Синтез жидкого топлива и химических реактивов из кислородсодержащих углеводородов

Иллюстрации

Показать все

Изобретение относится к двум вариантам способа получения смеси С4-30 соединений. Один из вариантов включает обеспечение воды и растворимого в воде кислородсодержащего углеводорода, включающего C1+O1+ углеводород, в водной жидкой фазе и/или паровой фазе, обеспечение Н2, проведение в жидкой и/или паровой фазе каталитической реакции кислородсодержащего углеводорода с Н2 в присутствии катализатора дезоксигенирования при температуре дезоксигенирования и при давлении дезоксигенирования для получения в реакционном потоке оксигената, включающего C1+O1-3 углеводород, и проведение в жидкой и/или паровой фазе каталитической реакции оксигената в присутствии катализатора конденсации при температуре конденсации и при давлении конденсации для получения C4-30 соединения, где C4-30 соединение включает соединение, выбранное из группы, состоящей из C4-30 спирта, C4-30 кетона, C4-30 алкана, C4-30 алкена, С5-30 циклоалкана, C5-30 циклоалкена, арила, конденсированного арила и их смеси; и где (а) катализатор дезоксигенирования и катализатор конденсации являются химически различными, или (б) температура дезоксигенирования составляет от примерно 80°С до примерно 300°С, и температура конденсации составляет от примерно 325°С до примерно 375°С. Также изобретение относится к установке для осуществления указанного способа. Настоящее изобретение предоставляет способ переработки биомассы с использованием каталитических методик. 3 н. и 17 з.п. ф-лы, 13 табл., 19 ил., 56 пр.

Реферат

ПЕРЕКРЕСТНЫЕ ССЫЛКИ НА РОДСТВЕННЫЕ ЗАЯВКИ

Заявитель испрашивает приоритет от 5 ноября 2007 г. согласно предварительным заявкам на патент США №60/985475 и 60/985500, а также от 8 марта 2007 г. согласно предварительной заявке на патент США №60/905703.

В находящейся в общей собственности обыкновенной заявке на патент США №11/800671, зарегистрированной 7 мая 2007 г., описан родственный предмет изобретения.

В находящихся в общей собственности обыкновенной заявке на патент США №11/961280 и PCT/US07/88417, зарегистрированных 20 декабря 2007 г., описан родственный предмет изобретения.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

Развитию новых технологий получения энергии из источников, отличных от ископаемого топлива, уделяется значительное внимание. Биомасса представляет собой ресурс, который является перспективным в качестве альтернативы ископаемому топливу. В отличие от ископаемого топлива биомасса также является возобновляемым ресурсом.

Одним из видов биомассы является биомасса растений. Биомасса растений является наиболее обильным источником углеводов в мире, вследствие того что лигноцеллюлозные материалы входят в состав клеточных стенок в высших растениях. Клеточные стенки растений разделяют на две группы: первичные клеточные стенки и вторичные клеточные стенки. Первичная клеточная стенка обеспечивает структуру для роста клеток и состоит из трех основных полисахаридов (целлюлоза, пектин и гемицеллюлоза) и одной группы гликопротеинов. Вторичная клеточная стенка, которая образуется после прекращения роста клетки, также содержит полисахариды; она упрочняется посредством полимерного лигнина, образующего ковалентные поперечные связи с гемицеллюлозой. Гемицеллюлоза и пектин обычно широко распространены, но целлюлоза представляет собой преобладающий полисахарид и наиболее обильный источник углеводов.

Большинство транспортных средств, будь то корабли, поезда, самолеты и автомобили, требуют высокой удельной мощности, обеспечиваемой двигателями внутреннего сгорания и/или реактивными двигателями. Данные двигатели требуют полностью сгорающих топлив, которые обычно представляют собой жидкости или, в меньшей степени, сжатые газы. Жидкие топлива являются более удобными для транспортировки вследствие их высокой удельной энергоемкости и возможности их перекачивания, что делает обращение с ними более простым. Поэтому большинство топлив представляют собой жидкости.

В настоящее время биомасса обеспечивает единственную возобновляемую альтернативу жидкому моторному топливу. В отличие от прикладных систем, использующих ядерную энергию и энергию ветра, и большей части источников солнечной энергии, биомассу можно превратить в жидкую форму. К сожалению, прогресс в разработке новых технологий производства жидкого биотоплива замедлился, особенно для жидких топливных продуктов, которые пригодны для применения в современной инфраструктуре. Хотя из источников биомассы можно получить множество видов топлива, таких как этанол, метанол, биодизельное топливо, дизельное топливо Фишера-Тропша и газообразные топлива, такие как водород и метан, данные топлива требуют новых технологий распределения и/или технологий сжигания, соответствующих их характеристикам. Производство данных топлив также обычно является дорогим, и возникают вопросы относительно итоговой экономии углерода в них.

Например, этанол получают путем превращения углеводов из биомассы в сахар, который затем превращают в этанол в процессе брожения, аналогичном варке пива. В настоящее время этанол на основе крахмальных зерновых культур, таких как кукуруза, является наиболее широко применяемым биотопливом, с текущей производительностью 4,3 миллиарда галлонов (16,3 миллиардов литров) в год. Однако этанол обладает очень существенными недостатками в том, что касается его теплоты сгорания как топлива по отношению к количеству энергии, необходимой для его производства. Этанол, полученный брожением, содержит значительное количество воды, включая обычно только приблизительно 5 об.% этанола в водно-спиртовом продукте брожения. Удаление данной воды потребляет много энергии и часто требует применения природного газа в качестве источника тепла. Этанол также обладает меньшим энергосодержанием, чем бензин, и вследствие этого требуется больше топлива для того, чтобы проехать одно и то же расстояние. Этанол является очень агрессивным по отношению к топливным системам, и его нельзя транспортировать в нефтепроводах. В результате этанол транспортируют по дорогам в автоцистернах, что повышает его общую стоимость и энергопотребление. При учете общей энергии, расходуемой на сельскохозяйственное оборудование, культивацию почвы, посадку растений, удобрения, пестициды, гербициды, фунгициды на основе нефти, оросительные системы, уборку урожая, транспортировку на перерабатывающие заводы, брожение, перегонку, сушку, транспортировку на топливные терминалы и насосы для продажи в розницу, и меньшего энергосодержания этанольного топлива, итоговое суммарное значение энергосодержания доставленного потребителям продукта является очень низким.

Другим возможным источником энергии является биодизельное топливо. Биодизельное топливо можно изготовить из растительного масла, животных жиров, отходов растительных масел, масел микроскопических водорослей или повторного использованных жиров из ресторанов, и его получают способом, в котором полученные органическим путем масла соединяют со спиртом (этанолом или метанолом) в присутствии катализатора с получением сложного эфира этилового или метилового спирта. Затем сложные эфиры этилового или метилового спирта, полученные из биомассы, можно смешать с традиционным дизельным топливом или применять в качестве чистого топлива (100%-ное биодизельное топливо). Производство биодизельного топлива также является дорогим, и при его применении и сжигании возникают различные проблемы. Например, биодизельное топливо непригодно для применения при низких температурах и требует особого обращения, во избежание гелеобразования при низких температурах. Биодизельное топливо также проявляет склонность к повышенному образованию выбросов оксида азота, и его нельзя транспортировать по нефтепроводам.

Биомассу также можно превратить в газ с получением синтез-газа, который состоит главным образом из водорода и монооксида углерода и также называется синтетическим газом или биосинтетическим газом. Получаемый в настоящее время синтез-газ применяют непосредственно для выработки тепла и энергии, но из синтез-газа можно получить и некоторые виды биотоплива. Из синтез-газа можно извлечь водород, или его можно каталитически превратить в метанол. Данный газ также можно пропустить через биологический реактор с получением этанола или превратить его с применением катализатора Фишера-Тропша в жидкий поток, который обладает свойствами, аналогичными свойствам дизельного топлива, и называется дизельным топливом Фишера-Тропша. Данные способы являются дорогими, и с их помощью получают топлива, которые непросто приспособить к современной технологии транспортировки. Способы, позволяющие превращать биомассу с применением каталитических методик, были бы особенно предпочтительными вследствие их близости к современной топливной промышленности.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Одним из аспектов данного изобретения является способ получения С4+ соединения, включающий стадии или операции обеспечения воды и растворимого в воде кислородсодержащего углеводорода, включающего C1+ O1+ углеводород, в водной жидкой фазе и/или в паровой фазе, обеспечения Н2, проведения в жидкой и/или паровой фазе каталитической реакции кислородсодержащего углеводорода с Н2 в присутствии катализатора дезоксигенирования при температуре дезоксигенирования и при давлении дезоксигенирования для получения в реакционном потоке оксигената, включающего С1+О1-3 углеводород, и проведения в жидкой и/или паровой фазе каталитической реакции оксигената в присутствии катализатора конденсации при температуре конденсации и при давлении конденсации с получением С4+ соединения, где С4+ соединение включает С4+ спирт, С4+ кетон, С4+ алкан, С4+ алкен, С5+ циклоалкан, С5+ циклоалкен, арил, конденсированный арил или их смесь.

В примере воплощения способа получения С4+ соединения Н2 включает образованный in situ Н2, внешний Н2, повторно используемый Н2 или их сочетание.

В другом примере воплощения способа получения С4+ соединения H2 включает образованный in situ H2, полученный путем проведения в жидкой фазе и/или в паровой фазе каталитической реакции части воды и кислородсодержащего углеводорода в присутствии катализатора риформинга в водной фазе при температуре риформинга и при давлении риформинга для получения образованного in situ H2.

В другом примере воплощения способа получения С4+ соединения кислородсодержащий углеводород включает полисахариды, дисахариды, моносахариды, производные целлюлозы, производные лигнина, гемицеллюлозу, сахара, сахарные спирты или их смесь.

В другом примере воплощения способа получения С4+ соединения кислородсодержащий углеводород включает C1-12O1-11 углеводород.

В другом примере воплощения способа получения С4+ соединения кислородсодержащий углеводород включает C1-6O1-6 углеводород.

В другом примере воплощения способа получения С4+ соединения C1-12O1-11 углеводород включает сахарный спирт, альдит, производное целлюлозы, производное лигноцеллюлозы, глюкозу, фруктозу, сахарозу, мальтозу, лактозу, маннозу, ксилозу, арабит, эритрит, глицерин, изомальтит, лактит, мальтит, маннит, сорбит, ксилит или их смесь.

В другом примере воплощения способа получения С4+ соединения кислородсодержащий углеводород дополнительно включает повторно используемый С1+О1+ углеводород.

В другом примере воплощения способа получения С4+ соединения оксигенат включает спирт, кетон, альдегид, фуран, диол, триол, гидроксикарбоновую кислоту, карбоновую кислоту или их смесь.

В другом примере воплощения способа получения С4+ соединения оксигенат включает метанол, этанол, н-пропиловый спирт, изопропиловый спирт, бутиловый спирт, пентанол, гексанол, циклопентанол, циклогексанол, 2-метилциклопентанол, гидроксикетоны, циклические кетоны, ацетон, пропанон, бутанон, пентанон, гексанон, 2-метилциклопентанон, этиленгликоль, пропандиол-1,3, пропиленгликоль, бутандиол, пентандиол, гександиол, метилглиоксаль, бутандион, пентандион, ацетонилацетон, гидроксиальдегиды, ацетальдегид, пропионовый альдегид, бутиральдегид, пентаналь, гексаналь, муравьиную кислоту, уксусную кислоту, пропионовую кислоту, бутановую кислоту, пентановую кислоту, гексановую кислоту, молочную кислоту, глицерин, фуран, тетрагидрофуран, дигидрофуран, 2-фуранметанол, 2-метилтетрагидрофуран, 2,5-диметилтетрагидрофуран, 2-этилтетрагидрофуран, 2-метилфуран, 2,5-диметилфуран, 2-этилфуран, гидроксиметилфурфурол, 3-гидрокситетрагидрофуран, тетрагидрофуранол-3, 5-гидроксиметил-2(5Н)-фуранон, дигидро-5-(гидроксиметил)-2(3Н)-фуранон, тетрагидро-2-фуранкарбоновую кислоту, дигидро-5-(гидроксиметил)-2(3Н)-фуранон, тетрагидрофурфуриловый спирт, 1-(2-фурил)этанол и гидроксиметилтетрагидрофурфурол, их изомеры или их смесь.

В другом примере воплощения способа получения С4+ соединения оксигенат дополнительно включает повторно используемый C1+O1-3 углеводород.

В другом примере воплощения способа получения С4+ соединения С4+ алкан включает линейный или разветвленный C4-30 алкан.

В другом примере воплощения способа получения С4+ соединения С4+ алкан включает линейный или разветвленный алкан, такой как C4-9, С7-14, C12-24 алканы и их смесь.

В другом примере воплощения способа получения С4+ соединения С4+ алкен включает линейный или разветвленный C4-30 алкен.

В другом примере воплощения способа получения С4+ соединения С4+ алкен включает линейный или разветвленный алкен, такой как С4-9, С7-14, C12-24 алкены и их смесь.

В другом примере воплощения способа получения С4+ соединения С5+ циклоалкан включает монозамещенный или многозамещенный С5+ циклоалкан, а по меньшей мере одна замещающая группа включает разветвленный С3+ алкил, линейный C1+ алкил, С3+ алкилен с разветвленной цепью, линейный C1+ алкилен, фенил или их сочетание.

В другом примере воплощения способа получения С4+ соединения монозамещенный или многозамещенный С5+ циклоалкан замещен разветвленным С3-12 алкилом, линейным C1-12 алкилом, разветвленным С3-12 алкиленом, линейным C1-12 алкиленом, фенилом или их сочетанием.

В другом примере воплощения способа получения С4+ соединения замещающая группа представляет собой разветвленный С3-4 алкил, линейный C1-4 алкил, разветвленный С3-4 алкилен, линейный C1-4 алкилен, фенил или их сочетание.

В другом примере воплощения способа получения С4+ соединения С5+ циклоалкен включает монозамещенный или многозамещенный С5+ циклоалкен, а по меньшей мере одна замещающая группа представляет собой разветвленный С3+ алкил, линейный C1+ алкил, разветвленный С3+ алкилен, линейный С2+ алкилен, фенил или их сочетание.

В другом примере воплощения способа получения С4+ соединения монозамещенный или многозамещенный С5+ циклоалкен замещен разветвленным С3-12 алкилом, линейным C1-12 алкилом, разветвленным С3-12 алкиленом, линейным C2-12 алкиленом, фенилом или их сочетанием.

В другом примере воплощения способа получения С4+ соединения замещающая группа представляет собой разветвленный С3-4 алкил, линейный C1-4 алкил, разветвленный С3-4 алкилен, линейный C2-4 алкилен, фенил или их сочетание.

В другом примере воплощения способа получения С4+ соединения арил включает незамещенный арил.

В другом примере воплощения способа получения С4+ соединения арил включает монозамещенный или многозамещенный арил, а по меньшей мере одна замещающая группа представляет собой разветвленный С3+ алкил, линейный C1+ алкил, разветвленный С3+ алкилен, линейный С2+ алкилен, фенил или их сочетание.

В другом примере воплощения способа получения С4+ соединения замещающая группа представляет собой разветвленный С3-12 алкил, линейный C1-12 алкил, разветвленный С3-12 алкилен, линейный C2-12 алкилен, фенил или их сочетание.

В другом примере воплощения способа получения С4+ соединения замещающая группа представляет собой разветвленный С3-4 алкил, линейный C1-4 алкил, разветвленный С3-4 алкилен, линейный C2-4 алкилен, фенил или их сочетание.

В другом примере воплощения способа получения С4+ соединения конденсированный арил включает незамещенный конденсированный арил.

В другом примере воплощения способа получения С4+ соединения конденсированный арил включает монозамещенный или многозамещенный конденсированный арил, а по меньшей мере одна замещающая группа представляет собой разветвленный С3+ алкил, линейный C1+ алкил, разветвленный С3+ алкилен, линейный С2+ алкилен, фенил или их сочетание.

В другом примере воплощения способа получения С4+ соединения замещающая группа представляет собой разветвленный С3-4 алкил, линейный C1-4 алкил, разветвленный С3-4 алкилен, линейный C2-4 алкилен, фенил или их сочетание.

В другом примере воплощения способа получения С4+ соединения С4+ спирт включает соединение формулы R1-OH, где R1 представляет собой разветвленный С4+ алкил, линейный С4+ алкил, разветвленный С4+ алкилен, линейный С4+ алкилен, замещенный С5+ циклоалкан, незамещенный С5+ циклоалкан, замещенный С5+ циклоалкен, незамещенный С5+ циклоалкен, арил, фенил или их сочетание.

В другом примере воплощения способа получения С4+ соединения С4+ кетон включает соединение формулы

где R3 и R4 независимо друг от друга представляют собой разветвленный C3+ алкил, линейный C1+ алкил, разветвленный C3+ алкилен, линейный С2+ алкилен, замещенный С5+ циклоалкан, незамещенный С5+ циклоалкан, замещенный С5+ циклоалкен, незамещенный С5+ циклоалкен, арил, фенил или их сочетание.

В другом примере воплощения способа получения С4+ соединения катализатор конденсации включает кислотный катализатор, основный катализатор или кислотно-основный катализатор.

В другом примере воплощения способа получения С4+ соединения катализатор конденсации включает карбид, нитрид, диоксид циркония, оксид алюминия, диоксид кремния, алюмосиликат, фосфат, цеолит, оксид титана, оксид цинка, оксид ванадия, оксид церия, оксид лантана, оксид иттрия, оксид скандия, оксид магния, оксид бария, оксид кальция, гидроксид, гетерополикислоту, неорганическую кислоту, модифицированную кислотой смолу, модифицированную основанием смолу или их сочетание.

В другом примере воплощения способа получения С4+ соединения катализатор конденсации дополнительно включает кислотный катализатор, основный катализатор и кислотно-основный катализатор.

В другом примере воплощения способа получения С4+ соединения катализатор конденсации дополнительно включает модификатор, такой как Се, La, Y, Sc, Li, Na, К, Rb, Cs, Mg, Ca, Sr, Ba, P, B, Bi, или их сочетание.

В другом примере воплощения способа получения С4+ соединения катализатор конденсации дополнительно включает металл, такой как Cu, Ag, Au, Pt, Ni, Fe, Co, Ru, Zn, Cd, Ga, In, Rh, Pd, Ir, Re, Mn, Cr, Mo, W, Sn, Os, их сплав или их сочетание.

В другом примере воплощения способа получения С4+ соединения кислотный катализатор включает кислый оксид алюминия, фосфат алюминия, алюмосиликофосфат, аморфный алюмосиликат, алюмосиликат, диоксид циркония, сульфатированный диоксид циркония, вольфрамированный диоксид циркония, карбид вольфрама, карбид молибдена, диоксид титана, сульфатированный углерод, фосфатированный углерод, фосфатированный диоксид кремния, фосфатированный оксид алюминия, кислотную смолу, гетерополикислоту, неорганическую кислоту или их сочетание.

В другом примере воплощения способа получения С4+ соединения кислотный катализатор дополнительно включает модификатор, такой как Се, Y, Sc, La, Li, Na, К, Rb, Cs, Mg, Ca, Sr, Ba, P, B, Bi, или их сочетание.

В другом примере воплощения способа получения С4+ соединения кислотный катализатор дополнительно включает оксид любого из следующих элементов: Ti, Zr, V, Nb, Та, Mo, Cr, W, Mn, Re, Al, Ga, In, Fe, Co, Ir, Ni, Si, Cu, Zn, Sn, Cd, P, или их сочетание.

В другом примере воплощения способа получения С4+ соединения кислотный катализатор дополнительно включает металл, такой как Cu, Ag, Au, Pt, Ni, Fe, Co, Ru, Zn, Cd, Ga, In, Rh, Pd, Ir, Re, Mn, Cr, Mo, W, Sn, Os, их сплав или их сочетание.

В другом примере воплощения способа получения С4+ соединения кислотный катализатор включает алюмосиликатный цеолит.

В другом примере воплощения способа получения С4+ соединения кислотный катализатор дополнительно включает модификатор, такой как Ga, In, Zn, Fe, Mo, Ag, Au, Ni, P, Sc, Y, Та, лантаноид, или их сочетание.

В другом примере воплощения способа получения С4+ соединения кислотный катализатор дополнительно включает металл, такой как Cu, Ag, Au, Pt, Ni, Fe, Co, Ru, Zn, Cd, Ga, In, Rh, Pd, Ir, Re, Mn, Cr, Mo, W, Sn, Os, их сплав или их сочетание.

В другом примере воплощения способа получения С4+ соединения кислотный катализатор включает бифункциональный алюмосиликатный цеолит, содержащий кольца типа "пентасил".

В другом примере воплощения способа получения С4+ соединения кислотный катализатор дополнительно включает модификатор, такой как Ga, In, Zn, Fe, Mo, Ag, Au, Ni, P, Sc, Y, Та, лантаноид и их сочетание.

В другом примере воплощения способа получения С4+ соединения кислотный катализатор дополнительно включает металл, такой как Cu, Ag, Au, Pt, Ni, Fe, Co, Ru, Zn, Cd, Ga, In, Rh, Pd, Ir, Re, Mn, Cr, Mo, W, Sn, Os, их сплав или их сочетание.

В другом примере воплощения способа получения С4+ соединения основный катализатор включает гидроталькит, алюминат цинка, фосфат, Li, Na, К, Cs, В, Rb, Mg, Са, Sr, Si, Ва, Al, Се, La, Sc, Y, Zr, Ti, Zn, их сплав или их сочетание.

В другом примере воплощения способа получения С4+ соединения основный катализатор дополнительно включает оксид любого из следующих элементов: Ti, Zr, V, Nb, Та, Mo, Cr, W, Mn, Re, Al, Ga, In, Fe, Со, Mg, Ni, Si, Cu, Zn, Sn, Cd, P, или их сочетание.

В другом примере воплощения способа получения С4+ соединения основный катализатор дополнительно включает металл, такой как Cu, Ag, Au, Pt, Ni, Fe, Co, Ru, Zn, Cd, Ga, In, Rh, Pd, Ir, Re, Mn, Cr, Mo, W, Sn, Os, их сплав или их сочетание.

В другом примере воплощения способа получения С4+ соединения основный катализатор включает оксид следующих металлов: Cu, Ni, Zn, V, Zr, или их сочетание.

В другом примере воплощения способа получения С4+ соединения основный катализатор включает алюминат цинка и металл, такой как Pd, Pt, Ni, Cu, или их сочетание.

В другом примере воплощения способа получения С4+ соединения кислотно-основный катализатор включает гидроталькит, алюминат цинка, фосфат, Li, Na, К, Cs, В, Rb, Mg, Са, Sr, Si, Ва, Al, Се, La, Sc, Y, Zr, Ti, Zn, Cr, их сплав или их сочетание.

В другом примере воплощения способа получения С4+ соединения кислотно-основный катализатор дополнительно включает оксид любого из следующих элементов: Ti, Zr, V, Nb, Та, Mo, Cr, W, Mn, Re, Al, Ga, In, Fe, Co, Ir, Ni, Si, Cu, Zn, Sn, Cd, P, или их сочетание.

В другом примере воплощения способа получения С4+ соединения кислотно-основный катализатор дополнительно включает металл, такой как Cu, Ag, Au, Pt, Ni, Fe, Co, Ru, Zn, Cd, Ga, In, Rh, Pd, Ir, Re, Mn, Cr, Mo, W, Sn, Os, их сплав или их сочетание.

В другом примере воплощения способа получения С4+ соединения кислотно-основный катализатор включает двойной оксид, такой как сочетание MgO и Al2O3, сочетание MgO и ZrO2 или сочетание ZnO и Al2O3.

В другом примере воплощения способа получения С4+ соединения кислотно-основный катализатор дополнительно включает металл, такой как Cu, Pt, Pd, Ni, или их сочетание.

В другом примере воплощения способа получения С4+ соединения катализатор дезоксигенирования включает носитель и Re, Cu, Fe, Ru, Ir, Со, Rh, Pt, Pd, Ni, W, Os, Mo, Ag, Au, их сплав или их сочетание.

В другом примере воплощения способа получения С4+ соединения катализатор дезоксигенирования дополнительно включает Mn, Cr, Mo, W, V, Nb, Та, Ti, Zr, Y, La, Sc, Zn, Cd, Ag, Au, Sn, Ge, P, Al, Ga, In, Tl или их сочетание.

В другом примере воплощения способа получения С4+ соединения носитель включает нитрид, углерод, диоксид кремния, оксид алюминия, диоксид циркония, диоксид титана, оксид ванадия, диоксид церия, нитрид бора, гетерополикислоту, кизельгур, гидроксиапатит, оксид цинка, оксид хрома или их смесь.

В другом примере воплощения способа получения С4+ соединения носитель включает углерод, обработанный пероксидом водорода.

В другом примере воплощения способа получения С4+ соединения носитель модифицирован путем обработки модификатором, таким как силаны, соединения щелочных металлов, соединения щелочноземельных металлов и/или лантаноиды.

В другом примере воплощения способа получения С4+ соединения носитель включает углеродные нанотрубки, углеродные фуллерены и/или цеолиты.

В другом примере воплощения способа получения С4+ соединения катализатор дезоксигенирования и катализатор конденсации являются атомарно идентичными.

В другом примере воплощения способа получения С4+ соединения катализатор риформинга в водной фазе включает носитель и Fe, Ru, Os, Ir, Co, Rh, Ft, Pd, Ni, их сплав или их сочетание.

В другом примере воплощения способа получения С4+ соединения катализатор риформинга в водной фазе дополнительно включает Cu, В, Mn, Re, Cr, Mo, Bi, W, V, Nb, Та, Ti, Zr, Y, La, Sc, Zn, Cd, Ag, Au, Sn, Ge, P, Al, Ga, In, Tl, их сплав или их сочетание.

В другом примере воплощения способа получения С4+ соединения носитель включает любой из вышеупомянутых носителей.

В другом примере воплощения способа получения С4+ соединения один или более из следующих катализаторов: катализатор риформинга в водной фазе, катализатор дезоксигенирования и катализатор конденсации, являются атомарно идентичными.

В другом примере воплощения способа получения С4+ соединения катализатор риформинга в водной фазе и катализатор дезоксигенирования включают Pt, сплавленную или смешанную с Ni, Ru, Cu, Fe, Rh, Re, их сплавами или их сочетанием.

В другом примере воплощения способа получения С4+ соединения катализатор риформинга в водной фазе и катализатор дезоксигенирования включают Ru, сплавленный или смешанный с Ge, Bi, В, Ni, Sn, Cu, Fe, Rh, Pt, их сплавами или их сочетанием.

В другом примере воплощения способа получения С4+ соединения катализатор риформинга в водной фазе включает Ni, сплавленный или смешанный с Sn, Ge, Bi, В, Cu, Re, Ru, Fe, их сплавами или их сочетанием.

В другом примере воплощения способа получения С4+ соединения температура риформинга составляет от приблизительно 100°С до приблизительно 450°С, а давление риформинга представляет собой давление, при котором вода и кислородсодержащий углеводород являются газообразными.

В другом примере воплощения способа получения С4+ соединения температура риформинга составляет от приблизительно 100°С до приблизительно 300°С, а давление риформинга представляет собой давление, при котором вода и кислородсодержащий углеводород являются газообразными.

В другом примере воплощения способа получения С4+ соединения температура риформинга составляет от приблизительно 80°С до 400°С, а давление риформинга представляет собой давление, при котором вода и кислородсодержащий углеводород являются жидкими.

В другом примере воплощения способа получения С4+ соединения температура дезоксигенирования составляет от приблизительно 100°С до 600°С, а давление дезоксигенирования составляет по меньшей мере 0,01 МПа (0,1 атм).

В другом примере воплощения способа получения С4+ соединения температура дезоксигенирования составляет от приблизительно 80°С до приблизительно 300°С, а давление дезоксигенирования представляет собой давление, при котором вода и кислородсодержащий углеводород являются жидкими.

В другом примере воплощения способа получения С4+ соединения температура дезоксигенирования составляет от приблизительно 200°С до приблизительно 280°С, а давление дезоксигенирования представляет собой давление, при котором вода и кислородсодержащий углеводород являются жидкими.

В другом примере воплощения способа получения С4+ соединения температура дезоксигенирования составляет от приблизительно 100°С до 600°С, а давление дезоксигенирования представляет собой давление, при котором вода и кислородсодержащий углеводород являются газообразными.

В другом примере воплощения способа получения С4+ соединения температура дезоксигенирования составляет от приблизительно 200°С до 280°С, а давление дезоксигенирования представляет собой давление, при котором вода и кислородсодержащий углеводород являются газообразными.

В другом примере воплощения способа получения С4+ соединения температура риформинга и температура дезоксигенирования составляют от приблизительно 100°С до 450°С, а давление риформинга и давление дезоксигенирования составляют приблизительно от 0,5 до 8,96 МПа (избыт.) (от 72 до 1300 фунтов-сил/кв.дюйм (избыт.)).

В другом примере воплощения способа получения С4+ соединения температура риформинга и температура дезоксигенирования составляют от приблизительно 120°С до 300°С, а давление риформинга и давление дезоксигенирования составляют приблизительно от 0,5 до 8,27 МПа (избыт.) (от 72 до 1200 фунтов-сил/кв.дюйм (избыт.)).

В другом примере воплощения способа получения С4+ соединения температура риформинга и температура дезоксигенирования составляют от приблизительно 200°С до 280°С, а давление риформинга и давление дезоксигенирования составляют приблизительно от 1,38 до 5 МПа (избыт.) (от 200 до 725 фунтов-сил/кв.дюйм (избыт.)).

В другом примере воплощения способа получения С4+ соединения температура конденсации составляет приблизительно от 80°С до 500°С, а давление конденсации составляет приблизительно от 0 до 8,27 МПа (избыт.) (от 0 до 1200 фунтов-сил/кв.дюйм (избыт.)).

В другом примере воплощения способа получения С4+ соединения температура конденсации составляет приблизительно от 125°С до 450°С, а давление конденсации составляет по меньшей мере 0,01 МПа (0,1 атм).

В другом примере воплощения способа получения С4+ соединения температура конденсации составляет приблизительно от 125°С до 250°С, а давление конденсации составляет приблизительно от 0 до 4,83 МПа (избыт.) (от 0 до 700 фунтов-сил/кв.дюйм (избыт.)).

В другом примере воплощения способа получения С4+ соединения температура конденсации составляет приблизительно от 250°С до 425°С.

В другом примере воплощения способа получения С4+ соединения реакционный поток дополнительно включает воду, а способ дополнительно включает стадию или операцию обезвоживания реакционного потока перед проведением реакции оксигената в присутствии катализатора конденсации.

В другом примере воплощения способа получения С4+ соединения стадию проведения каталитической реакции кислородсодержащего углеводорода с Н2 в присутствии катализатора дезоксигенирования проводят в присутствии в несущественной степени эффективного количества внешнего H2.

В другом примере воплощения способа получения С4+ соединения молярное соотношение общего количества атомов кислорода в кислородсодержащих углеводородах к общему количеству атомов водорода во внешнем H2 составляет менее чем 1:1.

В другом примере воплощения способа получения С4+ соединения способ дополнительно включает стадию или операцию проведения в жидкой и/или паровой фазе каталитической реакции сахара, сахарного спирта или многоатомного спирта с H2 в присутствии катализатора гидрогенолиза при температуре гидрогенолиза и при давлении гидрогенолиза для получения кислородсодержащего углеводорода.

В другом примере воплощения способа получения С4+ соединения температура гидрогенолиза составляет по меньшей мере 110°С, а давление гидрогенолиза составляет приблизительно от 0,07 до 16,55 МПа (избыт.) (от 10 до 2400 фунтов-сил/кв.дюйм (избыт.)).

В другом примере воплощения способа получения С4+ соединения температура гидрогенолиза составляет приблизительно от 110°С до 300°С.

В другом примере воплощения способа получения С4+ соединения катализатор гидрогенолиза включает фосфат, Cr, Mo, W, Re, Mn, Cu, Cd, Fe, Ru, Os, Ir, Co, Rh, Pt, Pd, Ni, их сплавы или их сочетание.

В другом примере воплощения способа получения С4+ соединения катализатор гидрогенолиза дополнительно включает Au, Ag, Zn, Sn, Bi, В, Cr, Mn, O, их сплавы и их сочетание.

В другом примере воплощения способа получения С4+ соединения катализатор гидрогенолиза дополнительно включает оксид щелочноземельного металла.

В другом примере воплощения способа получения С4+ соединения катализатор гидрогенолиза дополнительно включает любой из вышеупомянутых носителей.

В другом примере воплощения способа получения С4+ соединения Н2 включает образованный in situ H2, внешний H2, повторно используемый H2 или их сочетание.

В другом примере воплощения способа получения С4+ соединения способ дополнительно включает стадию или операцию проведения в жидкой и/или паровой фазе каталитической реакции сахара, фурфурола, карбоновой кислоты, кетона или фурана с H2 в присутствии катализатора гидрирования при температуре гидрирования и при давлении гидрирования для получения кислородсодержащего углеводорода.

В другом примере воплощения способа получения С4+ соединения температура гидрирования составляет приблизительно от 80°С до 250°С, а давление гидрирования составляет приблизительно от 0,69 до 13,79 МПа (избыт.) (от 100 до 2000 фунтов-сил/кв.дюйм (избыт.)).

В другом примере воплощения способа получения С4+ соединения катализатор гидрирования включает носитель и Fe, Ru, Os, Ir, Co, Rh, Pt, Pd, Ni, Re, Cu, их сплавы или их сочетание.

В другом примере воплощения способа получения С4+ соединения катализатор гидрирования дополнительно включает Ag, Au, Cr, Zn, Mn, Sn, Bi, Мо, W, В, Р, их сплавы или их сочетание.

В другом примере воплощения способа получения С4+ соединения катализатор гидрирования дополнительно включает любой из вышеупомянутых носителей.

В другом примере воплощения способа получения С4+ соединения Н2 включает образованный in situ Н2, внешний Н2, повторно используемый H2 или их сочетание.

В другом примере воплощения способа получения С4+ соединения способ дополнительно включает проведение в жидкой фазе и/или в паровой фазе каталитической реакции С4+ соединения в присутствии катализатора завершающей стадии при температуре завершающей стадии и при давлении завершающей стадии, причем катализатор завершающей стадии включает носитель и Cu, Ni, Fe, Со, Ru, Pd, Rh, Pt, Ir, Os, их сплав или их сочетание.

В другом примере воплощения способа получения С4+ соединения катализатор завершающей стадии дополнительно включает модификатор, такой как Au, Ag, Cr, Zn, Mn, Sn, Си, Cr, Bi, их сплавы и их сочетание.

В другом примере воплощения способа получения С4+ соединения носитель представляет собой любой из вышеупомянутых носителей.

Другим аспектом данного изобретения является способ получения С4+ соединения, включающий стадии или операции обеспечения воды и растворимого в воде кислородсодержащего углеводорода, включающего С1+О1+ углеводород, в водной жидкой фазе и/или в паровой фазе, проведения в жидкой фазе и/или в паровой фазе каталитической реакции части воды и кислородсодержащего углеводорода в присутствии катализатора риформинга в водной фазе при температуре риформинга и при давлении риформинга для получения образованного in situ H2, проведения в жидкой и/или паровой фазе каталитической реакции кислородсодержащего углеводорода с образованным in situ H2 в присутствии катализатора дезоксигенирования при температуре дезоксигенирования и при давлении дезоксигенирования для получения оксигената, включающего C1+O1-3 углеводород, в реакционном потоке и проведения в жидкой и/или паровой фазе каталитической реакции оксигената в присутствии катализатора конденсации при температуре конденсации и при давлении конденсации для получения С4+ соединения, где С4+ соединение включает С4+ спирт, С4+ кетон, С4+ алкан, С4+ алкен, С5+ циклоалкан, С5+ циклоалкен, арил, конденсированный арил или их смесь.

В примере воплощения способа получения С4+ соединения способ дополнительно включает операции или стадии обеспечения дополнительного H2 и проведения каталитической реакции части кислородсодержащего углеводорода с дополнительным H2 в присутствии катализатора дезоксигенирования для получения оксигената.

В другом примере воплощения способа получения С4+ соединения способ дополнительно включает операцию или стадию проведения в жидкой и/или паровой фазе каталитической реакции сахара, фурфурола, карбоновой кислоты, кетона или фурана с H2 в присутствии катализатора гидрирования при температуре гидрирования и при давлении гидрирования для получения кислородсодержащего углеводорода.

В другом примере воплощения способа получения С4+ соединения способ дополнительно включает операцию или стадию проведения в жидкой и/или паровой фазе каталитической реакции сахара, сахарного спирта или многоатомного спирта с H2 в присутствии катализатора гидрогенолиза при температуре гидрогенолиза и при давлении гидрогенолиза для получения кислородсодержащего углеводорода.

В другом примере воплощения способа получения С4+ соединения раст