Способ разделения ионов органических и биоорганических соединений в сверхзвуковом газовом потоке, предварительной регистрации и транспортировки этих ионов в последующий масс-анализатор

Иллюстрации

Показать все

Изобретение относится к разделению ионов в линейной радиочастотной ловушке с газовым потоком вдоль оси этой ловушки на базе различий этих ионов в энергиях появления, в массах, зарядах, подвижности, сечениях захвата медленных электронов и метастабильно возбужденных частиц, а также в эффективности образования путем перезарядки на ионах буферного газа при воздействии на эти ионы переменных и постоянных электрических полей, создаваемых внутри ловушки, в том числе и зарядами ионов с относительно малыми m/z, сфокусированных вокруг оси ловушки. В необходимых случаях ионы могут быть дополнительно разделены по степени устойчивости к столкновительно-индуцированной диссоциации. Особенность изобретения - это ортогональное сопряжение линейной радиочастотной ловушки с последующим масс-анализатором при использовании двухсеточного электростатического зеркала, а также предварительная регистрация ионов, отраженных этим зеркалом и не попавших в масс-анализатор. Технический результат - дополнительное разделение ионов с возможностью получения для исследуемых соединений масс-спектров ионов-продуктов электронного захвата, диссоциации, активированной столкновениями и вызванной передачей энергии от метастабильно-возбужденных частиц буферного газа, альтернативно или в развитие известных методов разделения и структурно-химического анализа. 20 з.п. ф-лы, 7 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Изобретение относится к масс-спектрометрии, спектрометрии ионной подвижности в газах и исследованию структуры органических и биоорганических соединений с использованием электронной ионизации и ионно-молекулярных реакций. В частности, ниже описаны методы разделения ионов при варьировании энергии и потока ионизирующих электронов в источнике электронной ионизации, также при совместном действии электрических полей и газового потока в линейной радиочастотной ловушке. Ионы разделяются, таким образом, по величинам масс, зарядов, сечений ионизации или захвата медленных электронов, столкновений с атомами или молекулами газового потока, в том числе и метастабильно-возбужденными, и по степени устойчивости к процессам мономолекулярного распада. Анализ ионов-продуктов по отношениям массы к заряду может производиться с помощью времяпролетного масс-спектрометра с ортогональным вводом ионов (орто-ВПМС) либо на каком-либо другом масс-анализаторе, ортогонально сопряженном с линейной радиочастотной ловушкой. Именно такое ортогональное сопряжение позволяет существенно уменьшить проникновение загрязняющих примесей из газового потока внутрь масс-анализатора и заметно снизить давление остаточных газов в масс-анализаторе при заданной скорости откачки. «Ортогональный» вывод ионов из сверхзвукового потока электростатическим зеркалом также позволяет осуществить предварительный масс-анализ ионов, не попавших внутрь внешнего масс-анализатора.

Предлагающиеся подходы и методы полезны для качественного и/или количественного химического и биологического анализа.

УРОВЕНЬ ТЕХНИКИ

После разработки и создания в нашем институте первых времяпролетных масс-спектрометров с ортогональным вводом ионов (орто-ВПМС) [1, 2] приборы этого типа получили широкое распространение как при решении аналитических задач, так и при исследовании структуры биомолекул [3-5]. Удобство сочленения таких приборов, обладающих рекордным быстродействием среди всех известных типов масс-анализаторов, с различными устройствами получения и предварительного разделения ионов, производящими непрерывный или квазинепрерывный поток ионов, обусловило высокую эффективность и привлекательность таких сочетаний для решения разнообразных аналитических и структурных задач. В то же время существуют важные структурно-аналитические проблемы, для которых разделительная способность и «информационная производительность» известных приборных комплексов, включающих в свой состав орто-ВПМС, оказывается недостаточной. Преодоление этих ограничений возможно путем введения в масс-спектрометрический анализ дополнительных размерностей измерений. Такие размерности, например, могут быть связаны с контролируемыми изменениями потоков регистрируемых ионов при варьировании тока и энергии ионизирующих электронов, с подбором и сканированием управляющих электрических полей при наличии газовой струи вдоль первоначального направления движения ионов, что включает в себя, по-существу, специфическую реализацию разделения ионов по подвижности.

Спектрометр ионной подвижности обычно включает в себя источник ионизации, ячейку дрейфа и детектор ионов. Детектором ионов может быть, например, цилиндр Фарадея, электронный умножитель или масс-спектрометр. Спектрометр ионной подвижности (СИП) разделяет ионы по их подвижности в дрейфовом или буферном газе на основании их различной равновесной скорости дрейфа. Когда газофазные ионы в присутствии буферного газа подвержены действию постоянного электрического поля, они ускоряются до момента столкновения с нейтральным атомом или молекулой буферного газа. Это ускорение и последующие столкновения повторяются многократно. Через какое-то время этот микроскопический сценарий усредняет мгновенные скорости ионов, что приводит к их постоянной дрейфовой скорости, зависящей от размера иона, его заряда, давления и температуры буферного газа. Отношение скорости дрейфа иона к величине напряженности электрического поля определяется как подвижность иона. Другими словами, скорость дрейфа иона (Vd) пропорциональна напряженности электрического поля (E), где подвижность иона κ=Vd/E - функция отношения объем/заряд иона. Таким образом, СИП - техника разделения, подобная масс-спектрометрии. СИП, как известно, имеет высокую чувствительность с умеренной разрешающей способностью. Эффективность разделения снижается из-за диффузионного расплывания "пакета" ионов, приводя к временному уширению кривых регистрируемого ионного тока.

Разрешающая способность измерения подвижности ионов для однородного или квазиоднородного электрического поля увеличивается в первом приближении как квадратный корень из напряжения, приложенного вдоль ячейки подвижности для данного заряда иона. Казалось бы, что нет большой свободы увеличить разрешение. Однако ситуация может быть улучшена, если организовать дрейф ионов в газовом потоке под действием электрического поля, направленного против потока. Ионы двигаются против газового потока, только если напряженность поля больше, чем некоторая величина, определяемая их подвижностью. Ионы с более низкой подвижностью могут быть неподвижны или двигаться вместе с газовым потоком. В этом случае возникает возможность управления скоростью выхода ионов на детектор в отличие от классического СИП. Это приводит, во-первых, к повышению ожидаемой разрешенности спектров при сравнимых перепадах напряжения вдоль ячейки подвижности, хотя бы из-за меньшей трансляционной температуры ионов. Во-вторых, не накладывает серьезных ограничений на быстродействие детектора.

Комбинация спектрометра ионной подвижности (СИП) с масс-спектрометром (МС) широко известна. В 1961 году Barnes с сотрудниками [6] были среди первых, осуществивших объединение этих двух методов разделения. Такие приборы производят разделение и анализ ионов согласно их подвижности и по отношению массы к заряду, которое упоминается часто как двумерное разделение или двумерный анализ. Young с сотрудниками [7] впервые осознали, что времяпролетный масс-спектрометр (ВПМС) является наиболее предпочтительным типом МС, который используется в такой комбинации из-за его способности зарегистрировать практически одновременно ионы всех масс, поступающих из спектрометра ионной подвижности. Комбинация спектрометра ионной подвижности с ВПМС может называться как Подвижность-ВПМС или СИП-ВПМС. Этот известный прибор включал средства для получения ионов, ячейку дрейфа, ВПМС, и небольшое отверстие для передачи ионов из ячейки подвижности в ВПМС.

В 2003 году Лобода (Патент США №6630662) [8] описал метод для улучшения разделения ионов по подвижности на основе баланса дрейфа иона, обусловленного влиянием постоянного электрического поля и противопотока газа. Используя этот баланс, ионы сначала накапливаются в радиочастотном фокусирующем устройстве, в частности в квадруполе, и затем, изменяя электрическое поле или газовый поток, ионы постепенно выводятся из квадруполя и поступают в масс-спектрометр. Такой тип накопления ионов ограничен сбором относительно небольшого количества ионов из-за эффекта пространственного заряда. Имеется также некоторое ограничение по диапазону отношений массы к заряду иона (m/z), поскольку радиочастотная фокусировка для данного радиочастотного напряжения имеет меньшую эффективность для больших ионов, которая не может быть сильно улучшена увеличением этого напряжения из-за возможности создания условий зажигания разряда при относительно высоком газовом давлении. При более низком давлении влияние газового потока на ионы меньше и могут быть достигнуты только менее эффективные накопление и разделение больших ионов. Значительное увеличение давления или плотности газового потока, также уменьшающее возможность зажигания разряда, тоже невозможно, т.к. в этом случае исчезает фокусирующая способность радиочастотного напряжения. По крайней мере по этим причинам этот метод имеет существенные ограничения по разрешению.

Разделение ионов при воздействии на них электрических полей и сверхзвукового газового потока, как предложено в нашем патенте РФ №2420826 от 10.06.2011 [41], свободно от этих недостатков. Рассматривая описанное в этой заявке устройство как прототип настоящего изобретения, можно отметить следующие основные отличительные моменты этих обоих случаев, связанные с наличием слабо расходящегося относительно плотного в приосевой области радиочастотного квадруполя газового потока и относительно малой остаточной плотности газа вне потока внутри квадруполя. Малая остаточная плотность газа вне потока позволяет с относительно высокой избирательностью включением резонансных и нерезонансных вращающих полей уводить избыточные ионы на стержни квадруполя, значительно уменьшая нежелательные эффекты накопления объемного заряда. Отсутствуют ограничения на использование достаточно высоких радиочастотных напряжений для фокусировки больших ионов, так как относительно высокая газовая плотность сосредоточена в узкой приосевой области, где квадрупольное поле мало. Относительно медленно убывающая плотность газового потока вдоль оси квадруполя позволяет заданием соответствующего постоянного квазиоднородного электрического поля, направленного против потока, «останавливать» анализируемые ионы в желаемом месте внутри квадруполя, так чтобы интенсивность потока этих ионов в орто-ВПМС или другой масс-анализатор соответствовала динамическому диапазону измерительной системы. Используя расталкивание относительно больших аналитических ионов малыми ионами, сфокусированными около оси квадруполя, а также зависящее от m/z смещение ионов от оси нерезонансным вращающим полем, можно обеспечить разделение ионов по m/z за счет различных смещений ионов противополем вдоль оси (из-за уменьшения плотности потока при удалении ионов от оси) наряду с разделением по подвижности. Это же управляемое смещение анализируемых ионов от оси позволяет использовать близкие к оптимальному значения напряженности противополя для получения достаточно высокой разрешенности пакетов ионов по подвижности с минимизацией эффектов объемного заряда анализируемых ионов. Относительно высокая плотность газового потока вблизи оси квадруполя позволяет, как описано в нашей заявке [41], эффективно осуществлять фрагментацию, индуцированную преимущественно однократными столкновениями выбранных ионов с атомами или молекулами газового потока, без организации специальной камеры столкновений. Существенно меньшие требования к мощности откачки в нашем случае для создания плотности газового потока вблизи оси квадруполя, сравнимой с плотностью потока в квадруполе, описанного в цитированном патенте Лободы, являются еще одним преимуществом предлагаемой системы и в настоящем изобретении.

Основных отличий настоящего изобретения от заявленного ранее аналога три. Первое состоит в варьировании потока и энергии ионизирующих электронов, позволяющих измерять кривые эффективного выхода анализируемых ионов и их ионов-продуктов, что приводит к дополнительному разделению исследуемых соединений и значительному увеличению получаемой информации об этих соединениях. Второе отличие - это установка двухсеточного электронного зеркала, расположенного под углом 45° к оси потока на выходе из квадруполя, которое выводит ионы из газового потока и направляет их перпендикулярно этому потоку в масс-анализатор. При этом основная часть газового потока свободно проходит через двухсеточное зеркало и направляется прямо в турбомолекулярный насос, эффективность работы которого из-за повышения локальной плотности газа существенно возрастает по сравнению с откачкой из области остаточной плотности газа. В этом случае устраняется также необходимость смещения направления оси газового потока от первоначальной оси ионно-оптической системы для вывода ионов из газового потока ускорением ионов вдоль этой оси. Третье отличие связано с предыдущим, так как вывод ионов из сверхзвукового потока электрическим полем в ортогональном направлении оказывается селективным по m/z ионов. Для времяпролетного масс-анализатора это является, с одной стороны, недостатком, поскольку сужает диапазон m/z одновременно регистрируемых масс-спектральных пиков. В то же время это позволяет организовать предварительный масс-анализ ионов, не попавших в масс-анализатор, увеличив динамический диапазон адекватно измеряемых ионных токов и давая возможность выбрать наиболее подходящие диапазоны m/z для более прецизионного масс-анализа. Еще одна особенность настоящего изобретения, которую можно воспринимать как вариант реализации, состоит в отсутствии запирающей диафрагмы, расположенной в середине квадруполя в случае предыдущей заявки [41]. Эта диафрагма позволяет осуществлять фрагментацию выбранных ионов их ускорением вдоль оси квадруполя в результате преимущественно однократных столкновений с атомами или молекулами в газовом потоке, но в тоже время уменьшает протяженность вдоль оси квадруполя, доступную для разделения ионов по подвижности приложением электрического поля, направленного против газового потока, что ограничивает достижимую разделенность ионов и увеличивает влияние объемного заряда накопленных ионов.

Одной из важных предпосылок для настоящего изобретения является создание нами ранее методики резонансного возбуждения вращения выбранных ионов вокруг оси радиочастотного квадруполя и осуществление фрагментации этих ионов за счет столкновений с молекулами буферного газа [9-11]. Эта методика была новой, ранее никем не предлагавшейся. В отличие от настоящего изобретения и предыдущей заявки возбуждение вращения ионов в этом случае производилось во время их движения вдоль квадруполя без приостановки этого движения. Это обеспечивало ограниченные возможности для проведения кинетических измерений и определяло относительно невысокую способность отстройки от сигналов мешающих ионов. Кроме этого, такой способ осуществления резонансного вращения накладывал очень жесткие требования на качество изготовления квадруполя: небольшие отклонения в диаметре стержней или в расстояниях между ними приводили к существенным потерям в разрешающей способности, которая в нашем случае оказывалась не более 100 при проведении реальных измерений.

В предлагаемом варианте облако ионов при резонансном возбуждении вращается в относительно узкой зоне по длине квадруполя (от нескольких мм до 1-2 см), при этом ионы совершают вдоль этой зоны квазихаотические колебания со средним временем прохождения этой зоны, сравнимым с периодом вращения и значительно меньшим характерного времени регистрации. Таким образом, неоднородности полей в значительной степени усредняются, и их влияние на ширину резонансных кривых ослабляется. В этом случае разрешающая способность резонансного возбуждения для заданных ионов и заданного буферного газа будет в основном определяться плотностью этого газа в области вращения. При разумном остаточном давлении в 0.1 мТорр для гелия ожидаемая массовая разрешающая способность на полувысоте пиков для органических ионов с массой около 1000 Да будет около или даже более 5000. Для других буферных газов разрешающая способность при заданном давлении газа изменяется обратно пропорционально корню квадратному из молекулярной массы.

Нами была разработана расчетная модель и проведены эксперименты по формированию сверхзвукового газового потока при относительно низких начальных давлениях буферного газа с переносом ионов этим потоком [12-14] и фокусировкой ионов внутрь потока, направленного вдоль оси радиочастотного квадруполя. Эти методы также являются новыми, неизвестными ранее в литературе.

Создан газодинамический интерфейс для имеющегося в нашем распоряжении орто-ВПМС с формирователем газового потока и секционированным радиочастотным квадруполем. Такая конфигурация интерфейса является новой. В основных чертах она описана в нашем патенте США №7,547,878 от 16 июня 2009 года [15]. В отличие от настоящего изобретения в этом квадруполе входная диафрагма является однослойной, и вместо двух независимых квазиоднородных продольных полей в левой и правой половинах внутри квадруполя создается параболическое распределение потенциала с минимумом, расположенным недалеко от начала квадруполя.

Программное обеспечение для анализа экспериментальных данных должно включать пакеты программ, реализующие в основных чертах разработанные нами оригинальные методы, описанные ранее [16-20, 29]. Среди этих методов наиболее важными являются:

1. Метод коррекции эффектов насыщения и «мертвого» времени при использовании время-цифрового преобразования для регистрации данных ВПМС [18, 29];

2. Метод выявления экспоненциальных вкладов в затухающий наведенный сигнал от распадающихся ионов [16, стр.192] с нахождением корней характеристического полинома с помощью процедуры, описанной в [20];

3. Метод выявления экспоненциальных вкладов в совокупности кривых ионного тока, развитый ранее для анализа множества эффузиометрических кривых [19].

Существующие методы реализации столкновительной диссоциации ионов или тандемной масс-спектрометрии (МС/МС) предполагают обычно предварительную изоляцию одного типа ионов при потере всех остальных, тем самым требуя использования большого объема исходного образца и больших временных затрат на проведение экспериментов. Одно из исключений представляет собой «многоотражательный» орто-ВПМС А.Н.Веренчикова [21], где из-за значительного увеличения эффективной длины дрейфа ионов и, следовательно, их времени пролета появляется возможность произвести столкновительную диссоциацию не одного, а нескольких типов выбранных ионов, достаточно далеко разнесенных по времени выхода (на время, большее времени дрейфа ионов во вторичном времяпролетном масс-спектрометре). Этот гораздо более технически сложный, чем в нашем случае, подход производит выделение первичных ионов для диссоциации только по m/z.

Определенные возможности для столкновительной диссоциации нескольких типов ионов в одном первичном пакете ионов обеспечивает сочетание спектрометра ионной подвижности (СИП) с ВПМС и особенно для ВПМС с ортогональным вводом ионов.

Shoff и Harden [22] были первыми в использовании СИП-МС в способе, подобном тандемной масс-спектрометрии (МС/МС) для исследования органических соединений. В этом способе спектрометр подвижности используется, чтобы изолировать исходный ион. Масс-спектрометр применяется для анализа ионов фрагментов, которые произведены фрагментацией, индуцированной столкновениями исходных ионов с атомами или молекулами буферного газа. Ниже эта специфическая техника функционирования СИП-МС упоминается как СИП/МС, или как СИП/ВПМС, если масс-спектрометр является времяпролетным масс-спектрометром. Другие предшествующие приборы и методы, использующие последовательный СИП/МС анализ были описаны в работах [23-25], но ни один из них не объединяет инструментальные усовершенствования, предложенные в данном изобретении. Вместе с методами «мягкой» ионизации при использовании источника электронной ионизации с варьированием потока и энергии ионизирующих электронов и повышением чувствительности, полученными с помощью газодинамического интерфейса, раскрытыми здесь, СИП/МС системы и соответствующие методы настоящего изобретения предлагают существенные аналитические преимущества перед предшествующей техникой, особенно для анализа высокомолекулярных соединений, таких как биомолекулы.

Возможный подход, снижающий потери исходных ионов, описан в заявке А.В.Лободы №20070120053 на патент США [26]. В этой заявке предлагается после накопления ионов в квадруполе при давлении буферного газа около 0.1 Торр осуществлять дипольное возбуждение колебаний ионов с выбранным m/z, так чтобы эти ионы в плоскости дипольного возбуждения в среднем достаточно далеко отклонялись от оси квадруполя. Во время такого возбуждения или после его окончания создается линейно изменяющееся вдоль квадруполя постоянное во времени квадрупольное поле. Потенциалы этого поля выбираются такими, чтобы в плоскости возбуждения колебаний выбранных ионов создавать в среднем электрическое поле, двигающее ионы к выходу из квадруполя (на оси квадруполя такое поле равно нулю, а в перпендикулярной плоскости оно двигает ионы в противоположном направлении). В этом случае невозбужденные ионы, имеющие в среднем меньшее отклонение от оси квадруполя в этой плоскости, будут менее подвержены влиянию этого вытягивающего поля. Таким образом, интересующий пакет ионов может быть передвинут в камеру столкновений, а остальные ионы останутся в накопительном квадруполе. После завершения работы с первым пакетом аналогичным образом в камеру столкновений может быть доставлен следующий пакет. Такой подход достаточно интересен и, по-видимому, будет работать. Однако его разрешающая способность должна быть достаточно низкой (вряд ли она будет более 10) по нескольким причинам. Главная из них - это достаточно высокая плотность буферного газа, необходимая для захвата ионов в ловушку. Таким образом, передаваемые в камеру столкновений пакеты ионов будут содержать множество ионов в достаточно широком диапазоне масс, и для проведения столкновительной диссоциации «индивидуальных» ионов все остальные ионы из этого пакета должны быть удалены. Относительно большая плотность газа в радиочастотном мультиполе при накоплении ионов в существующих системах приводит либо к невысокой избирательности ионов при их изоляции, либо требует дополнительного времени на скачивание "лишнего" газа. Другое возможное решение - это создание сложных многотамбурных систем, где функции накопления, изоляции и столкновительной диссоциации выполняются в разных частях системы с сильно различающимися плотностями буферного газа. Такая конструкция приводит к дополнительным потерям ионов и удорожанию приборного комплекса. Именно такое построение и предлагается в только что описанной заявке на патент США [26].

Динамические методы захвата ионов в квадрупольную ловушку, когда обратный выход ионов запирается включением соответствующего потенциала до момента возврата запущенного пакета ионов от точки разворота, позволяют использовать только небольшую часть исходного потока ионов, если последующие манипуляции с ионами требуют относительно большого времени. Исходный поток ионов должен быть заперт на это время, и соответствующие ионы обычно теряются.

Использование резонансного вращательного движения ионов, так же как и их резонансных одномерных колебаний в радиочастотном квадруполе для устранения избыточных ионов, мешающих измерению менее интенсивных аналитических пиков или вызывающих явления насыщения в измерительной системе времяпролетного масс-спектрометра, описано в патентной заявке США №20080149825 Козловского В.И. и др. [27]. В нашем случае аналогичных целей можно добиться путем соответствующей резонансной раскрутки облаков анализируемых ионов, смещенных от оси квадруполя электростатическим полем ионов буферного газа, или включением нерезонансного вращающего поля в накопительной части радиочастотного квадруполя, что позволит повысить избирательность такого устранения при наличии существенного газового потока вдоль оси квадруполя. Резонансная раскрутка вокруг оси квадруполя при сравнительно небольшой напряженности вращающего поля будет уводить анализируемые ионы на стержни квадруполя. Таким образом, при отсутствии заметного влияния объемного заряда ионов возможно контролируемое уменьшение количества выбранных ионов вне газового потока, где давление буферного газа существенно меньше, чем внутри потока, при сохранении этих ионов внутри потока.

Серьезной проблемой сочетания разделения ионов по подвижности с времяпролетным анализатором является обеспечение высокой трансмиссии ионов через дрейфовую трубу в ВПМС. Одно из возможных решений было предложено нами в патенте США №6,992,284 [28], где приведен достаточно подробный обзор работ по разделению ионов по подвижности. В патенте №6,992,284 речь идет об использовании в дрейфовой трубе при давлении буферного газа в несколько Торр последовательности чередующихся участков сильного и слабого полей вместо однородного электрического поля. Это приводит к фокусировке ионов к оси квадруполя и позволяет несколько увеличить общее напряжение вдоль трубы, что благоприятно сказывается на разрешении пакетов ионов по подвижности и позволяет достичь близкой к 100% трансмиссии аналитических ионов вдоль трубы дрейфа. Все же во всех реализованных вариантах разделения ионов по подвижности достаточно высокого разрешения получить не удается. Даже для дрейфа ионов при атмосферном давлении обычно не достигается разрешения более 100 [46].

Расталкивание ионов, накопленных в линейной радиочастотной ловушке, и связанное с этим явление стратификации облаков ионов с различными m/z вокруг оси ловушки, рассматривалось в ряде работ [31,32]. Это явление связано с уменьшением фокусирующей способности эффективного потенциала радиочастотного квадрупольного поля при увеличении m/z ионов. Уравнивание сил электростатического отталкивания ионов с меньшими m/z, сфокусированными вокруг оси квадруполя, с направленным к оси квадруполя сжимающим влиянием квадрупольного радиочастотного поля приводит к образованию относительно узких круговых в поперечном сечении облаков ионов. Расстояние между этими облаками и осью квадруполя возрастает с увеличением m/z ионов, образующих эти облака. При наличии газового потока вдоль оси квадруполя достаточно большая плотность «малых» ионов вокруг оси квадруполя может вытолкнуть из зоны газового потока относительно «большие» анализируемые ионы, тем самым выполнить функцию их нерезонансного вращения, что лежит в основе нашего Патента РФ №2402099 oт 20 октября 2010 г. [33]. Если в случае вращения ионы сфокусированы в плоскости вращения в относительно небольшое пятно, вращающееся вокруг оси квадруполя, то электростатическое расталкивание приводит к более или менее равномерному распределению ионов вдоль некоторой окружности с центром на оси квадруполя. Это даст возможность эффективно работать с большим числом накопленных ионов, чем в случае нерезонансного вращения. Это может быть важным преимуществом при анализе многокомпонентных смесей.

В 1991 году Amirav и Danon (Патент США №5 055 677) [35] описали метод и устройство для анализа образцов, включающего в себя формирование и ввод в вакуумную камеру масс-спектрометра сверхзвукового молекулярного пучка газа-носителя в смеси с образцом материала для анализа, ионизацию материала в сверхзвуковом молекулярном пучке, разделение ионов согласно их отношению массы к заряду m/z и регистрацию разделенных по m/z ионов анализируемого материала. Ионы в сверхзвуковом молекулярном пучке могут быть отфильтрованы от ионов тепловых фоновых молекул и ионов газа носителя после ионизации, но перед регистрацией. Описана система с источником электронной ионизацией и квадрупольным масс-спектрометром. Обсуждены преимущества использования сверхзвукового газового потока или молекулярного пучка для анализа химических веществ как нейтральных примесей к этому газовому потоку. Описано электростатическое зеркало, расположенное под углом 45° к направлению газового потока, для направления ионов ортогонально к потоку газа с отстройкой от присутствующих возбужденных атомов в потоке и предотвращения загрязнения квадрупольного масс-анализатора нейтральными примесями. Зеркало состоит из плоской пластины и параллельной ему сетки. Потенциалы, приложенные к ним, примерно равны по абсолютной величине и противоположны по знаку. В отличие от этого патента в настоящем изобретении мы предполагаем использовать вместо сплошной пластины вторую сетку. Это позволит беспрепятственно пропустить без значительного рассеяния большую часть потока во входную апертуру откачки, что приведет к значительному уменьшению загрязнений электродов масс-анализатора нейтральными примесями в газовом потоке. Еще одно отличие состоит в том, что в зеркале, описанном в упомянутом патенте, отражающее поле создается сежду сеткой и пластиной, тогда как в нашем случае отражающий потенциал подается на первую по отношению к поступающим ионам сетку, и отражение ионов происходит без захода в область между сетками. Это позволит уменьшить дополнительную расходимость отраженных ионов, которая в первом случае может быть значительной из-за ионов, прошедших вблизи проволочек сетки.

Приведенные масс-спектры для одних и тех же соединений, зарегистрированные в обычных условиях и в условиях с охлаждением в сверхзвуковом газовом потоке, ясно демонстрируют значительно лучшее качество данных, полученных для последнего случая - достигается намного меньший уровень химического шума и существенное увеличение интенсивности молекулярных пиков (более чем в 100 раз). Хотя последнее авторы приписывают исключительно охлаждению ионов в сверхзвуковом газовом потоке, кажется очевидным, что, по крайней мере, частично увеличение интенсивности молекулярных пиков по сравнению с масс-спектрами электронной ионизации с энергией 70 эВ можно объяснить перезарядкой ионов гелия с энергией ионизации 24,587 эВ на молекулах анализируемых соединений или ионизацией Пеннинга (при столкновениях с метастабильно возбужденными атомами гелия) в сверхзвуковом газовом потоке.

В дальнейшем практически та же методика со сверхзвуковым газовым потоком использовалась для решения специфических аналитических задач (Amirav и др. Патенты США №7345215 от 18 марта 2008 г. и №7518103 от 14 апреля 2009 г.) [36, 37]. Во всех этих системах использовалась классическая схема формирования сверхзвукового потока (сопло-скиммер) и нигде не предпринималось попыток предварительного разделения ионов или организации их диссоциации, индуцированной столкновениями. Поток ионов из источника электронной ионизации с фиксированной энергией электронов (70 эВ) направлялся непосредственно в квадрупольный масс-спектрометр после отражения от описанного выше электростатического зеркала.

Альтернативное формирование сверхзвукового газового потока с использованием длинного стеклянного капилляра с длиной 180 мм и внутренним диаметром 0,6 мм при сопряжении электроспрейного ионного источника с квадрупольным масс-спектрометром описано Дж.Феном (J.Fenn) в Патенте США №6297499 от 2 октября 2001 г. [38]. Здесь также никакого предварительного разделения или фрагментации ионов перед масс-анализатором не предусматривалось. В нашем случае мы при проведении экспериментальных измерений использовали для формирования сверхзвукового потока металлический капилляр примерно десятикратно меньших длины и площади поперечного сечения, и давление газа в камере на входе в капилляр было существенно ниже атмосферного (более чем в 20 раз).

Альтернативный к столкновительной диссоциации ионов метод электрон-захватной диссоциации [49] в настоящее время реализован фактически только в масс-спектрометрах ионно-циклотронного резонанса, несмотря на предложения использовать высокоэффективные ионные источники электронной ионизации с фокусировкой ионов потоком электронов [50] и фокусировать электроны внутри радиочастотной ловушки магнитным полем [51]. В нашем случае многозарядные ионы биомолекул движутся внутри узконаправленного сверхзвукового газового потока через высокоэффективный ионный источник [52] с энергетическим разбросом электронов, близким к температурному (около 0,1 эВ). Эти ионы не требуют дополнительной фокусировки и, по крайней мере, при наличии достаточно большого числа зарядов и относительно малой энергии электронов должны иметь высокую вероятность захватить электрон и дать ионы-продукты электрон-захватной диссоциации.

Ионные источники этого типа [52] использовались нами ранее и используются до сих пор при проведении кинетических исследований, в частности, при получении высокоточных термохимичесих данных на основе регистрации кривых эффективности ионизации [40]. Для компенсации расталкивания потока электронов, контролируемого задания их энергии в области ионизации и эффективного вывода образующихся ионов в ионном источнике установлено 6 сеток поперек потока электронов. Наличие сеток при малой энергии электронов может иметь еще больший сжимающий эффект, чем для относительно быстрых электронов, поскольку кроме чисто электростатических сил на движущиеся поперек проволочек сетки электроны будет действовать эффективная сила, подобно фокусирующей силе, действующей на ионы в радиочастотном квадруполе. Для ионов этот эффект наблюдался экспериментально [53]. Электроны будут в этом случае выталкиваться в сторону меньшей напряженности поля от проволочек. Сила такого выталкивания обратно пропорциональна энергии электронов. Таким образом, можно ожидать достижения достаточно больших потоков медленных электронов, которые могут создаваться рассматриваемым источником [52] в области ионизации. Проведенные испытания этого источника показали, что токи электронов, более 0,1 мА при средней энергии электронов (потенциале области ионизации), близкой к 0, достигаются и являются вполне стабильными.

В Патенте США №7397029 от 8 июля 2008 г., В.Д.Беркута и В.М.Дорошенко [45], описан способ возбуждения фрагментации ионов метастабильно возбужденными частицами (атомами или молекулами). Выделение исходных ионов производится с помощью первичного масс-спектрометра, при этом они накапливаются в трехмерной или линейной ионной ловушке или движутся в транспортном мультиполе. Предусмотрена возможность дополнительного возбуждения исходных ионов или ионов-продуктов приложением переменного электрического поля с получением вторичных ионов-продуктов за счет столкновительной активации. Все эти получающиеся ионы регистрируются вторичным масс-спектрометром. Метастабильные атомы и молекулы предполагается получать с помощью газового разряда. Их ввод внутрь ионной ловушки предполагается производить по направлению, перпендикулярному оси ловушки.

Действующая система, реализующая такой подход, описана в [44, 45]. Приведены экспериментальные данные, демонстрирующие ожидаемые зависимости интенсивностей потоков исходных ионов и ионов-продуктов взаимодействия с метастабильными атомами благородных газов при изменении времени нахождения исходных ионов в линейной квадрупольной ловушке при воздействии постоянного потока метастабильных атомов.

В нашем случае метастабильные атомы или молекулы получаются в ионном источнике электронной ионизации в сверхзвуковом газовом потоке, и их плотность в потоке и распределение по энергиям возбуждения может регулироваться изменением потока или энергии ионизирующих электронов. Разделение первичных исследуемых ионов производится как по величинам m/z и подвижностей ионов, так и по степени устойчивости к фрагментации «остановленных» в линейной ионной ловушке ионов для выбранных значений энергии ионизирующих электронов. Фрагментация первичных ионов организуется совместным действием с контролируемыми вкладами столкновениями с метастабильными частицами и с атомами и молекулами сверхзвукового потока и остаточного газа. При этом энергия основных компонент газового потока может изменяться заданием температуры капилляра формирования потока. Получение вторичных ионов-продуктов возможно в нашем случае в результате многократных столкновений первичных ионов-продуктов с атомами или молекулами газа при возбуждении резонансного вращения ионов в области вне сверхзвукового потока.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Особенностями одной из возможных реализаций предлагаемых методов являются:

При давлении буферного газа (гелий, аргон, азот, другие газы или смесь газов) порядка нескольких Торр или десятков Торр на входе и менее мТорр на выходе из цилиндрического канала формируется узконаправленный газовый поток. Относительно малая примесь анализируемой пробы в потоке буферного газа транспортируется в виде сфокусированного молекулярного пучка в ионный источник электронной ионизации.

Вторая возможн