Способ и устройство для приоритизации сообщений о состоянии (например квитанций) в системе беспроводной связи

Иллюстрации

Показать все

Изобретение относится к мобильной связи. Технический результат заключается в предотвращении потери данных, а также в исключении излишней повторной передачи данных. В течение интервалов времени, во время которых необходимо выполнить передачу сообщений о состоянии, соответствующая сигнальная информация, связанная с совокупностью однонаправленных каналов, настроена на передачу перед проведением передачи данных. При этом принимающая сторона получает сигнальную информацию о состоянии, что позволяет избежать излишнего использования полосы пропускания и/или памяти, связанного с повторной передачей информации. Информация о состоянии приоритизирована путем применения отдельных каналов передачи состояния, соответствующих индикаторов, которые создаются в элементах информации, поставленных в очередь в соответствующие однонаправленные каналы, содержащие информацию о состоянии. 4 н. и 41 з.п. ф-лы, 18 ил.

Реферат

Настоящая заявка притязает на приоритет предварительной заявки № 61/074.325, поданной 20 июня 2008 г. и именуемой «ПРИОРИТЕЗАЦИЯ СООБЩЕНИЙ О СОСТОЯНИИ PDCP В LTE ПОСЛЕ ПЕРЕДАЧИ ОБСЛУЖИВАНИЯ», которая полностью включена в настоящую заявку в виде ссылки.

I. Область техники, к которой относится изобретение

Настоящее изобретение относится в основном к беспроводной связи и, в частности, к способам управления операцией передачи обслуживания в системе беспроводной связи.

II. Уровень техники

Системы беспроводной связи широко применяются для предоставления различных услуг связи, например, с помощью таких систем беспроводной связи могут предоставляться услуги передачи голоса, видеоинформации, пакетных данных, вещания и передачи сообщений. Указанные системы могут являться системами многостанционного доступа, способными обеспечивать связь для множества терминалов за счет совместного использования имеющихся системных ресурсов. К примерам таких систем многостанционного доступа относятся системы многостанционного доступа с кодовым разделением (CDMA), многостанционного доступа с временным разделением (TDMA), многостанционного доступа с частотным разделением (FDMA) и множественного доступа с ортогональным частотным разделением (OFDMA).

Как правило, система беспроводной связи с многостанционным доступом может одновременно обеспечивать связь для множества беспроводных терминалов. В такой системе каждый терминал может связываться с одной или более базовых станций путем осуществления передач по прямой и обратной линиям связи. Прямая линия связи (или нисходящая линия связи) относится к линии связи от базовых станций к терминалам, а обратная линия связи (или восходящая линия связи) относится к линии связи от терминалов к базовым станциям. Такая линия связи может быть установлена через систему последовательного ввода/последовательного вывода (SISO), множественного ввода/единого вывода (MISO) или множественного ввода/множественного вывода (MIMO).

Устройства в системе беспроводной связи, такие как терминалы, базовые станции и пр., могут осуществлять связь, формируя из информации соответствующие пакеты, которые могут передаваться в пределах заданных ресурсов по времени, частоте, коду и т.п. Кроме того, соответствующие пакеты могут быть настроены таким образом, чтобы получатель мог быть поставлен в известность о существовании пропущенных и/или иным образом некорректно принятых пакетов и в ряде случаев мог запросить повторную передачу таких пакетов.

В одном примере запрос повторной передачи пакетов может выполняться во время передачи обслуживания терминала от исходной соты сети к целевой соте сети с помощью сообщений о состоянии в терминале и/или целевой соте. Однако из-за различных факторов, таких как конфигурация планировщика в терминале и/или целевой соте, передача сообщений о состоянии после передачи обслуживания в ряде случаев может быть задержана или пропущена. Очевидно, что без помощи таких сообщений о состоянии сущность, которой устройство передает сообщения о состоянии, практически не может получить никакой информации касательно пропущенных пакетов, по которым необходима повторная передача. Отсутствие информации о состоянии может привести к тому, что заданное сетевое устройство при повторной передаче практически не передаст никаких данных, что, в свою очередь, может вызвать потери данных у сущности, принимающей пакеты. В альтернативном варианте осуществления отсутствие информации о состоянии может привести к тому, что сетевое устройство выполняет лишнюю повторную передачу значительного массива данных, уже корректно полученных сущностью, принимающей пакеты, что может вызвать излишнее использование полосы пропускания. В связи с этим было бы целесообразно реализовать усовершенствованные способы управления повторной передачей, уменьшающие, по меньшей мере, перечисленные выше недостатки.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Ниже в упрощенном виде представлено краткое описание различных вариантов осуществления заявляемого объекта изобретения, чтобы дать общее представление об указанных вариантах осуществления. Данное краткое описание не является всесторонним обзором всех предполагаемых вариантов осуществления и не предназначено ни для идентификации основных или важнейших элементов, ни для ограничения объема указанных вариантов осуществления. Его единственная цель состоит в изложении некоторых концепций описываемых вариантов осуществления в упрощенном виде в качестве вступления к более подробному описанию, приведенному ниже.

В соответствии с одним вариантом осуществления предлагается способ. Данный способ может включать в себя идентификацию данных, подлежащих передаче по одному или более каналов связи; локализацию информации о состоянии, связанной с соответствующими каналами связи, в идентифицированных данных; обнаружение запускающего события, по которому должна передаваться информация о состоянии; и передачу указанной локализованной информации о состоянии при обнаружении запускающего события перед передачей, по меньшей мере, части остальных идентифицированных данных.

Второй вариант осуществления относится к аппаратуре беспроводной связи, которая может содержать запоминающее устройство, которое хранит данные, относящиеся к одному или более однонаправленных каналов, и соответствующую информацию, связанную с одним или более однонаправленных каналов, причем указанная информация содержит, по меньшей мере, одно из сообщений о состоянии или данные. Аппаратура беспроводной связи может дополнительно содержать процессор, настроенный на идентификацию соответствующих сообщений о состоянии в информации, связанной с одним или более однонаправленных каналов, и на приоритезацию соответствующих сообщений о состоянии таким образом, чтобы сообщения о состоянии передавались перед данными, относящимися к одному или более однонаправленных каналов.

Третий описанный здесь вариант осуществления относится к устройству, функционирующему в системе беспроводной связи. Данное устройство может содержать средство для идентификации информации, подлежащей передаче по одному или более логических каналов; средство для классификации идентифицированной информации на сигнальную информацию о состоянии и данные и средство для назначения идентифицированной информации уровней приоритета таким образом, чтобы информация, отнесенная к сигнальной информации о состоянии, передавалась перед информацией, отнесенной к данным, при обнаружении запускающего события для передачи информации о состоянии.

Четвертый описанный здесь вариант осуществления относится к программному продукту, который может включать в себя машиночитаемый носитель, содержащий код, чтобы заставить компьютер выявить один или более однонаправленных каналов и соответствующую информацию, поставленную в очередь в один или более однонаправленных каналов, причем указанная информация содержит, по меньшей мере, одно из сообщений о состоянии или данные; код, чтобы заставить компьютер выявить соответствующие сообщения о состоянии в информации, поставленной в очередь в один или более однонаправленных каналов; и код, чтобы заставить компьютер приоритезировать соответствующие сообщения о состоянии таким образом, чтобы сообщения о состоянии передавались перед данными, поставленными в очередь в один или более однонаправленных каналов.

Для достижения указанных целей один или более вариантов осуществления заявляемого объекта изобретения содержат признаки, полностью описанные ниже и, в частности, указанные в формуле изобретения. В нижеследующем описании и прилагаемых чертежах подробно излагаются некоторые иллюстративные аспекты заявляемого объекта изобретения. Однако эти аспекты указывают всего лишь на несколько различных способов, которыми могут быть осуществлены принципы заявляемого объекта изобретения. Кроме того, описанные варианты осуществления предполагают включение всех указанных аспектов и их эквивалентов.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг. 1 - блок-схема системы, которая обеспечивает управление передачей данных, связанной с передачей обслуживания в системе беспроводной связи в соответствии с различными вариантами осуществления.

Фиг. 2 - временная диаграмма, иллюстрирующая пример последовательности операций передачи обслуживания, которые могут быть выполнены в системе беспроводной связи.

На Фиг. 3 изображен пример уровней передачи данных и соответствующих структур пакетов, которые могут использоваться в беспроводной среде передачи данных в соответствии с различными вариантами осуществления.

На Фиг. 4 изображен пример однонаправленных каналов передачи данных, которые могут использоваться для управления передачей данных в беспроводной среде передачи данных.

Фиг. 5 - блок-схема системы приоритезации сообщений о состоянии, связанных с системой беспроводной связи с помощью одного или более каналов передачи состояния в соответствии с различными вариантами осуществления.

На Фиг. 6-7 изображены примеры соответствующих способов реализации одного или более каналов передачи состояния в соответствии с различными вариантами осуществления.

Фиг. 8 - блок-схема системы приоритезации сообщений о состоянии на основе анализа соответствующих однонаправленных каналов в соответствии с различными вариантами осуществления.

Фиг. 9 - блок-схема системы приоритезации сообщений о состоянии на основе зарегистрированной информации, относящейся к соответствующим связанным с ними однонаправленным каналам в соответствии с различными вариантами осуществления.

Фиг. 10 - схема последовательности операций способа управления передачей информации о состоянии в системе беспроводной связи.

Фиг. 11 - схема последовательности операций способа обслуживания и использования одного или более однонаправленных каналов передачи сигнальной информации о состоянии.

Фиг. 12 - схема последовательности операций способа анализа соответствующих каналов передачи данных для различения и приоритезации информации о состоянии, поставленной в очередь в соответствующие каналы передачи данных.

Фиг. 13 - схема последовательности операций способа отслеживания информации о состоянии в совокупности однонаправленных каналов для приоритетной передачи.

Фиг. 14 - блок-схема устройства, которое обеспечивает передачу сигнальной информации о состоянии в системе беспроводной связи.

Фиг. 15-16 - блок-схемы соответствующих устройств беспроводной связи, которые могут использоваться для реализации различных вариантов осуществления описанных здесь функций.

На Фиг. 17 изображена система беспроводной связи с многостанционным доступом в соответствии с изложенными здесь различными вариантами осуществления.

Фиг. 18 - блок-схема, иллюстрирующая пример системы беспроводной связи, в которой могут функционировать описанные здесь различные варианты осуществления.

ПОДРОБНОЕ ОПИСАНИЕ

Различные варианты осуществления заявляемого объекта изобретения описаны ниже со ссылкой на чертежи, на которых одинаковые позиционные номера везде используются для ссылки на одинаковые элементы. В нижеследующем описании в целях объяснения многочисленные конкретные детали изложены для обеспечения надлежащего понимания одного или более вариантов осуществления. Однако очевидно, что такой вариант (варианты) осуществления может быть осуществлен без указанных конкретных деталей. В других случаях хорошо известные структуры и устройства показаны в виде блок-схем, чтобы облегчить описание одного или более вариантов осуществления.

Используемые в настоящей заявке термины «компонент», «модуль», «система» и т.п. относятся к связанному с применением компьютера объекту - либо к аппаратному обеспечению, встроенному программному обеспечению, совокупности аппаратного и программного обеспечения, программному обеспечению, либо к исполняемому программному обеспечению. Например, компонент может быть, помимо прочего, процессом, осуществляемым в процессоре, интегральной схемой, объектом, исполнимым модулем, потоком исполнения, программой и/или компьютером. Например, как приложение, работающее на вычислительном устройстве, так и вычислительное устройство может быть компонентом. Один или более компонентов могут находиться в процессе и/или потоке исполнения, а компонент может быть сосредоточен на одном компьютере и/или рассредоточен по двум или более компьютерам. Кроме того, указанные компоненты могут исполняться с различных машиночитаемых носителей, содержащих различные хранящиеся на них структуры данных. Компоненты могут осуществлять обмен данными с помощью локальных и/или удаленных процессов, например с помощью сигналов, содержащих один или более пакетов данных (например, данные с одного компонента взаимодействуют с другим компонентом в локальной системе, распределенной системе и/или по сети, такой как Интернет, с другими системами с помощью сигнала).

Кроме того, различные варианты осуществления описаны здесь применительно к беспроводному терминалу и/или базовой станции. Беспроводной терминал может относиться к устройству, обеспечивающему возможность передачи пользователю голоса и/или данных. Беспроводной терминал может быть подключен к вычислительному устройству, такому как ноутбук или настольный компьютер либо он может быть автономным устройством, таким как карманный персональный компьютер (PDA). Беспроводным терминалом может также называться система, абонентская установка, абонентский пункт, подвижная станция, мобильный телефон, удаленная станция, терминал доступа, терминал пользователя, агент пользователя, пользовательское устройство или пользовательское оборудование (UE). Беспроводным терминалом может быть абонентский пункт, беспроводное устройство, сотовый телефон, телефон системы персональной связи, радиотелефон, телефон, работающий по протоколу установления сеанса (SIP), пункт местной радиосвязи (WLL), карманный персональный компьютер (PDA), мобильное устройство с возможностями беспроводного подключения или иное устройство обработки, подключенное к беспроводному модему. К базовой станции (например, точке доступа или Развитому узлу В (eNB)) может относиться устройство в сети доступа, которое осуществляет обмен данными по радиоинтерфейсу через один или более секторов с беспроводными терминалами. Базовая станция может выполнять функцию маршрутизатора между беспроводным терминалом и остальной частью сети доступа, которая может включать в себя сеть на основе Интернет-протокола (IP), преобразуя принятые кадры радиоинтерфейса в IP-пакеты. Базовая станция также координирует управление атрибутами радиоинтерфейса.

Кроме того, различные описанные здесь функции могут быть реализованы в аппаратном обеспечении, программном обеспечении, встроенном программном обеспечении или в любой их совокупности. При реализации в программном обеспечении эти функции могут храниться или передаваться в виде одной или более команд или кода, записанных на машиночитаемом носителе. Машиночитаемый носитель включает в себя как компьютерные носители информации, так и среды передачи данных, содержащие любую среду, обеспечивающую перенос компьютерной программы из одного места в другое. Носителями информации могут быть любые доступные носители, доступ к которым может быть осуществлен с компьютера. В качестве примеров, а не ограничений можно назвать оперативное запоминающее устройство (RAM), постоянное запоминающее устройство (ROM), электрически стираемое программируемое постоянное запоминающее устройство (EEPROM), компакт-диск (CD-ROM), либо иной накопитель на оптических дисках, накопитель на магнитных дисках или иное магнитное запоминающее устройство, либо любой другой носитель, который может использоваться для переноса или хранения требуемого кода программы в виде команд или структур данных, доступ к которому может быть осуществлен с компьютера. Кроме того, любое соединение, строго говоря, является машиночитаемым носителем информации. Например, если программное обеспечение передается с веб-сайта, сервера или из иного удаленного источника с помощью коаксиального кабеля, волоконно-оптического кабеля, витой пары, цифровой абонентской линии (DSL) либо с помощью беспроводных устройств, таких как инфракрасное, радиочастотное и микроволновое, то коаксиальный кабель, волоконно-оптический кабель, витая пара, DSL или беспроводные устройства, такие как инфракрасное, радиочастотное и микроволновое, входят в определение носителя. Используемый в настоящем документе термин «диск» включает компакт-диск (CD), лазерный диск, оптический диск, универсальный цифровой диск (DVD), гибкий магнитный диск и диск blue-ray, при этом в одних дисках воспроизведение данных осуществляется магнитным способом, а в других дисках воспроизведение данных осуществляется оптическим способом с помощью лазеров. Совокупности вышеупомянутых носителей также должны подпадать под определение машиночитаемого носителя.

Различные описанные здесь способы могут использоваться в различных системах беспроводной связи, таких как системы Многостанционного доступа с кодовым разделением (CDMA), системы Многостанционного доступа с временным разделением (TDMA), системы Многостанционного доступа с частотным разделением (FDMA), системы Множественного доступа с ортогональным частотным разделением (OFDMA), системы FDMA с передачей на одной несущей (SC-FDMA) и в других подобных системах. Термины «система» и «сеть» часто используются на равных основаниях. В системе CDMA может быть реализована технология радиосвязи, такая как Наземный доступ для универсальной службы подвижной связи (UTRA), CDMA2000 и др. UTRA включает в себя Широкополосный CDMA (W-CDMA) и прочие варианты CDMA. Кроме того, CDMA2000 распространяется на стандарты IS-2000, IS-95 и IS-856. В системе TDMA может быть реализована технология радиосвязи, такая как Глобальная система мобильной связи (GSM). В системе OFDMA может быть реализована технология радиосвязи, такая как Развитой UTRA (E-UTRA), сверхширокополосная подвижная связь (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM® и др. UTRA и E-UTRA входят в Универсальную систему мобильной связи (UMTS). Долгосрочное развитие (LTE) Проекта партнерства третьего поколения (3GPP) - это перспективный вариант, использующий E-UTRA, в котором OFDM используется в нисходящем канале связи, а SC-FDMA используется в восходящем канале связи. UTRA, E-UTRA, UMTS, LTE и GSM описаны в документах от организации, называющейся «Проект партнерства третьего поколения» (3GPP). Кроме того, системы CDMA2000 и UMB описаны в документах от организации, называющейся «Проект партнерства третьего поколения 2» (3GPP2).

Различные варианты осуществления представлены на примере систем, которые могут содержать ряд устройств, компонентов, модулей и т.п. Следует понимать, что различные системы могут содержать дополнительные устройства, компоненты, модули и т.п. и/или могут содержать не все устройства, компоненты, модули и т.п., обсуждаемые со ссылкой на чертежи. Может также использоваться совокупность указанных подходов.

В соответствии с чертежами на Фиг. 1 изображена система 100, которая обеспечивает управление передачей данных, связанной с передачей обслуживания в системе беспроводной связи в соответствии с описанными здесь различными вариантами осуществления. Как показано на Фиг. 1, система 100 может содержать Узел В (например, базовую станцию, точку доступа (АР), Развитой узел В (eNB) и т.д.), который может осуществлять обмен данными с одним или несколькими блоками пользовательского оборудования (UE, именуемыми здесь также терминалами доступа (АТ), подвижными терминалами и т.д.) 130. В одном примере Узел В 110 может участвовать в одном или более обменов данными по нисходящей линии связи (DL, именуемой также прямой линией связи (FL)) с UE 130, а UE 130 может участвовать в одном или более обменов данными по восходящей линии связи (UL, именуемой также обратной линией связи (RL)) с Узлом В 110. В другом примере Узел В 110 может быть связан с сетью беспроводной связи, такой как Развитая сеть наземного радиодоступа UMTS (Универсальной системы мобильной связи) (E-UTRAN), или с ее частью (например, сотой, сектором и т.д.). Кроме того, Узел В 110 может функционировать с одной или более сетевых сущностей, таких как системный контроллер (не показан) и др. для координации обмена данными между Узлом В 110 и UE 130.

В одном примере Узлы В 110 и UE 130 могут осуществлять обмен данными, сигнальной информацией и/или прочей информацией друг с другом и с прочими сущностями в системе 100 в виде соответствующих пакетов, таких как блок данных протокола (PDU) и др., которые составляются с включением соответствующей информации. Например, процессор 122 в Узле В 110 может либо независимо, либо с помощью запоминающего устройства 124 формировать один или более пактов, подлежащих передаче передатчиком 118 в UE 130. Аналогичным образом процессор 142 в UE 130 может использоваться с помощью запоминающего устройства 144 или без его помощи для формирования пактов с целью передачи передатчиком 138. В другом примере соответствующие запоминающие устройства 124 и 144 в Узле В 110 и UE 130 могут использоваться для хранения соответствующих пакетов или соответствующей информации до, во время или после каждой из соответствующих передач.

В соответствии с одним вариантом осуществления соответствующие передачи пакетов в пределах системы 100 могут выполняться в пределах контекста одного или более уровней передачи данных в стеке протокола системы, как показано на схеме 200 на Фиг. 2. В примере, иллюстрируемом схемой 200, уровень Протокола преобразования пакетных данных (PDCP) 210, уровень Контроля радиолинии (RLC) 220, уровень Управления доступом к среде (МАС) 230 и Уровень 1 (L1) 240 могут использоваться для осуществления различных аспектов беспроводной связи на соответствующих уровнях сложности. Так, например, уровень PDCP 210 может использоваться для выполнения сжатия данных, упорядочение и/или других функций высокого уровня, уровень RLC 220 может использоваться для управления передачей и/или повторной передачей различных данных, уровень МАС 230 может использоваться для управления доступом соответствующих устройств к ресурсам передачи данных, связанным с сетью, а L1 240 может использоваться на низком уровне для управления физическим радиоинтерфейсом, связанным с заданным сетевым устройством. Однако следует понимать, что изложенное выше представлено в качестве конкретного примера и что любой уровень 210-240, иллюстрируемый схемой 200, может выполнять любую подходящую функцию (функции). Кроме того, следует понимать, что система может использовать любую подходящую совокупность уровней передачи данных в любом подходящем порядке.

В соответствии с другим вариантом осуществления уровни 210-240 могут быть связаны с соответствующими форматами PDU с целью обеспечения управления и/или обработки информации на одном или более уровней в связи с передачей информации. В соответствии с этим, как показано на схеме 200, соответствующие PDU PDCP 212 могут быть связаны с уровнем PDCP 210, который, в свою очередь, может находиться внутри PDU RLC 222, связанных с уровнем RLC 220. Из схемы 200 можно понять, что PDU PDCP 212 могут преобразовываться в PDU RLC 222 любым подходящим способом. Так, преобразование «один к одному», преобразование «многие к одному», преобразование «один к многим» и/или любое иное подходящее преобразование может использоваться для помещения PDU PDCP 212 внутри соответствующих PDU RLC 222. Кроме того, хотя это и не показано на схеме 200, следует понимать, что уровень МАС 230, L1 240 и/или любые иные уровни, связанные с системой беспроводной связи, могут дополнительно или в качестве альтернативы использовать формат PDU для обработки информации в пределах заданного соответствующего уровня.

В соответствии с другим вариантом осуществления совокупность уровней в пределах схемы 200, таких как уровень PDCP 210 и уровень RLC 220, может быть связана через соответствующие однонаправленные радиоканалы (DRB). Пример совокупности DRB, которые могут использоваться для соединения совокупностей каналов передачи данных, изображен в виде схемы 300 на Фиг.3. Согласно схеме 300 могут быть созданы соответствующие DRB 310-330, которые соответствуют, например, соответствующим каналам между уровнем PDCP 210 и уровнем RLC 220, как показано на схеме 200. Несмотря на то, что на схеме 300 изображена система, в которой используются 3 DRB 310-330, следует понимать, что может использоваться любое подходящее число DRB.

В одном примере соответствующие DRB 310-330 могут использоваться для постановки в очередь данных, соответствующих одному или более PDU PDCP, для последующей передачи в пределах системы беспроводной связи. Кроме того, DRB 310-330 могут использоваться для сохранения сообщений о состоянии PDCP, которые могут формироваться и/или использоваться, как описано ниже более подробно. В другом примере, иллюстрируемом схемой 300, значения приоритетов могут быть назначены DRB 310-330 таким образом, что информация, поставленная в очередь в DRB 310-330, передается исходя, по крайней мере, частично из соответствующих приоритетов DRB 310-330. Так, в соответствии со схемой 300, DRB 310 может иметь наивысший приоритет, DRB 320 может иметь более низкий приоритет, а DRB 330 может иметь самый низкий приоритет. Однако следует понимать, что приоритет между DRB 310-330 может устанавливаться любым подходящим способом и что соответствующий данный уровень приоритета может применяться к любому подходящему числу DRB 310-330.

Согласно Фиг. 1 система 100 в соответствии с одним вариантом осуществления может быть настраиваемой с целью оптимизации характеристик связи для данного UE 130. Так, например, в случае, когда ухудшаются условия распространения радиоволн между Узлом В 110 и UE 130, UE 130 перемещается за пределы зоны обслуживания Узла В 110, UE 130 требует обслуживания, обеспечить которое Узел В 110 не имеет возможности или способности либо по иным причинам, может быть осуществлена передача обслуживания, при которой обслуживание для UE 130 передается из исходного Узла В 110 в целевой Узел В. В одном примере координатор передачи обслуживания 112 в соответствующих Узлах В и координатор передачи обслуживания 132 в UE 130 могут использоваться для управления передачей обслуживания в соответствующих устройствах.

В другом примере передача обслуживания UE из исходной соты в целевую соту может осуществляться в соответствии с временной диаграммой 400, показанной на Фиг. 4. Несмотря на то, что показанная на Фиг. 4 процедура передачи обслуживания и различные предлагаемые здесь варианты осуществления описаны применительно к UE и сообщениям о состоянии данных DL, тем не менее, следует понимать, что подобные способы могут дополнительно или в качестве альтернативы использоваться Узлом В для сообщении о состоянии данных UL. В соответствии с чертежом передача обслуживания может начинаться в момент времени 402, в который UE принимает из своей исходной соты сообщение о передаче обслуживания, которое содержит информацию по передаче обслуживания, относящуюся к целевой соте. Далее, UE запрашивает целевую соту в момент времени 404 и передает сообщение Канала произвольного доступа (RACH) в целевую соту в момент времени 406. В одном примере UE может передавать сообщение RACH в момент времени 406 с помощью специальной преамбулы RACH.

После получения сообщения RACH целевая сота может передавать отклик в момент времени 408 вместе с разрешением на использование ресурсов UL, достаточных для передачи с помощью UE сообщения о завершении передачи обслуживания и сообщения о состоянии буфера (BSR). На основе указанного разрешения UE может после этого передавать сообщение о завершении передачи обслуживания и BSR в момент времени 410. В одном примере в случае, если сообщение RACH было передано в момент времени 406 с помощью специальной преамбулы RACH, разрешение конфликтов для сообщения RACH может дополнительно или в качестве альтернативы происходить в моменты времени 408-410. Далее в момент времени 412 UE может факультативно запросить разрешение на использование ресурсов для передачи одного или более сообщений о состоянии PDCP. В одном примере UE может запросить разрешение на использование ресурсов для передачи одного сообщения о состоянии PDCP на DRB, если оно настроено на это.

На основе запроса, переданного в момент времени 412 и/или по собственной инициативе, целевая сота может далее передавать разрешение в UE в момент времени 414 таким образом, чтобы UE могла передавать сообщение (сообщения) о состоянии PDCP. Указанное сообщение (сообщения) о состоянии может быть передано UE в момент времени 416. После приема сообщения (сообщений) целевая сота может устанавливать, какие SDU PDCP были приняты в момент времени 418, и начинать передачу SDU PDCP, отсутствие которых в UE установлено в момент времени 420. Дополнительно или в качестве альтернативы целевая сота может освобождать память, используемую для хранения SDU PDCP, корректный прием которых установлен UE в момент времени 418 и/или в момент времени 420.

На основе вышеизложенной процедуры передачи обслуживания UE 130 в системе 100 может быть настроено на передачу соответствующих сообщений о состоянии PDCP по соответствующим DRB в качестве первого пакета (пакетов) после сообщения о завершении передачи обслуживания. В одном примере сообщения о состоянии PDCP могут передаваться по однонаправленному каналу передачи сигнальной информации (SRB) и могут использоваться для индикации отсутствующих PDU PDCP DL и/или порядкового номера (SN) последнего принятого из последовательности PDU PDCP DL. Так, например, в случае если UE 130 принимает PDU PDCP от Узла В 110 по данному DRB с SN 1, 2, 4, 6 и 10, сообщение о состоянии PDCP для DRB может указывать на то, что PDU PDCP с SN 3, 5, 7, 8 и 9 отсутствуют и что PDU PDCP с SN 2 был последним принятым из последовательности PDU. В соответствии с этим Узел В 110 может освобождать память, используемую для хранения PDU 1, 2, 4, 6 и 10, и выполнять повторную передачу только отсутствующих PDU 3, 5, 7, 8 и 9. Аналогичным образом, например, в случае если соответствующие PDU PDCP входят в соответствующие PDU RLC, UE 130 может передавать в Узел В 110 квитанции (ACK) RLC, соответствующие PDU RLC, корректно принятым UE 130. Так, например, PDU RLC настроен на вмещение пяти PDU PDCP с SN 1-5, UE 130 может быть настроено на представление ACK для PDU RLC в Узел В 110 после успешного приема, на основании чего Узел В 110 может освобождать соответствующую память и не совершать повторной передачи PDU PDCP 1-5.

В традиционных исполнениях системы беспроводной связи алгоритм планировщика, используемый соответствующими Узлами В и/или UE, не ставится в известность о сообщениях о состоянии (например, сообщениях о состоянии PDCP, RLC ACK), формируемых после передачи обслуживания и/или в иные подходящие моменты времени. Вместо этого следует понимать, что соответствующие сущности в системе беспроводной связи настроены на передачу данных по соответствующим логическим каналам таким образом, чтобы соответствовать Приоритетной скорости передачи (PBR) соответствующих логических каналов и/или одному или более подобных условий.

Так, например, в случае если Узел В 110 выдает в UE 130 задание передать заданное количество информации, маркерная область памяти и/или иной подходящий уровень МАС либо иная структура в UE 130 может подготовить ответную передачу путем выбора данных из соответствующих DRB до истощения DRB или соответствия связанным с ними PBR. В частности, в соответствии со схемой 300 на Фиг. 3 сущность МАС в UE 130 может выбирать данные из DRB 310 с наивысшим приоритетом до тех пор, пока либо DRB 310 не опустошится, либо заданный массив данных, определяемый PBR для DRB 310, не предотвратит перегрузку DRB 320-330. Далее сущность МАС может быть настроена на перемещение в DRB 320 для повторения этого процесса после выполнения условий, связанных с DRB 310.

В соответствии с этим следует понимать, что при использовании множества каналов для передачи традиционные алгоритмы планирования в ряде случаев могут препятствовать передаче сообщений о состоянии, соответствующих второму или последующим каналам, до соответствия PBR первого канала, выведения практически всех данных из первого канала и/или при выполнении иных условий. Это может привести к задержке передачи сообщений о состоянии, что, в свою очередь, может воспрепятствовать значительному использованию сущностями в системе 100 сообщений о состоянии. Например, в случае если передающая сущность в системе 100 не принимает одно или более сообщений (например, через сообщения о состоянии PDCP, RLC ACK и т.д.), относящихся к отсутствующим данным, запрашиваемым для передачи, передающая сущность в ряде случаев может предпочесть не выполнять повторную передачу значительной части данных, что может привести к потере данных в том случае, когда такие данные отсутствуют, а их повторная передача целесообразна. В альтернативном варианте осуществления в отсутствие сообщения о состоянии передающая сущность может предположить, что соответствующие части данных не были приняты, и выполнить повторную передачу таких частей. Однако следует понимать, что это может привести к передаче ненужных повторов данных по восходящей и/или нисходящей линии связи в том случае, если, по меньшей мере, часть повторно переданных данных была успешно принята при первоначальной передаче. Кроме того, следует понимать, что выполнение дублирующих передач указанным способом может, кроме того, привести к неэффективному использованию памяти в передающей сущности, поскольку передающая сущность неспособна освободить память, которая связана с данными, связанными с дублирующей передачей (передачами).

Так, в соответствии с одним вариантом осуществления Узел В 100, UE 130 и/или любая другая подходящая сущность в системе 100 может быть настроена на интеллектуальное планирование поставленной в очередь информации таким образом, чтобы сообщения о состоянии приоритезировались и передавались перед данными. Например, анализатор данных 114 в Узле В 110 и/или анализатор данных 134 в UE 130 может использоваться для контроля информации, связанной с соответствующими DRB или логическими каналами, соответствующими Узлу В 110 и/или UE 130. На основе информации, полученной из анализатора данных 114 и/или 134, модуль приоритезации 116 и/или 136 может быть поставлен в известность о сообщениях о состоянии (например, сообщениях о состоянии PDCP, RLC ACK и т.д.) и приоритезировать передачу в передатчике 118 и/или 138 таким образом, чтобы сообщения о состоянии передавались, по меньшей мере, из части логических каналов перед передачей данных или соответствием PBR, связанной с логическими каналами. В соответствии с этим сущность, принимающая сообщения о состоянии, может избежать дублированных передач данных и потерь полосы беспроводной передачи по восходящей и/или нисходящей линии связи, как описано выше в общем виде.

В одном примере модуль приоритезации 116 и/или 136 может следить за тем, чтобы после передачи обслуживания отчеты о состоянии PDCP получали достаточно высокий приоритет с тем, чтобы ни одна передача или повторная передача данных не проводилась по каким-либо логическим каналам, по которым запрошен отчет о состоянии PDCP, до тех пор, пока не будут переданы все отчеты о состоянии PDCP. В другом примере модуль приоритезации 116 и/или 136 может действовать в отношении DRB, имеющих небесконечную PBR, обеспечивая передачу сообщений о состоянии PDCP по соответствующим DRB до соответствия PBR любых связанных с ними DRB. В альтернативном варианте осуществления модуль приоритезации 116 и/или 136 может действовать в отношении DRB строго на основе приоритета (например, связанного с бесконечной PBR), обеспечивая передачу сообщений о состоянии PDCP по соответствующим DRB до проведения каких-либо передач данных по соответствующим DRB. В другом альтернативном варианте осуществления модуль приоритезации 116 и/или 136 может обеспечивать приоритезацию сообщений о состоянии по любому другому подходящему логическому каналу, такому как однонаправленный канал передачи сигнальной информации (SRB) и т.п.

В другом примере модуль приоритезации 116 и/или 136 может быть настроен на приоритезацию сообщений о состоянии RLC (например, сообщений о состоянии RLC, содержащих одну или более ACK и/или отрицательных ACK (NACK)) в дополнение к сообщениям о состоянии PDCP и/или вместо них. В соответствии с этим во время сеанса связи между Узлом В 110 и UE 130 и/или в любое другое подходящее время анализатор данных 114 и/или 134 либо модуль приоритезации 116 и/или 136 может быть п