после того может быстро вновь активировать сжатый режим после отправки данных.
Фиг. 8 показывает схему формата 800 команд HS-SCCH, которые могут использоваться для того, чтобы быстро активировать и отключать сжатый режим для UE. Сообщение сигнализации, отправляемое по HS-SCCH, может включать в себя две части. Часть 1 может включать в себя 7-битовое поле для набора кодов канализации и 1-битовое поле для схемы модуляции (Mod). Часть 2 может включать в себя 6-битовое поле идентификатора формата, 3-битовое поле типа команды, 4-битовое поле команды и 16-битовое идентификационных данных UE/CRC. Поле идентификатора формата может быть задано равным заранее определенному значению (к примеру, 111110), чтобы указать то, что сообщение содержит команду вместо сигнализации для HS-PDSCH. Поле типа команды может быть задано равным заранее определенному значению (к примеру, 001), чтобы указать то, что команда предназначена для сжатого режима (CM), а не для DRX или чего-либо еще. Поле команды может иметь выделенный бит, который может быть задан равным одному значению (к примеру, 1), чтобы активировать сжатый режим, или другому значению (к примеру, 0), чтобы отключать сжатый режим. Команда HS-SCCH для сжатого режима также может отправляться другими способами, используя другие форматы сообщения.
Фиг. 9 показывает схему процесса 900 для выполнения посредством UE. Назначение разрешенных субкадров для первого режима (к примеру, CPC-режима) может быть получено (этап 912). Назначение интервалов отсутствия сигнала при передаче для второго режима (к примеру, сжатого режима) может быть получено (этап 914). Интервалы отсутствия сигнала при передаче могут быть совмещены с интервалами времени бездействия между разрешенными субкадрами. Первый набор, по меньшей мере, из одного параметра для интервалов отсутствия сигнала при передаче может быть определен на основе второго набора, по меньшей мере, из одного параметра для разрешенных субкадров, чтобы совмещать интервалы отсутствия сигнала при передаче с интервалами времени бездействия. Каждый интервал отсутствия сигнала при передаче может начинаться во время бездействия между последовательными разрешенными субкадрами. Разрешенные субкадры могут быть заданы, по меньшей мере, посредством одной первой комбинации, к примеру комбинации пакетов DPCCH восходящей линии связи и/или комбинации приема HS-SCCH. Интервалы отсутствия сигнала при передаче могут быть заданы, по меньшей мере, посредством одной второй комбинации, к примеру, по меньшей мере, одной комбинации интервалов отсутствия сигнала при передаче. Каждая вторая комбинация может в несколько раз превышать по длительности каждую первую комбинацию.
Данными можно обмениваться (к примеру, они могут отправляться и/или приниматься) в течение разрешенных субкадров, которые не перекрывают интервалы отсутствия сигнала при передаче (этап 916). Обмены данными могут быть пропущены в течение разрешенных субкадров, которые перекрывают интервалы отсутствия сигнала при передаче (этап 918). Измерения сот (к примеру, для других частот и/или других систем) могут быть выполнены в течение интервалов отсутствия сигнала при передаче (этап 920).
Фиг. 10 показывает схему процесса 1000 для выполнения посредством UE. Разрешенные субкадры для UE могут быть определены, к примеру, на основе, по меньшей мере, одной первой комбинации, которая может включать в себя комбинацию пакетов DPCCH восходящей линии связи и/или комбинацию приема HS-SCCH (этап 1012). Пропущенные субкадры для UE могут быть определены, к примеру, на основе второй комбинации (этап 1014). Пропущенные субкадры могут быть поднабором разрешенных субкадров. Данными можно обмениваться в течение разрешенных субкадров, не соответствующих пропущенным субкадрам (этап 1016). Обмены данными могут быть пропущены в течение пропущенных субкадров (этап 1018). Измерения сот могут быть выполнены в течение интервалов продленного времени бездействия, которые находятся между разрешенными субкадрами и покрывают пропущенные субкадры, к примеру, как показано на фиг. 7 (этап 1020).
Фиг. 11 показывает схему процесса 1100 для выполнения посредством UE. Конфигурация для сжатого режима UE может быть получена, к примеру, через сигнализацию верхнего уровня или некоторое другое средство (этап 1112). Команды могут быть приняты по совместно используемому каналу управления, чтобы активировать и отключать сжатый режим (этап 1114). Команды могут отправляться как сигнализация нижнего уровня (к примеру, L1/L2). UE может функционировать на основе конфигурации для сжатого режима, когда активирован в соответствии с командой, принимаемой через совместно используемый канал управления (этап 1116). Конфигурация для сжатого режима может указывать интервалы отсутствия сигнала при передаче. Обмены данными могут быть пропущены в течение интервалов отсутствия сигнала при передаче, когда сжатый режим активирован. UE может принимать команду, чтобы отключать сжатый режим, затем принимать пакет передаваемых данных и после этого принимать команду, чтобы активировать сжатый режим.
UE может возобновлять передачу после периода бездействия в сжатом режиме или в CPC-режиме. UE может сохранять мощность передачи, используемую в конце предшествующей передачи, и может использовать эту мощность передачи для текущей передачи. Тем не менее, характеристики канала, возможно, изменились в течение периода бездействия. В этом случае, мощность передачи, используемая для предшествующей передачи, может быть недостаточной для текущей передачи, которая в результате может быть менее надежной.
В одной схеме, UE использует оценки без обратной связи для того, чтобы определять мощность передачи для текущей передачи. Оценка без обратной связи может быть оценкой потерь в тракте передачи от узла B к UE и может быть получена на основе пилот-сигнала, передаваемого посредством узла B. Если пилот-сигнал передается при известной или постоянной мощности передачи, то потери в тракте передачи могут быть определены на основе мощности принимаемого пилот-сигнала в UE. UE может выполнять первую оценку без обратной связи в конце предшествующей передачи и может выполнять вторую оценку без обратной связи в начале текущей передачи. Если мощность передачи для пилот-сигнала является постоянной, то каждая оценка без обратной связи может быт