Устройство для обнаружения инфракрасного излучения, содержащее резистивный создающий изображение болометр, система, содержащая матрицу из таких болометров, и способ считывания создающего изображение болометра, интегрированного в такую систему
Иллюстрации
Показать всеИзобретение относится к области создания инфракрасных изображений и пирометрии с использованием болометров. Устройство для обнаружения инфракрасного излучения содержит резистивный создающий изображение болометр (102), предназначенный для электрического соединения с контуром (22) для измерения сопротивления болометра, в котором содержится средство (32) для управления сопротивлением создающего изображение болометра посредством подачи тока в болометр. Система для обнаружения инфракрасного излучения содержит матрицу из указанных выше устройств. Способ считывания создающего изображение болометра в системе для обнаружения инфракрасного излучения, заключается в регулировании сопротивления болометра на значение заданного сопротивления, общего для всех болометров в матрице системы, по меньшей мере, один раз в каждом цикле считывания болометра посредством подачи в него тока. Технический результат заключается в обеспечении возможности устранения неблагоприятного соотношения между постоянной времени болометров и их тепловым разрешением. 3 н. и 20 з.п. ф-лы, 5 ил.
Реферат
Область техники, к которой относится изобретение
Данное изобретение относится к области создания инфракрасных изображений и пирометрии с использованием болометров.
В частности, данное изобретение относится к устройству для обнаружения инфракрасного излучения, содержащему резистивный создающий изображение болометр. Оно относится также к системе, содержащей матрицу из таких устройств, а также к способу считывания создающего изображение болометра, интегрированного в такую систему.
Уровень техники
В области инфракрасных детекторов известно использование устройств, расположенных в виде матрицы и способных работать при окружающей температуре, т.е. не требующих охлаждения до экстремально низких температур, в противоположность к детекторным устройствам, называемым «квантовыми детекторами», которые могут работать лишь при экстремально низкой температуре, обычно температуре жидкого азота.
В этих не охлаждаемых детекторах традиционно используются изменения в физической величине подходящего материала в качестве функции температуры около 300 К. В случае болометрических детекторов эта физическая величина является электрическим удельным сопротивлением.
Такой не охлаждаемый детектор в основном включает:
- средства для поглощения инфракрасного излучения и превращения его в тепло;
- средства для тепловой изоляции детектора, так что его температура может повышаться за счет действия инфракрасного излучения;
- термометрические средства, которые в контексте болометрического детектора используют резистивный элемент; и
- средства для считывания электрических сигналов, создаваемых термометрическими средствами.
Детекторы, предназначенные для создания инфракрасных изображений, обычно изготавливают в виде одномерной или двумерной матрицы элементарных детекторов, или болометров, при этом указанные болометры опираются на подложку, которая обычно выполнена из кремния, с помощью опорных рычагов.
Подложка обычно включает средства для последовательной адресации элементарных детекторов и средства для предварительной обработки электрических сигналов, генерированных этими элементарными детекторами. Эта подложка и интегрированные средства обычно называются «считывающим контуром».
Для получения изображения сцены с использованием этого детектора сцена проецируется через подходящую оптику на матрицу элементарных детекторов, и с помощью считывающего контура подаются синхронные электрические импульсы на каждый из элементарных детекторов или на каждый ряд таких детекторов с целью получения электрического сигнала, который образует изображение температуры, достигаемой каждым из указанных элементарных детекторов. Затем этот сигнал обрабатывается в большей или меньшей степени с помощью считывающего контура, а затем, при необходимости, с помощью внешнего электронного устройства для создания теплового изображения наблюдаемой сцены.
Однако ясно, что тепловое сопротивление Rth опорных рычагов, связанное с тепловой емкостью Cth элементарного болометра, задает для болометра постоянную времени τth, которая равна произведению RthCth и обычно составляет около 10 мс.
Эта тепловая постоянная времени присуща каждому болометру и имеет пагубные последствия, которые ограничивают проникновение на рынок болометрических детекторов для применений, которые связаны, например, с бортовыми видеосистемами или слежением за движущимися объектами.
Эта постоянная времени τth болометра является высокой и ограничивает время отклика. Таким образом, если сцена подвержена быстрым изменениям контраста, таким как, например, появление объекта, который имеет более высокую (или более низкую) температуру, чем фон сцены (он называется «горячим» или «холодным» объектом), то болометр с трудом поспевает за такими изменениями. Следовательно, болометр проявляет эффект тепловой памяти от одного считываемого кадра к другому. Поэтому перемещение горячего (или холодного) объекта в сцене приводит к размыванию или смазыванию образуемого изображения.
Это явление является также пагубным при изображении фиксированной сцены, в которой имеются местные быстрые колебания температуры. Болометр не может реагировать на изменения, которые меньше постоянной времени, и поэтому с трудом правильно отображает сцену.
Кроме того, величины рассредоточенного сопротивления различных элементарных проводников приводят к прохождению через них рассредоточенных токов во время считывания. Это приводит к дисперсии сигналов для равномерной сцены (эта дисперсия называется «смещением»), а также к дисперсии чувствительности (или усиления) относительно изменений температуры.
Дисперсия сопротивления вызывается главным образом изменениями, присущими различным технологиям изготовления, и пространственным распределением температуры подложки и излучения окружения.
Обычно эту дисперсию компенсируют с помощью функции вычисления коррекции изображения, называемой «двухточечной коррекцией», вне фокусной плоскости после экспериментального определения смещения и получения параметров дисперсии.
Можно также предпринимать попытки уменьшения постоянной времени τth болометров с целью устранения этих недостатков.
Однако трудно уменьшать тепловую емкость Cth болометра, поскольку его тепловая емкость зависит от количества материала, используемого для изготовления болометра. Уменьшение массы болометра оказывает непосредственное воздействие на увеличение электрического шума болометра, поскольку мощность электрического шума зависит от объема болометра, по меньшей мере, когда используются термометрические материалы, имеющие уровень низкочастотного шума, которым нельзя пренебрегать. Кроме того, геометрическая стабильность чувствительных структур не может быть гарантирована, если имеется менее чем адекватное количество структурного материала, и это количество нельзя просто уменьшать по желанию.
Дополнительно к этому уменьшение теплового сопротивления Rth не является удовлетворительным решением. Действительно, при этом уменьшается тепловая изоляция болометра от подложки, т.е. чувствительность, поскольку тепловое сопротивление Rth непосредственно связано с тепловой чувствительностью измерения болометра, а это является ключевым фактором, который задает тепловое разрешение болометрического детектора.
Понятно, что при современном уровне техники невозможно создание болометрического детектора, который не имеет явления размывания и который обеспечивает высокие рабочие характеристики в смысле теплового разрешения, т.е. высокое отношение сигнала к шуму.
Говоря в целом, болометрический детектор, согласно уровню техники, предназначен для частного применения. Обычно временная постоянная τth такого болометра является максимальной за счет увеличения Rth с помощью конструктивных мер, пока не будет достигнут уровень размывания, который считается приемлемым в контексте рассматриваемого применения.
Задачей данного изобретения является устранение неблагоприятного соотношения между постоянной времени болометров и их тепловым разрешением.
Поэтому целью данного изобретения является создание с помощью простых надежных средств болометрических детекторов, которые по существу не подвержены явлению размывания при одновременном обеспечении высоких рабочих характеристик относительно теплового разрешения.
Сущность изобретения
Для достижения этого предлагается устройство для обнаружения инфракрасного излучения, содержащее резистивный создающий изображение болометр, предназначенный для электрического соединения с контуром для измерения сопротивления болометра.
Согласно изобретению это устройство содержит средства для управления сопротивлением создающего изображение болометра посредством ввода тока в болометр.
Таким образом, с помощью этих средств управления можно устанавливать сопротивление болометра на заданное опорное значение, по меньшей мере, один раз в каждом цикле считывания болометра. Следствием этого является аннулирование эффекта тепловой памяти болометра каждый раз перед считыванием, за счет чего устраняется фоновый шум и любое действие размывания, а также устраняется эффект изменений паразитных сопротивлений без взаимосвязи со сценой.
Действительно, за счет такого регулирования сопротивления болометра на опорное значение сопротивление считываемого болометра не зависит от событий, которые происходят перед завершением предыдущего цикла, во время цикла считывания тока и, в частности, от изменения сцены и предыдущих тепловых изменений подложки.
Это сопротивление также по существу не зависит от пространственного положения болометра в линейной или матричной конфигурации.
Изобретение также существенно улучшает детектор относительно его смещения и дисперсии усиления, что обеспечивает возможность упрощения его осуществления.
В последующем тексте болометр, который является чувствительным к падающему потоку от сцены и предназначен для создания элемента теплового изображения наблюдаемой сцены, называется «создающим изображение болометром».
В частных вариантах выполнения изобретения средство для управления сопротивлением создающего изображение болометра содержит средство для ввода заданного опорного тока (Iref) в болометр.
Это управляющее средство предпочтительно содержит средство для отсоединения средства ввода тока, когда напряжение на клеммах создающего изображение болометра по существу равно заданному опорному напряжению. Это опорное напряжение в свою очередь предпочтительно регулируется на значение ниже напряжения на клеммах создающего изображение болометра во время активации средства ввода тока и когда ток по существу равен опорному току Iref.
В одном частном варианте выполнения изобретения средство управления способно фиксировать сопротивление создающего изображение болометра на опорном сопротивлении, которое зависит от температуры подложки, поверх которой образован создающий изображение болометр.
Средство управления содержит усилитель с обратной связью от болометра, который термализован с подложкой; выходной сигнал усилителя образует заданную первоначальную коррекцию опорного сопротивления для заданной первоначальной температуры.
В качестве альтернативного решения, средство управления содержит датчик, который измеряет температуру подложки, и блок (28) обработки информации, способный определять в виде функции измеряемой температуры заданную первоначальную коррекцию опорного сопротивления для заданной первоначальной температуры.
Таким образом, за счет управления термализацией в виде функции температуры фокальной плоскости значение тока опорного сопротивления, на котором удерживаются все создающие изображение болометры, остается постоянным в желаемом месте, т.е. предпочтительно вблизи минимального значения естественного распределения сопротивлений создающих изображение болометров, независимо от температуры фокальной плоскости.
Следует также отметить, что виды контуров, используемых для температурного управления опорным сопротивлением, независимо от того, являются они аналоговыми или цифровыми, обеспечивают возможность не только сохранения адекватного позиционирования термализации при изменении рабочей температуры, но также обеспечивают возможность этого адекватного позиционирования, когда действительные сопротивления болометров изменяются во времени при постоянной температуре. Действительно, чувствительные материалы, включенные в болометрические мембраны, имеют склонность к очень медленному уходу во время срока службы детектора. Со временем этот уход ограничивает релевантность установки первоначальных параметров, даже если детектор работает при стабилизированной постоянной температуре.
Задачей изобретения является также создание системы для обнаружения инфракрасного излучения, содержащей матрицу, по меньшей мере, с одним рядом устройств, каждое из которых содержит:
- резистивный создающий изображение болометр;
- измерительный контур, предназначенный для электрического соединения с создающим изображение болометром с целью считывания сопротивления болометра.
Согласно изобретению эти устройства являются, каждое, устройством указанного выше типа.
Согласно изобретению средство управления сопротивлением создающего изображение болометра способно регулировать его сопротивление на заданное значение сопротивления, которое является общим для всех создающих изображение болометров в указанной матрице.
Предпочтительно, средство управления сопротивлением создающего изображение болометра активируется каждый раз после считывания болометра.
Дополнительно к этому система может содержать средство для управления тепловым динамическим диапазоном сцены, измеряемой с помощью матрицы, в зависимости от заданного электрического динамического отклика считывающего контура. Это средство для управления динамическим диапазоном измеряемой сцены содержит средство, способное включать считывающий контур по истечении заданного времени экспозиции после выключения средства управления сопротивлением создающего изображение болометра.
В этом случае время экспозиции выбирается так, что динамический диапазон сигналов, генерируемых в отношении измеряемой сцены, равен или меньше соответствующего динамического отклика считывающего контура.
Согласно одному частному варианту выполнения изобретения:
- считывающий контур способен считывать матрицу порядно,
- средство управления сопротивлением болометра способно управлять матрицей порядно,
- и система также содержит средство для синхронизации считывания и управления сопротивлением болометра, так что считывание ряда в матрице смещено на заданное количество рядов от управления сопротивлениями ряда в матрице.
Согласно другому предпочтительному аспекту изобретения, детекторная система содержит контур для управления сопротивлением, связанным с каждым создающим изображение болометром в матрице болометров, и способный управлять сопротивлением последнего.
В качестве альтернативного решения, указанная система содержит контур для управления сопротивлением, связанным с каждой колонкой в матрице, и способный управлять сопротивлением каждого болометра в этой колонке.
Задачей данного изобретения является также создание способа считывания резистивного создающего изображение болометра в матрице болометров, которая образует систему для обнаружения инфракрасного излучения, в котором сопротивление системы регулируют на заданное значение сопротивления, которое является общим для всех болометров в матрице, по меньшей мере, один раз в каждом цикле считывания системы.
Краткое описание чертежей
Для более глубокого понимания изобретения ниже приводится лишь в качестве примера подробное описание со ссылками на прилагаемые чертежи, на которых идентичными позициями обозначены идентичные или аналогичные компоненты и на которых изображено:
фиг.1 - блок-схема болометрического детектора, согласно изобретению;
фиг.2 - схема создающего изображение болометра, контура компенсации, контура измерения и контура термализации, которые все являются частью детектора, показанного на фиг.1;
фиг.3 - графическая схема работы детектора, согласно фиг.1;
фиг.4 - график, показывающий изменения во времени динамического теплового диапазона уровня выходного сигнала одного ряда в детекторе, показанном на фиг.1, перед сценой, имеющей высокую динамику по температуре;
фиг.5 - схема болометрического детектора, согласно частному варианту выполнения изобретения.
Описание предпочтительных вариантов выполнения
На фиг.1 показана блок-схема болометрического детектора, который содержит:
- двумерную создающую изображение матрицу 12, содержащую n рядов и m колонок резистивных создающих изображение болометров 102, где n и m являются целыми числами, равными или больше 1, при этом создающая изображение матрица 12 расположена в фокальной плоскости оптики, которая прозрачна для инфракрасного излучения (не изображена);
- считывающий контур 16, выполненный в подложке под поверхностью создающей изображение матрицы 12, при этом считывающий контур 16 содержит контур 18 порядной адресации и для каждой колонки создающей изображение матрицы 12, измерительный контур 22, предназначенный для соединения с каждым создающим изображение болометром в колонке с помощью электрических средств;
- матрицу 24 компенсации болометров, содержащую один или несколько контуров 26 компенсации, расположенных противоположно каждой колонке создающей изображение матрицы 12, но вне создающей изображение матрицы, при этом матрица 24 содержит, например, для каждой колонки создающей изображение матрицы 12 контур 26 компенсации, предназначенный для соединения с каждым создающим изображение болометром в колонке; и
- блок 28 обработки информации, соединенный со считывающим контуром 16, при этом блок 28 использует алгоритм для обработки выходных сигналов считывающего контура с целью определения инфракрасного изображения, проецируемого сценой на матрицу 12.
Такая структура болометрического детектора является классической и ее подробное пояснение не приводится. Дополнительная информация содержится, например, в статье Е. Мотина и др. «Улучшение неохлаждаемого аморфного кремния для достижения шага 25 мкм между элементами изображения», Ifrared Technology and Application XXVIII, SPIE, vol. 4820.
Согласно изобретению эта детекторная структура дополнена контуром 30 теплового затвора создающей изображение болометрической матрицы 12 под управлением контура 18 адресации и образована контурами 32 термализации, т.е., таким образом, контурами 32, управляющими сопротивлением болометра, матрицы 12 ряд за рядом, как будет подробно пояснено ниже. Контур 30 затвора содержит для каждой колонки создающей изображение матрицы 12 контур 32 термализации, предназначенный для соединения с каждым создающим изображение болометром в колонке.
На фиг.2 показаны предпочтительные основные схемы:
- элемента 14 изображения, содержащего создающий изображение болометр 102 матрицы 12 и компоненты 46 и 48, которые необходимы для его осуществления;
- измерительный контур 22 считывающего контура 16 для измерения создающего изображение болометра 102;
- компенсационный контур 26 матрицы 24 для компенсации тока общего режима, который протекает в создающий изображение болометр 102 при его считывании; и
- контур 32 термализации для контура 30 теплового затвора для теплового кондиционирования создающего изображение болометра 102.
Болометр 102 подвергается инфракрасному облучению IR от сцены и соединен с массой с помощью первой клеммы А.
Измерительный контур 22 содержит:
- операционный усилитель 40, не инвертирующая клемма (+) которого удерживается на заданном постоянном напряжении Vbus;
- конденсатор 42, имеющий заданную емкость Cint и соединенный между инвертирующей клеммой (-) усилителя 40 и выходом последнего;
- переключатель 44 сброса, подключенный параллельно конденсатору 42 и управляемый с помощью сигнала сброса, управляемого контуром 18 адресации;
- переключатель 46 считывания, управляемый с помощью сигнала выбора, управляемого контуром 18 адресации и соединенный со считываемой колонкой 101, которая в свою очередь соединена с инвертирующей клеммой (-) операционного усилителя; и
- первый инжекционный МОП-транзистор 48, расположенный в элементе 14 изображения; при этом затвор этого транзистора удерживается на постоянном заданном напряжении Vfid, его исток соединен со второй клеммой В болометра 102 и его сток соединен с другой клеммой переключателя 46 считывания.
Компенсационный контур 26, используемый для компенсации тока общего режима, который проходит через создающий изображение болометр 102, содержит резистивный компенсационный болометр 50, выполненный из того же материала, что и создающий изображение болометр 102 и имеющий низкое тепловое сопротивление по сравнению с подложкой и не обязательно снабженный экраном 52 для защиты от излучения, исходящего из сцены.
Одна из клемм компенсационного болометра 50 соединена с заданным напряжением VSK, а его другая клемма соединена с истоком второго инжекционного МОП-транзистора 54 контура 26. Сток транзистора 54 соединен с инвертирующим входом (-) операционного усилителя 40, а его сетка соединена с заданным напряжением GSK.
Схема и работа указанных выше компонентов является обычной и подробно не поясняется для краткости. Дополнительная информация содержится, например, в статье Е. Мотина и др. «Улучшение неохлаждаемого аморфного кремния для достижения шага 25 мкм между элементами изображения», Ifrared Technology and Application XXVIII, SPIE, vol. 4820.
Согласно изобретению имеется контур 32 термализации, который способен управлять сопротивлением создающего изображение болометра 102.
В частности, контур 32 термализации содержит источник 56 тока, который соединен с клеммой В создающего изображение болометра 102 через первый и второй переключатель 58, 60 термализации, при этом последний расположен на расстоянии в элементе 14 изображения. Источник тока 56 подает ток заданной интенсивности Iref в создающий изображение болометр 102, когда переключатели 58, 60 находятся в своем замкнутом состоянии.
Контур 32 термализации содержит также компаратор 60, первая клемма которого соединена через переключатели 58, 60 термализации, например, с клеммой В создающего изображение болометра 102, и вторая клемма которого соединена с заданным опорным напряжением Vref.
Компаратор 62 соединен также с переключателем 58 термализации, состоянием которого он управляет в зависимости от результата сравнения напряжения VB на клемме В создающего изображение болометра 102 с опорным напряжением Vref.
Наконец, состоянием второго переключателя 60 термализации управляет контур 18 адресации с помощью сигнала стирания.
Ниже приводится описание способа термализации и считывания создающей изображение матрицы 12 со ссылками на фиг.3.
В первой стадии 70, запускаемой, например, после подачи электропитания на болометрический детектор 10, происходит следующее:
- указатель Nlect считывания контура 18 адресации инициируется с 1;
- выбирается одно значение Vref и одно значение Iref, как будет пояснено более подробно ниже;
- сигналы сброса, выбора и стирания, связанные с каждым создающим изображение болометром 102 в матрице 12, устанавливаются на ноль с помощью контура 18 адресации, значение которых соответствует открытому состоянию переключателей 44, 46, 60.
Затем стадия 70 переходит в макростадию 72 считывания ряда Nlect матрицы 12.
Стадия 72 считывания содержит стадию 76, которая включает регулирование сигнала сброса измерительных контуров 22 с помощью контура 18 адресации на положительное значение для замыкания переключателей 44 сброса. Поэтому конденсаторы 42 в ряде Nlect разряжаются почти мгновенно.
Стадия 76 переходит в стадию 80, в которой сигналы сброса переключаются с помощью контура 80 адресации на ноль для размыкания переключателей 44 сброса. В то же время и все еще на стадии 80 сигналы выбора переключаются с помощью контура 18 адресации на положительное значение для замыкания переключателей 46 считывания в ряду Nlect.
Таким образом, для каждого расположения ряда Nlect, описанного применительно к фиг.2, разница между током, который проходит через создающий изображение болометр 102, и током, который проходит через компенсационный болометр 50, интегрируется с помощью конденсатора 42.
Поскольку ток, который проходит через компенсационный болометр 50, по существу равен току общего режима, который проходит через создающий изображение болометр 102, то разница токов на входе измерительного контура 22 по существу равна изменению ΔRbolo сопротивления Rbolo создающего изображение болометра 102, создаваемому излучением со сцены, которое падает на создающий изображение болометр.
Во время следующей стадии 82 разница тока на входе контура 22 интегрируется во времени Tint в конденсаторе 42.
После окончания времени интегрирования контур 18 адресации переключает на стадии 84 значение сигналов выбора ряда Nlect на ноль для размыкания соответствующих считывающих переключателей 46. В конце стадии 84 все сигналы выбора и сброса находятся на нуле. Поэтому соответствующие переключатели разомкнуты.
Напряжение Vout на выходе интегратора 42 является отображением изменения сопротивления ΔRbolo связанного с ним создающего изображение болометра 102.
Макростадия 74 термализации ряда Nlect, которая следует за стадией 80, содержит стадию 86, в которой сигналы стирания этого ряда переключаются на положительное значение с помощью контура 18 адресации для замыкания переключателей 60 термализации этого ряда.
Следует отметить, что в этот момент считывающие переключатели 46 ряда Nlect находятся в своем разомкнутом состоянии.
Таким образом, в каждом расположении ряда Nther, как показано на фиг.2, создающий изображение болометр 102 нагружен вводимым в него током Iref, и поэтому его температура повышается за счет джоулевого тепла.
В случае полупроводниковых материалов, классически применяемых для изготовления создающего изображение болометра, таких как аморфный кремний или оксид ванадия, тепловой коэффициент материала является отрицательным, и сопротивление Rbolo создающего изображение болометра 102 изменяется в соответствии с приведенной ниже формулой Аррения:
где
Ea является энергией термической активации проводимости материала, используемого в болометре;
K - постоянная Бэльцмана;
T является абсолютной температурой болометра;
Rabs является асимптатическим значением сопротивления болометра, когда его температура очень высока.
Коэффициент относительного изменения по температуре сопротивления Rbolo выводится из уравнения (1) и, следовательно, выражается следующим уравнением:
Таким образом, коэффициент TCR отрицательный, и сопротивление Rbolo уменьшается по мере роста температуры.
Во время следующей стадии 88 выполняют тестирование для определения, является ли сопротивление Rpolo создающего изображение болометра 102 по существу равным заданному сопротивлению Rref. Если результат тестирования является отрицательным, то продолжается термализация создающего изображение болометра 102. В противном случае стадия 88 тестирования завершается посредством остановки термализации создающего изображение болометра 102 за счет его отсоединения в стадии 90 от соответствующего источника 56 тока.
В частности, стадии 88 и 90 выполняются компаратором 62.
В соответствии с законом Ома, напряжение Vbolo на клеммах создающего изображение болометра 102 можно выразить с использованием уравнения:
Затем компаратор 62 переключает второй переключатель 50 термализации в его разомкнутое состояние, отсоединяя тем самым источник 56 тока от создающего изображение болометра 102, когда напряжение Vref по существу равно VB, т.е. Rbolo удовлетворяет условию:
Этим заканчивается термализация создающего изображение болометра 102.
Следует отметить, что сопротивление Rref, представленное создающим изображение болометром 102 в конце термализации, не зависит от количества инфракрасного излучения, принимаемого болометром.
Действительно, используя уравнение (1), можно показать, что повышение температуры θ, испытываемое создающим изображение болометром 102 в момент его отсоединения от источника 56 тока с помощью компаратора 62, приблизительно можно выразить следующим уравнением:
Понятно, что это повышение температуры не зависит от принятого инфракрасного излучения, оно зависит лишь от внутренних параметров создающего изображение болометра 102 и параметров контура 32 термализации, а именно тока Iref и напряжения Vref.
Стадия термализации ряда Nlect окончательно завершается на стадии 94, во время которой контур 18 адресации переключает сигналы стирания этого ряда на ноль для размыкания соответствующих переключателей 60 термализации.
Затем стадия 74 считывания и термализации переходит в стадию 94, которая запускается после завершения стадии 74 и в которой регулируется значение указателя Nlect на Nlect+1(modn), где mod является модулем оператора. Действительно, когда Nlect=n, то следующая стадия осуществляется при Nlect=1.
Затем стадия 94 возвращается к началу стадии 72 для считывания следующих рядов.
Значение тока Iref и значение напряжения Vref выбираются во время стадии 70 так, что время повышения температуры, необходимое для достижения сопротивлением Rbolo создающего изображение болометра значения Rref, является возможно меньшим. Таким образом, можно сохранять синхронизацию сигналов сброса и выбора в соответствии с уровнем техники;
значение Vref меньше напряжения VB на клемме создающего изображение болометра 102, когда запускается термализация этого болометра. Таким образом, условие переключения соединенного компаратора 62 не выполняется сразу. В противном случае термализация опорного болометра 26 была бы запрещена.
Значения тока Iref и напряжения Vref определяются во время предварительной фазы, например, на заводе во время фазы калибровки детектора, которая обычно выполняется перед отправкой детектора. Такая предварительная фаза содержит, в частности, следующие стадии:
а) включают детектор и подвергают его воздействию заданных опорных окружающих условий, а именно известной стабильной температуре его фокальной плоскости и условиям равномерного облучения, исходящего со сцены, обычно получаемого с помощью черного тела, удерживаемого при максимальной температуре, ожидаемой для измерения детектором во время использования;
b) в создающий изображение болометр 102 подают ток Iref, значение которого близко к используемому для смещения создающего изображение болометра во время фазы считывания болометра, и высокое сравнительное напряжение Vref, например, напряжение, по существу равное напряжению VDDA. На этой стадии сопротивления создающих изображение болометров 102 не модифицируются с помощью контура 32 термализации, и поэтому соответствующие напряжения Vout на выходе измерительных контуров 22 соответствуют классическому непрерывному распределению уровней выходных сигналов создающих изображение болометров 102 при облучении от равномерной сцены, т.е. так называемому «смещенному» распределению;
с) затем постепенно уменьшают напряжение Vref. Затем происходит ограничение низких значений напряжений Vout, когда сопротивления большинства создающих изображение болометров термически модифицируются с помощью контура 32 термализации за счет постепенного падения напряжения Vref. Уменьшение напряжения Vref прекращается, когда по существу все напряжения Vout модифицируются вверх и близко к максимальному напряжению Vout, наблюдаемому перед уменьшением Vref;
d) полученные таким образом ток Iref и напряжение Vref затем используют для термализации создающих изображение болометров 102 при использовании детектора.
Указанный выше процесс регулирования тока Iref и напряжения Vref можно выполнять вручную или автоматически. В последнем случае процесс выполняется с помощью блока 28 обработки информации, который выдает цифровые управляющие уровни Iref и Vref, которые затем преобразуются в аналоговые ток и напряжение с помощью обычных средств цифро-аналогового преобразования. Затем блок 28 обработки информации выполняет, например, в программном обеспечении обработку таблиц непрерывных уровней, соответствующих напряжениям Vout, которые образуются на каждой стадии определения Vref.
Следует отметить, что можно использовать бесконечное число возможных пар (Iref, Vref) для получения желаемого сопротивления Rref. Однако предпочтительно выбирать ток Iref, который близок к току смещения, который проходит через создающие изображение болометры 102 за счет эффекта смещения с помощью соответствующих транзисторов 48 во время фазы считывания, поскольку результирующее время термализации этих транзисторов сравнимо с временными ограничениями, накладываемыми на детектор (например, время интегрирования). Однако может быть предпочтительным более высокий ток Iref для уменьшения времени термализации, что приводит к получению Rref. Ток Iref предпочтительно является неизменным и подается непосредственно с помощью обычных компонентов аналоговых схем, поскольку это упрощает выполнение контуров термализации.
В указанном выше варианте выполнения макростадии считывания и термализации (72 и 74 соответственно) выполняются последовательно друг за другом. Адресуемая таким образом матрица подвергается считыванию и термализации порядно.
В другом варианте выполнения вводится второй указатель Nther, адресующий соответствующий ряд, для управления динамическим диапазоном измеряемой сцены с помощью создающей изображение матрицы 12, как показано на фиг.4.
На фиг.4 показан график временного ряда распределений уровня выходных сигналов совокупности создающих изображение болометров 102 ряда N в матрице 12 (или всей матрицы 12 после аккумулирования распределений М рядов). Каждое распределение соответствует различному времени ожидания между термализацией и считыванием. На фиг.4 показан случай, когда тепловые динамические изменения наблюдаемой сцены слегка превышают динамический диапазон детектора сцены при отсутствии устройства термализации, согласно изобретению, и который называется в последующем как «динамический диапазон опорной сцены».
При t=TO ряд N подвергается термализации, как указывалось выше. Температурная дисперсия в совокупности болометров является очень небольшой. Эта дисперсия присуща естественной изменяемости детектора за счет допусков изготовления и за счет того, что создающие изображение болометры и соединения между различными элементами детектора не являются строго идентичными.
Следует отметить, что время термализации болометра значительно меньше его времени экспозиции, т.е. промежутка времени между временем его термализации и временем его считывания. Например, время экспозиции составляет порядка дюжины миллисекунд, в то время как время термализации составляет порядка дюжины микросекунд.
После завершения термализации создающие изображение болометры в ряду N охлаждаются. Каждый болометр имеет свою собственную скорость охлаждения в зависимости от теплового излучения, полученного им (в зависимости от температуры элемента изображения сцены, к которому он относится). Можно наблюдать постепенное распределение в зависимости от времени сигнала распределения, образованного рядом N, когда он считывается в конце времени экспозиции - это обусловлено распределением соответствующих температур болометров в этом ряду. Поэтому разница температуры между наиболее холодным болометром и наиболее горячим болометром в ряду N увеличивается со временем, так же как и разница между соответствующими экстремальными уровнями выходных сигналов, как показано на фиг.4.
После времени экспозиции, которое в несколько раз больше тепловой постоянной времени болометров, это распределение постепенно стабилизируется в состоянии теплового равновесия и не расширяется.
Сам измерительный контур 22 также имеет фиксированный динамический отклик, заданный как разница между максимальным и минимальным напряжениями на выходе операционного усилителя 40. Такой динамический отклик показа