Способы надежной отправки управляющего сигнала

Иллюстрации

Показать все

Заявленное изобретение относится к системам беспроводной связи. Технический результат заключается в надежном обмене управляющими сигналами. Для этого физический канал управления нисходящей линии связи (PDCCH) передается таким способом, который сдерживает пользовательское устройство (UE) от декодирования PDCCH на нескольких уровнях агрегирования. Неоднозначные размеры полезной нагрузки идентифицируются и модифицируются через дополнение нулями с помощью одного или более битов на основе размера полезной нагрузки. Последовательности скремблирования уровня агрегирования могут быть сформированы так, что приемное UE может точно идентифицировать уровень агрегирования, на котором следует декодировать PDCCH. Биты индикатора, которые сигнализируют уровень агрегирования в UE, также могут быть включены в PDCCH. 5 н. и 10 з.п. ф-лы, 16 ил.

Реферат

Настоящая заявка на патент испрашивает приоритет предварительной заявки № 61/040823, озаглавленной "METHODS OF RELIABLY SENDING CONTROL SIGNAL", поданной 31 марта 2008 года, предварительной заявки № 61/053347, озаглавленной "METHODS OF RELIABLY SENDING CONTROL SIGNAL", поданной 15 мая 2008 года, и предварительной заявки № 61/074861, озаглавленной "METHODS OF RELIABLY SENDING CONTROL SIGNAL", поданной 23 июня 2008 года. Все вышеуказанные предварительные заявки переуступлены правопреемнику настоящей заявки и тем самым явно содержатся в данном документе по ссылке.

Область техники, к которой относится изобретение

Последующее описание, в общем, относится к системам беспроводной связи, а более конкретно, к управляющим сигналам.

Уровень техники

В общем, система беспроводной связи с множественным доступом может поддерживать одновременную связь для нескольких беспроводных терминалов. Каждый терминал осуществляет связь с одной или более базовых станций посредством передачи по прямой и обратной линии связи. Прямая линия связи (или нисходящая линия связи) относится к линии связи от базовых станций к терминалам, а обратная линия связи (или восходящая линия связи) относится к линии связи от терминалов к базовым станциям. Такая линия связи может быть установлена через систему с одним входом и одним выходом, со многими входами и одним выходом или со многими входами и многими выходами (MIMO).

MIMO-система использует несколько (NT) передающих антенн и несколько (NR) приемных антенн для передачи данных. MIMO-канал, сформированный посредством NT передающих и NR приемных антенн, может быть разложен на NS независимых каналов, которые также упоминаются как пространственные каналы, где NS≤min{NT, NR}. Каждый из NS независимых каналов соответствует размерности. MIMO-система может обеспечивать повышенную производительность (к примеру, более высокую пропускную способность и/или большую надежность), если используются дополнительные размерности, созданные посредством нескольких передающих и приемных антенн.

MIMO-система поддерживает системы с дуплексом с временным разделением каналов (TDD) и дуплексом с частотным разделением каналов (FDD). В TDD-системе передачи по прямой и обратной линии связи осуществляются в одной частотной области, так что принцип обратимости предоставляет возможность оценки канала прямой линии связи из канала обратной линии связи. Это позволяет точке доступа извлекать выигрыш от формирования диаграммы направленности антенны для передачи по прямой линии связи, когда несколько антенн доступно в точке доступа.

В рамках системы беспроводной связи физические каналы обычно дополнительно разделяются на выделенные и общие каналы в зависимости от обслуживаемых объектов. Выделенный канал назначается так, чтобы способствовать связи между базовой станцией и конкретным UE. Общий канал совместно используется различными UE и используется базовой станцией, чтобы передавать сигналы, которые обычно передаются всем пользователям в рамках географической области (соты), обслуживаемой посредством базовой станции. Согласно технологии LTE, все распределения сигнализируются в совместно используемых каналах управления, которые кодируются отдельно. Следовательно, канал нисходящей линии связи (или восходящей линии связи) разделяется на две отдельных части, по одной для каждого из управляющих сообщений и сообщений данных. Часть данных (PDSCH - физический совместно используемый канал нисходящей линии связи) переносит данные нисходящей линии связи (или восходящей линии связи) для одновременно запланированных пользователей, в то время как управляющая часть (PDCCH) переносит (помимо прочего) информацию распределения для запланированных пользователей. Следовательно, надежный обмен управляющими сигналами необходим для реализации эффективных систем беспроводной связи.

Сущность изобретения

Далее представлена упрощенная сущность одного или более аспектов для того, чтобы предоставлять базовое понимание этих аспектов. Эта сущность не является всесторонним обзором всех рассматриваемых аспектов, и она не имеет намерением ни то, чтобы определять ключевые или важнейшие элементы всех аспектов, ни то, чтобы обрисовывать область применения каких-либо или всех аспектов. Ее единственная цель - представлять некоторые понятия одного или более аспектов в упрощенной форме в качестве вступления в более подробное описание, которое представлено далее.

Системы беспроводной связи широко развернуты с тем, чтобы предоставлять различные типы содержимого связи, например речь, данные и т.п. Эти системы могут быть системами множественного доступа, допускающими поддержку связи с несколькими пользователями посредством совместного использования доступных системных ресурсов (к примеру, полосы пропускания и мощности передачи). Примеры таких систем множественного доступа включают в себя системы множественного доступа с кодовым разделением (CDMA), системы множественного доступа с временным разделением (TDMA), системы множественного доступа с частотным разделением (FDMA), системы по стандарту долгосрочного развития (LTE) 3GPP и системы множественного доступа с ортогональным частотным разделением (FDMA).

Способ передачи, который упрощает точное декодирование PDCCH посредством UE, раскрывается в соответствии с одним аспектом. Способ содержит определение уровня агрегирования для PDCCH нисходящей линии связи для UE. Размер полезной нагрузки для PDCCH анализируется, чтобы определять то, является он неоднозначным или нет. В дополнительном аспекте размер n полезной нагрузки является неоднозначным, если он удовлетворяет условию n=m/k*24, где k, m - это целые числа, m представляет число CCE (элементов канала управления), и k представляет число повторений кодированного блока. В дополнительном аспекте, если максимальная скорость кодирования составляет x, и 0<x≤1, то соответствующий максимальный размер неоднозначной полезной нагрузки составляет 72*(8-m)*x. Неоднозначные размеры полезной нагрузки модифицируются посредством дополнения нулями пакетов данных для PDCCH нисходящей линии связи с помощью одного или более битов и передачи полезной нагрузки с дополненными нулями пакетами данных. Число битов для дополнения нулями может быть основано на размере полезной нагрузки.

Другой аспект относится к процессору, конфигурированному для облегчения точного декодирования PDCCH посредством UE. Процессор может содержать первый модуль для определения того, является или нет неоднозначным размер полезной нагрузки для PDCCH. В дополнительном аспекте размер n полезной нагрузки является неоднозначным, если n=m/k*24 и n меньше 72*(8-m)*x, при этом x является максимальной скоростью кодирования, и 0<x≤1. Переменные k, m являются целыми числами, m представляет число CCE, и m меньше восьми. Целое число k представляет число повторений кодированного блока. Для неоднозначных размеров полезной нагрузки второй модуль, также содержащийся в рамках процессора, изменяет размер полезной нагрузки посредством дополнения нулями пакетов данных для PDCCH нисходящей линии связи с помощью одного или более битов для неоднозначного размера полезной нагрузки.

Компьютерный программный продукт, содержащий машиночитаемый носитель, раскрывается в соответствии с другим аспектом. Машиночитаемый носитель содержит первый набор кодов для побуждения компьютера определять то, является или нет неоднозначным размер полезной нагрузки пакетов данных для PDCCH нисходящей линии связи. Носитель также может содержать второй набор кодов для побуждения компьютера включать один или более битов в пакеты данных, которые соответствуют неоднозначному размеру полезной нагрузки, для дополнения нулями. Третий набор кодов, также включенных в носитель, определяет число битов, используемых для дополнения нулями, по меньшей мере, на основе размера полезной нагрузки. В соответствии с дополнительным аспектом размер полезной нагрузки (n) является неоднозначным, если n=m/k*24, где k, m - это целые числа. Переменная m меньше 8, m представляет число CCE. Переменная k представляет число повторений кодированного блока.

Устройство для упрощения точного декодирования PDCCH посредством UE раскрывается в другом аспекте. Устройство содержит средство для определения размера полезной нагрузки для PDCCH и средство для дополнения нулями пакетов данных для PDCCH нисходящей линии связи посредством включения одного или более битов для неоднозначных размеров полезной нагрузки. После обработки полезная нагрузка с дополнением нулями передаются с использованием средства передачи, также включенного в устройство.

Устройство беспроводной связи, содержащее запоминающее устройство и процессор, раскрывается в другом аспекте. Запоминающее устройство сохраняет инструкции для анализа того, имеют или нет пакеты данных для передачи в PDCCH нисходящей линии связи проблематичные размеры. Если пакеты имеют проблематичные размеры, запоминающее устройство сохраняет дополнительные инструкции для изменения размера таких пакетов данных посредством дополнения нулями с помощью одного или более битов на основе размера полезной нагрузки. Процессор, соединенный с запоминающим устройством, выполнен с возможностью осуществлять инструкции, сохраненные в запоминающем устройстве.

Способ идентификации допустимого ACK/NACK (подтверждения приема/отрицания приема) из множества ACK/NACK, принимаемых от UE на различных уровнях агрегирования, раскрывается в этом аспекте. Первоначально определяется то, что более одного ACK/NACK принято от UE, в соответствии с этим аспектом. Если множество ACK/NACK принято, уровень агрегирования, соответствующий PDCCH нисходящей линии связи, для которого UE передает множество ACK/NACK, также идентифицируется. Декодируются все ACK/NACK, принимаемые от UE для всех допустимых уровней агрегирования, меньших или равных уровню агрегирования PDCCH нисходящей линии связи. Затем атрибуты, ассоциированные с каждым из декодированных ACK/NACK, анализируются, и допустимое ACK/NACK из множества ACK/NACK выбирается, по меньшей мере, на основе проанализированных атрибутов. В дополнительном аспекте атрибуты могут содержать статистику SNR, и ACK/NACK с наилучшим SNR идентифицируется как допустимое ACK/NACK из множества декодированных ACK/NACK. В другом аспекте атрибуты содержат энергию передачи так, что ACK/NACK с наивысшей энергией идентифицируется как допустимое ACK/NACK из множества декодированных ACK/NACK.

Устройство беспроводной связи, содержащее запоминающее устройство и процессор, раскрывается в соответствии с другим аспектом. Запоминающее устройство сохраняет инструкции для определения атрибутов множества ACK/NACK, принимаемых от UE в ответ на передаваемый PDCCH нисходящей линии связи. Допустимое ACK/NACK из множества ACK/NACK выбирается, по меньшей мере, на основе атрибутов, ассоциированных с множеством принимаемых ACK/NACK. Процессор соединен с запоминающим устройством и выполнен с возможностью осуществлять инструкции, сохраненные в запоминающем устройстве.

Компьютерный программный продукт, содержащий машиночитаемый носитель, также раскрывается в соответствии с другим аспектом. Продукт содержит первый набор кодов для определения того, что более одного ACK/NACK принято от UE. Второй набор кодов для идентификации уровня агрегирования, соответствующего PDCCH нисходящей линии связи, для которого UE передает множество ACK/NACK, также содержится в носителе. Все ACK/NACK, принимаемые от UE для всех допустимых уровней агрегирования, меньших или равных уровню агрегирования PDCCH нисходящей линии связи, декодируются в соответствии с третьим набором кодов в носителе. Четвертый набор кодов анализирует атрибуты, ассоциированные с каждым из декодированных ACK/NACK, а пятый набор кодов выбирает допустимое ACK/NACK из множества ACK/NACK, по меньшей мере, на основе проанализированных атрибутов.

Другой аспект относится к способу, который упрощает точное декодирование PDCCH. Способ содержит определение уровня агрегирования, который должен использоваться для PDCCH-передачи по нисходящей линии связи в конкретное UE, и определение смещения, по меньшей мере, на основе уровня агрегирования. Ресурсы для ACK/NACK восходящей линии связи для UE преобразуются с использованием смещения, определенного на основе уровня агрегирования. Сообщения назначения ресурсов с зависимым от уровня агрегирования смещением формируются и передаются в UE в PDCCH нисходящей линии связи.

Устройство беспроводной связи, содержащее запоминающее устройство и процессор, раскрывается в соответствии с другим аспектом. Запоминающее устройство сохраняет инструкции для формирования сообщений назначения ресурсов, которые должны передаваться в PDCCH нисходящей линии связи с зависимым от уровня агрегирования смещением. Процессор, соединенный с запоминающим устройством, выполнен с возможностью осуществлять инструкции, сохраненные в запоминающем устройстве.

Еще один аспект относится к компьютерному программному продукту, содержащему машиночитаемый носитель. Носитель содержит первый набор кодов для определения уровня агрегирования, который должен использоваться для PDCCH-передачи по нисходящей линии связи в конкретное UE. Второй набор кодов для преобразования ресурсов для ACK/NACK восходящей линии связи для UE с использованием смещения, определенного на основе уровня агрегирования, также содержится в носителе. Сообщения назначения ресурсов с зависимым от уровня агрегирования смещением формируются и передаются, соответственно, в UE по PDCCH нисходящей линии связи в соответствии с третьим и четвертым наборами кодов, также включенными в носитель.

Устройство, которое упрощает точное декодирование PDCCH, раскрывается в соответствии с еще одним другим аспектом. Оно содержит средство для определения, средство для преобразования ресурсов и средство для формирования сообщений назначения ресурсов. Средство для определения используется для того, чтобы идентифицировать уровень агрегирования, который должен использоваться для PDCCH-передачи по нисходящей линии связи в конкретное UE. Соответственно, ресурсы для ACK/NACK восходящей линии связи для UE с использованием смещения, определенного на основе уровня агрегирования, преобразуются посредством средства преобразования, в то время как сообщения, которые должны быть переданы в PDCCH нисходящей линии связи, формируются посредством средства формирования, также содержащегося в устройстве.

Способ, который упрощает точное декодирование PDCCH, раскрывается в еще одном другом аспекте. Способ содержит определение уровня агрегирования, ассоциированного с PDCCH нисходящей линии связи, и формирование последовательности согласно уровню агрегирования для PDCCH. Биты CRC (контроля циклическим избыточным кодом) для PDCCH нисходящей линии связи скремблируются с использованием сформированной последовательности и передаются в PDCCH нисходящей линии связи.

Другой аспект относится к устройству беспроводной связи. Устройство содержит запоминающее устройство, которое сохраняет инструкции для скремблирования битов CRC (контроля циклическим избыточным кодом) для PDCCH нисходящей линии связи с использованием последовательности, сформированной согласно уровню агрегирования для PDCCH нисходящей линии связи, и процессор, соединенный с запоминающим устройством, выполненный с возможностью осуществлять инструкции, сохраненные в запоминающем устройстве.

Компьютерный программный продукт, содержащий машиночитаемый носитель, раскрывается в соответствии с этим аспектом. Носитель содержит коды для определения уровня агрегирования, ассоциированного с PDCCH нисходящей линии связи, и формирования последовательности скремблирования согласно уровню агрегирования для PDCCH. Он дополнительно включает в себя код для скремблирования битов CRC (контроля циклическим избыточным кодом) для PDCCH нисходящей линии связи с использованием сформированной последовательности скремблирования и передачи скремблированных битов в PDCCH нисходящей линии связи.

Другой аспект связан с устройством, которое упрощает точное декодирование PDCCH. Устройство содержит средство для скремблирования битов CRC (контроля циклическим избыточным кодом) для PDCCH нисходящей линии связи с использованием зависимой от уровня агрегирования последовательности и средство для передачи скремблированных CRC-битов.

Способ приема PDCCH раскрывается в соответствии с еще одним другим аспектом. Способ содержит прием и декодирование PDCCH нисходящей линии связи, содержащего CRC-биты, скремблированные с зависимой от уровня агрегирования последовательностью. Он дополнительно содержит этапы дескремблирования декодированных битов с использованием последовательности скремблирования, чтобы идентифицировать уровень агрегирования, ассоциированный с последовательностью, и проверки CRC для идентифицированного уровня агрегирования.

Другой аспект относится к устройству беспроводной связи. Устройство содержит запоминающее устройство, которое сохраняет инструкции для дескремблирования декодированных битов CRC (контроля циклическим избыточным кодом), принимаемых по PDCCH нисходящей линии связи. CRC-биты дескремблируются с использованием последовательности, сформированной согласно уровню агрегирования для PDCCH нисходящей линии связи. Процессор, соединенный с запоминающим устройством, выполнен с возможностью осуществлять инструкции, сохраненные в запоминающем устройстве.

Компьютерный программный продукт, содержащий машиночитаемый носитель, также раскрывается в еще одном другом аспекте. Носитель содержит код для определения уровня агрегирования, ассоциированного с PDCCH нисходящей линии связи, и формирования последовательности согласно уровню агрегирования для PDCCH. Биты CRC (контроля циклическим избыточным кодом) для PDCCH нисходящей линии связи скремблируются с использованием сформированной последовательности и передаются в PDCCH нисходящей линии связи.

Другой аспект относится к устройству, которое упрощает точное декодирование PDCCH. Устройство содержит средство для приема CRC-битов, скремблированных с зависимой от уровня агрегирования последовательностью скремблирования, и средство для декодирования принимаемого PDCCH нисходящей линии связи на ассоциированном уровне агрегирования. Уровень агрегирования получается посредством дескремблирования битов CRC (контроля циклическим избыточным кодом), принимаемых в PDCCH нисходящей линии связи, с использованием зависимой от уровня агрегирования последовательности.

Способ передачи, который упрощает точное декодирование PDCCH посредством множества UE, раскрывается в соответствии с еще одним другим аспектом. Уровень агрегирования, ассоциированный с PDCCH нисходящей линии связи для каждого из множества из UE, первоначально идентифицируется в соответствии с этим способом. Последовательность скремблирования согласно уровню агрегирования для каждого UE формируется, и CRC-биты для каждого UE скремблируются с использованием соответствующей последовательности скремблирования. Скремблированные CRC-биты затем передаются в PDCCH нисходящей линии связи на идентифицированном уровне агрегирования в каждое UE.

Другой аспект относится к устройству беспроводной связи, содержащему запоминающее устройство, которое сохраняет инструкции для формирования соответствующей последовательности скремблирования согласно уровню агрегирования PDCCH нисходящей линии связи для каждого из множества из UE. Процессор, соединенный с запоминающим устройством, выполнен с возможностью осуществлять инструкции, сохраненные в запоминающем устройстве.

Компьютерный программный продукт, содержащий машиночитаемый носитель, раскрывается в соответствии с этим аспектом. Носитель содержит коды для идентификации уровня агрегирования, ассоциированного с PDCCH нисходящей линии связи для каждого из множества из UE. Второй набор кодов для формирования последовательности скремблирования согласно уровню агрегирования для каждого UE также содержится в носителе. CRC-биты для каждого UE скремблируются с использованием соответствующей последовательности скремблирования в соответствии с третьим набором кодов, включенных в носитель, и скремблированные CRC-биты передаются в PDCCH нисходящей линии связи на идентифицированном уровне агрегирования в каждое UE согласно четвертому набору кодов, включенных в носитель.

Устройство, которое упрощает точное декодирование PDCCH, раскрывается в соответствии с еще одним другим аспектом. Устройство содержит средство для формирования последовательности скремблирования на основе соответствующих уровней агрегирования, ассоциированных с PDCCH нисходящей линии связи, который должен приниматься посредством каждого из множества из UE. Оно также включает в себя средство для кодирования CRC-битов, которые должны передаваться во множество UE с использованием зависимой от уровня агрегирования последовательности скремблирования, и средство для передачи PDCCH с кодированными CRC-битами в одно или более из множества UE.

Способ передачи, который помогает UE точно декодировать PDCCH, раскрывается в соответствии с еще одним другим аспектом. Способ содержит идентификацию уровня агрегирования, который должен быть ассоциирован с PDCCH нисходящей линии связи конкретного UE, и включение, по меньшей мере, бита, чтобы указывать уровень агрегирования в рамках PDCCH нисходящей линии связи. В дополнительном аспекте, бит включается, если размер полезной нагрузки, ассоциированный с PDCCH нисходящей линии связи, является неоднозначным размером полезной нагрузки, который предписывает приемному UE декодировать PDCCH нисходящей линии связи на нескольких уровнях агрегирования.

Устройство беспроводной связи, содержащее запоминающее устройство и процессор, раскрывается в соответствии с еще одним другим аспектом. Запоминающее устройство сохраняет инструкции для передачи одного или более битов, которые указывают уровень агрегирования, ассоциированный с PDCCH нисходящей линии связи, в приемное UE. Процессор соединен с запоминающим устройством и выполнен с возможностью осуществлять инструкции, сохраненные в запоминающем устройстве.

Компьютерный программный продукт, содержащий машиночитаемый носитель, раскрывается в соответствии с еще одним другим аспектом. Носитель содержит первый набор кодов для идентификации уровня агрегирования, ассоциированного с PDCCH нисходящей линии связи для UE. Второй набор кодов также содержится в носителе для включения одного или более битов в PDCCH, так что они указывают уровень агрегирования UE.

Другой аспект относится к устройству, которое упрощает точное декодирование PDCCH. Устройство содержит средство для идентификации уровня агрегирования, ассоциированного с PDCCH нисходящей линии связи для конкретного UE. PDCCH, содержащий один или более битов, которые указывают уровень агрегирования, отправляется в UE посредством средства передачи, также включенного в устройство.

Для достижения вышеуказанных и связанных целей один или более аспектов содержат признаки, далее полностью описанные и конкретно указанные в формуле изобретения. Нижеследующее описание и прилагаемые чертежи подробно излагают определенные иллюстративные признаки одного или более аспектов. Тем не менее, эти признаки указывают только на некоторые из множества различных способов, которыми могут быть использованы принципы различных аспектов, и это описание имеет намерение включать в себя все такие аспекты и их эквиваленты.

Краткое описание чертежей

Фиг.1 является схематичным представлением системы беспроводной связи с множественным доступом согласно одному или более аспектов.

Фиг.2 является схематичным чертежом, иллюстрирующим область поиска, ассоциированную с различными уровнями агрегирования для различных пользователей.

Фиг.3 иллюстрирует пример повторения для конкретного размера полезной нагрузки (48 битов).

Фиг.4 иллюстрирует технологию передачи в соответствии с аспектом.

Фиг.5 поясняет технологию передачи в соответствии с аспектом, которая упрощает точное декодирование PDCCH посредством UE.

Фиг.6 иллюстрирует способ приема, который разрешает последствия, возникающие вследствие нескольких CRC-проходов в соответствии с аспектом.

Фиг.7 является блок-схемой последовательности операций способа, подробно поясняющей технологию точной идентификации ACK/NACK из множества ACK/NACK, принимаемых от UE на различных уровнях агрегирования.

Фиг.8 является блок-схемой последовательности операций способа, подробно поясняющей технологию, в которой точное декодирование PDCCH упрощается посредством использования зависимого от уровня агрегирования согласования скорости.

Фиг.9 поясняет другой способ передачи, в котором зависимая от уровня агрегирования маска CRC (контроля циклическим избыточным кодом) используется, чтобы способствовать точному декодированию PDCCH.

Фиг.10 показывает технологию передачи PDCCH нисходящей линии связи таким образом, чтобы способствовать UE, принимающему его, точно декодировать PDCCH без увеличения частоты ложных оповещений CRC.

Фиг.11 иллюстрирует способ передачи, который способствует UE точно декодировать PDCCH.

Фиг.12 иллюстрирует другой способ передачи, который способствует UE точно декодировать PDCCH.

Фиг.13 является схематичным представлением примерной системы, выполненной с возможностью передавать PDCCH нисходящей линии связи в сети беспроводной связи согласно одному или более аспектов.

Фиг.14 иллюстрирует другую примерную систему, которая выполнена с возможностью принимать PDCCH нисходящей линии связи в сети беспроводной связи согласно одному или более аспектов.

Фиг.15 иллюстрирует систему беспроводной связи с множественным доступом согласно одному варианту осуществления.

Фиг.16 является блок-схемой варианта осуществления системы передающего устройства (также известной как точка доступа) и системы приемного устройства (также известной как терминал доступа) в MIMO-системе.

Подробное описание изобретения

Различные аспекты описываются далее со ссылкой на чертежи. В нижеследующем описании для целей пояснения многие конкретные детали пояснены для того, чтобы предоставлять полное понимание одного или более аспектов. Тем не менее, может быть очевидным, что такие аспекты могут применяться на практике без этих конкретных деталей.

При использовании в данной заявке термины "компонент", "модуль", "система" и т.п. имеют намерение включать в себя связанный с компьютером объект, такой как, но не только, аппаратные средства, микропрограммное обеспечение, комбинация аппаратных средств и программного обеспечения, программное обеспечение или программное обеспечение в ходе исполнения. Например, компонент может быть, но не только, процессом, запущенным на процессоре, процессором, объектом, исполняемым файлом, потоком исполнения, программой и/или компьютером. В качестве иллюстрации и приложение, запущенное на вычислительном устройстве, и вычислительное устройство может быть компонентом. Один или более компонентов могут постоянно размещаться внутри процесса и/или потока исполнения, и компонент может быть локализован на компьютере и/или распределен между двумя и более компьютерами. Кроме того, эти компоненты могут выполняться с различных машиночитаемых носителей, сохраняющих различные структуры данных. Компоненты могут обмениваться данными посредством локальных и/или удаленных процессов, например, в соответствии с сигналом, имеющим один или более пакетов данных, к примеру, данных из одного компонента, взаимодействующего с другим компонентом в локальной системе, распределенной системе и/или по сети, например, по Интернету, с другими системами посредством сигнала.

Кроме того, различные аспекты описываются в данном документе в связи с терминалом, который может быть проводным терминалом или беспроводным терминалом. Терминал также может называться системой, устройством, абонентским модулем, абонентской станцией, мобильной станцией, мобильным аппаратом, мобильным устройством, удаленной станцией, удаленным терминалом, терминалом доступа, пользовательским терминалом, терминалом, устройством беспроводной связи, пользовательским агентом, пользовательским устройством или абонентским устройством (UE). Беспроводным устройством может быть сотовый телефон, спутниковый телефон, беспроводной телефон, телефон по протоколу инициирования сеанса (SIP), станция беспроводного абонентского доступа (WLL), персональное цифровое устройство (PDA), карманное устройство с поддержкой беспроводных соединений, вычислительное устройство или другие обрабатывающие устройства, подключенные к беспроводному модему. Помимо этого, различные аспекты описываются в данном документе в связи с базовой станцией. Базовая станция может быть использована для обмена данными с беспроводным терминалом(ами) и также может упоминаться как точка доступа, узел B или какой-либо другой термин.

Кроме того, термин "или" имеет намерение означать включающее "или" вместо исключающего "или". Таким образом, если иное не указано или не является очевидным из контекста, "X использует A или B" имеет намерение означать любую из естественных включающих перестановок. Таким образом, фраза "X использует A или B" удовлетворяется посредством любого из следующих случаев: "X использует A; X использует B; или X использует как A, так и B". Помимо этого, указание в данной заявке и прилагаемой формуле изобретения на элементы в единственном числе, в общем, должно истолковываться так, чтобы означать "один или более", если иное не указано или не является очевидным из контекста, что направлено на форму единственного числа.

Технологии, описанные в данном документе, могут использоваться для различных систем беспроводной связи, таких как системы CDMA, TDMA, FDMA, OFDMA, SC-FDMA и другие системы. Термины "система" и "сеть" зачастую используются взаимозаменяемо. CDMA-система может реализовывать такую технологию радиосвязи, как универсальный наземный радиодоступ (UTRA), cdma2000 и т.д. UTRA включает в себя широкополосную CDMA (W-CDMA) и другие варианты CDMA. Дополнительно, cdma2000 охватывает стандарты IS-2000, IS-95 и IS-856. TDMA-система может реализовывать такую технологию радиосвязи, как глобальная система мобильной связи (GSM). OFDMA-система может реализовывать такую технологию радиосвязи, как усовершенствованный UTRA (E-UTRA), сверхширокополосная передача для мобильных устройств (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM® и т.д. UTRA и E-UTRA являются частью универсальной системы мобильной связи (UMTS). Стандарт долгосрочного развития (LTE) 3GPP является версией UMTS, которая использует E-UTRA, которая применяет OFDMA в нисходящей линии связи и SC-FDMA в восходящей линии связи. UTRA, E-UTRA, UMTS, LTE и GSM описываются в документах организации, называемой партнерским проектом третьего поколения (3GPP). Дополнительно, cdma2000 и UMB описываются в документах организации, называемой Партнерским проектом третьего поколения 2 (3GPP2). Кроме того, эти системы беспроводной связи дополнительно могут включать в себя произвольно организующиеся сетевые системы между равноправными узлами (к примеру, между мобильными станциями), зачастую использующие непарные нелицензированные спектры, беспроводную LAN по стандарту 802.xx, технологию Bluetooth и любые другие технологии беспроводной связи ближнего и дальнего действия.

Различные аспекты или признаки представляются относительно систем, которые могут включать в себя определенное число устройств, компонентов, модулей и т.п. Следует понимать и принимать во внимание, что различные системы могут включать в себя дополнительные устройства, компоненты, модули и т.д. и/или могут не включать в себя все из устройств, компонентов, модулей и т.д., поясненных в связи с чертежами. Также может использоваться комбинация этих подходов.

На фиг.1 проиллюстрирована система 100 беспроводной связи с множественным доступом согласно одному или более аспектов. Система 100 беспроводной связи может включать в себя одну или более базовых станций, взаимодействующих с одним или более UE. Хотя показано одно UE, каждая базовая станция 102 предоставляет покрытие для множества UE. UE 104 поддерживает связь с BS 102, которая передает информацию в UE 104 по прямой линии 106 связи и принимает информацию от UE 104 по обратной линии 108 связи. Прямая линия связи (или нисходящая линия связи) упоминается как линия связи от базовых станций к мобильным устройствам, а обратная линия связи (или восходящая линия связи) упоминается как линия связи от мобильных устройств к базовым станциям. Различные данные и управляющие сигналы передаются посредством BS 102 в UE 104 через общие и выделенные каналы связи. В частности, конкретные для UE управляющие сигналы, такие как информация, касающаяся ресурсов восходящей линии связи, передаются посредством BS 102 через PDCCH нисходящей линии связи. Вследствие различных причин, таких как проблематичные размеры полезной нагрузки и несколько местоположений PDCCH, как дополнительно подробно пояснено ниже, UE 104 может не иметь возможности точно декодировать PDCCH. Как результат, оно не может идентифицировать ресурсы, выделяемые ему для связи в восходящей линии связи.

В соответствии с различными аспектами, дополнительно подробно поясненными ниже, BS 102 или UE 104 могут реализовывать различные технологии, чтобы разрешать проблемы, ассоциированные с PDCCH, тем самым приводя к более плавным коммуникациям. Например, BS 104 может быть ассоциирована с компонентом 110 анализа и компонентом 112 обработки в соответствии с одним аспектом. Хотя компонент 110 анализа и компонент 112 обработки проиллюстрированы как различные компоненты для ясности, понятно, что функции, описанные в данном документе, могут выполняться посредством одного компонента. Компонент 110 анализа идентифицирует то, являются или нет размеры полезной нагрузки для PDCCH нисходящей линии связи проблематичными или вызывают или нет неоднозначность при декодировании PDCCH нисходящей линии связи посредством приемного UE. В одном аспекте размер полезной нагрузки может включать в себя как информационные поля, так и CRC-биты. Компонент 112 обработки упрощает исключение полезной нагрузки передачи, которые идентифицируются посредством компонента 110 анализа как ассоциированные с проблематичными размерами. В соответствии с дополнительным аспектом, компонент 112 обработки может избегать проблематичной полезной нагрузки передачи посредством дополнения нулями. В более подробном аспекте компонент 112 обработки может содержать компонент AI (искусственного интеллекта) (не показан), который определяет число битов для дополнения нулями на основе таких факторов, как размер полезной нагрузки и т.д. Полезные нагрузки, обрабатываемые таким образом, передаются в UE 104, тем самым способствуя точной идентификации местоположения PDCCH при передачах по нисходящей линии связи. В соответствии с другим аспектом компонент 112 обработки может точно определять ACK/NACK из множества ACK/NACK, принимаемых от UE на различных уровнях агрегирования. Понятно, что различные технологии могут быть реализованы, как подробно пояснено ниже, тем самым уменьшая вероятность наличия двух различных уровней агрегирования, декодированных для одного PDCCH.

Как пояснено выше, различные физические каналы используются в рамках системы связи для обмена данными и управляющими сигналами между BS и UE. Физический канал управления нисходящей линии связи (PDCCH) переносит управляющую информацию L1/L2. Несколько PDCCH могут быть переданы в субкадре. Дополнительно, PDCCH поддерживает несколько форматов с различными размерами полезной нагрузки. Управляющая информация нисходящей линии связи (DCI), передаваемая в рамках PDCCH, переносит разрешения на передачу по восходящей линии связи, планирование в нисходящей линии связи, команды управления мощностью восходящей линии связи, отклики RACH (канал с произвольным доступом) и т.д. DCI для множества UE мультиплексируется в первом одном, двух или трех символах каждого субкадра. Каждый PDCCH преобразуется в канал управления (CCH), который может быть агрегированием 1, 2, 4 или 8 элементов канала управления (CCE). Таким образом, физический канал управления передается в агрегировании одного или нескольких элементов канала управления. Каждый UE выполняет поиск вслепую своей ожидаемой DCI из общей области поиска и конкретной для UE области поиска. Начальный CCE-индекс конкретной для UE области поиска задается посредством хэш-функции, ко