Устройство генерирования ионов и электрическое устройство
Иллюстрации
Показать всеИзобретение относится к устройству генерирования ионов и к электрическому устройству, снабженному устройством генерирования ионов. Техническим результатом изобретения является повышение эффективности эмиссии ионов к наружной поверхности устройства. Согласно изобретению устройство генерирования ионов имеет положительную электродную пару и отрицательную электродную пару. Положительная электродная пара и отрицательная электродная пара располагаются в корпусе с зазором между ними таким образом, чтобы индукционный электрод в положительной электродной паре и индукционный электрод в отрицательной электродной паре были отделены друг от друга. Таким образом, обеспечивается возможность получить устройство генерирования ионов и электрическое устройство, способные к эффективной эмиссии, как положительных ионов, так и отрицательных ионов к наружной стороне устройства, и с легкостью достигать уменьшения размера и толщины. 2 н. и 5 з.п. ф-лы, 15 ил.
Реферат
Область техники, к которой относится изобретение
Настоящее изобретение относится к устройству генерирования ионов и электрическому устройству, и в частности относится к устройству генерирования ионов, в котором располагаются модуль генерирования положительных ионов и модуль генерирования отрицательных ионов, и электрическому устройству, снабженному устройством генерирования ионов.
Предшествующий уровень техники
Много устройств генерирования ионов, которые используют явление разряда, были запущены в серийное производство. Эти устройства генерирования ионов обычно конфигурируются с элементом генерирования ионов для генерирования ионов, трансформатором высокого напряжения для подвода высокого напряжения к элементу генерирования ионов, схемой генерирования высокого напряжения для возбуждения трансформатора высокого напряжения и входным блоком питания, таким как соединитель.
Пример коммерциализированных элементов генерирования ионов включает металлический провод, металлическую пластину, имеющую остроугольный участок, иглоподобный металл, или подобное в качестве разрядного электрода, и использует металлическую пластину, сетку, или подобное на потенциале Земли в качестве индукционного электрода (противоэлектрод), или пример, когда используют Землю в качестве индукционного электрода и, в частности, не располагает индукционный электрод. В элементе генерирования ионов этого типа воздух служит изолятором. Этот элемент генерирования ионов использует схему для создания явления разряда, вызывая концентрацию электрического поля на кончике электрода, который имеет остроугольный участок, такой как иглоподобный участок, чтобы выполнять функцию разрядного электрода, при приложении высокого напряжения к электроду и побуждении электрического пробоя воздуха вблизи кончика.
Примером элементов генерирования ионов, которые используют эту схему, является устройство, например, раскрытое в выложенной заявке на патент Японии № 10-199653. В публикации раскрыто устройство, которое включает в себя разрядный электрод, снабженный иглоподобным металлом, и электродом с плоской пластиной с отверстием, обращенным к разрядному электроду, и служит для вывода отрицательных ионов, генерируемых по мере возникновения коронного разряда, за пределы устройства.
Другим примером является устройство, например, раскрытое в выложенной заявке на патент Японии № 8-255668. В публикации раскрыто устройство, которое имеет положительный разрядный электрод, отрицательный разрядный электрод, и заземляющий электрод, расположенный рядом с обоими разрядными электродами, и служит для эмиссии положительных ионов и отрицательных ионов к наружной стороне производящего ионы устройства.
Еще одним примером является устройство, например, раскрытое в выложенной патентной заявке Японии № 2002-374670. В публикации раскрыто устройство генерирования ионов типа, снабженного генерирующим ионы электродом, выполняющим функции разрядного электрода, и не снабженного индукционным электродом.
Патентный документ 1: выложенная патентная заявка Японии № 10-199653
Патентный документ 2: выложенная патентная заявка Японии № 8-255668
Патентный документ 3: выложенная патентная заявка Японии № 2002-374670
Генерируя приблизительно равное количество положительных ионов и отрицательных ионов в воздухе, оба типа ионов окружают грибки и вирусы, плавающие в воздухе, так, чтобы стало возможным устранить плавающие грибки и другие.
Однако устройство, раскрытое в выложенной патентной заявке Японии № 10-199653, предназначается для вывода только отрицательных ионов за пределы устройства, и не предназначено для вывода как положительных ионов, так и отрицательных ионов за пределы устройства.
В устройстве, раскрытом в выложенной патентной заявке Японии № 8-255668, заземляющий электрод, общий для обоих из положительного разрядного электрода и отрицательного разрядного электрода, располагается между этими разрядными электродами. Поэтому, когда расстояние между этими двумя разрядными электродами увеличивается, уменьшение размеров производящего ионы устройства становится затруднительным. В отличие от этого, когда положительный разрядный электрод и отрицательный разрядный электрод располагаются слишком близко, положительные ионы и отрицательные ионы нейтрализуются и рекомбинируются друг с другом, и таким образом не может быть достигнута эффективная ионная эмиссия.
Устройство, раскрытое в выложенной патентной заявке Японии № 2002-374670, предназначено для генерирования любого одного типа из отрицательных ионов и положительных ионов и не предназначено для генерирования и положительных ионов, и отрицательных ионов.
Сущность изобретения
Настоящее изобретение было сделано ввиду вышеописанных проблем.
Задачей настоящего изобретения является обеспечение устройства генерирования ионов и электрического устройства, способных к эффективной эмиссии и положительных ионов и отрицательных ионов к наружной стороне устройства, и с легкостью достигать уменьшения размера и толщины.
Одно устройство генерирования ионов согласно настоящему изобретению включает в себя: модуль генерирования положительных ионов; и модуль генерирования отрицательных ионов. Модуль генерирования положительных ионов включает в себя положительный разрядный электрод и первый индукционный электрод для генерирования положительных ионов между первым индукционным электродом и положительным разрядным электродом. Модуль генерирования отрицательных ионов включает в себя отрицательный разрядный электрод и второй индукционный электрод для генерирования отрицательных ионов между вторым индукционным электродом и отрицательным разрядным электродом. Модуль генерирования положительных ионов и модуль генерирования отрицательных ионов располагаются с зазором между ними, таким образом, чтобы первый индукционный электрод и второй индукционный электрод были отделены друг от друга.
Другое устройство генерирования ионов согласно настоящему изобретению включает в себя: модуль генерирования положительных ионов; и модуль генерирования отрицательных ионов. Модуль генерирования положительных ионов включает в себя положительный разрядный электрод и первый индукционный электрод для генерирования положительных ионов между первым индукционным электродом и положительным разрядным электродом. Модуль генерирования отрицательных ионов включает в себя отрицательный разрядный электрод и второй индукционный электрод для генерирования отрицательных ионов между вторым индукционным электродом и отрицательным разрядным электродом. Модуль генерирования положительных ионов и модуль генерирования отрицательных ионов располагаются с зазором между ними, чтобы первый индукционный электрод и второй индукционный электрод были отделены друг от друга.
Еще одно устройство генерирования ионов согласно настоящему изобретению включает в себя: модуль генерирования положительных ионов и модуль генерирования отрицательных ионов, в кожухе. Модуль генерирования положительных ионов предназначен для генерирования положительных ионов и включает в себя первый индукционный электрод, расположенный таким образом, что положительный разрядный электрод является разряжаемым. Модуль генерирования отрицательных ионов предназначен для генерирования отрицательных ионов и включает в себя второй индукционный электрод, расположенный таким образом, что отрицательный разрядный электрод является разряжаемым. Модуль генерирования положительных ионов и модуль генерирования отрицательных ионов располагаются с зазором между ними, причем зазор предназначен для того, чтобы генерируемые положительные ионы и генерируемые отрицательные ионы не нейтрализовали друг друга.
Следующее устройство генерирования ионов согласно настоящему изобретению включает в себя: модуль генерирования положительных ионов и модуль генерирования отрицательных ионов, в кожухе. Модуль генерирования положительных ионов предназначен для генерирования положительных ионов и располагается таким образом, что положительный разрядный электрод является разряжаемым. Модуль генерирования отрицательных ионов предназначен для генерирования отрицательных ионов и располагается таким образом, что отрицательный разрядный электрод является разряжаемым. Модуль генерирования положительных ионов и модуль генерирования отрицательных ионов располагаются с зазором между ними, при этом зазор предназначен для того, чтобы генерируемые положительные ионы и генерируемые отрицательные ионы не нейтрализовали друг друга.
Согласно каждому из описанных выше четырех устройств генерирования ионов согласно настоящему изобретению, модуль генерирования положительных ионов и модуль генерирования отрицательных ионов располагаются с зазором между ними, так, чтобы модуль генерирования положительных ионов и модуль генерирования отрицательных ионов могли располагаться отдельно друг от друга. Таким образом, является возможным подавлять взаимную нейтрализацию положительных ионов, сгенерированных в модуле генерирования положительных ионов, и отрицательных ионов, сгенерированных в модуле генерирования отрицательных ионов, и таким образом эффективно осуществлять эмиссию и положительных ионов, и отрицательных ионов к наружной стороне устройства.
Дополнительно, модуль генерирования положительных ионов и модуль генерирования отрицательных ионов располагаются с зазором между ними, так, чтобы другая схема и т.п. могла быть расположена в этом зазоре. Следовательно, возможно эффективно располагать соответствующие компоненты, и становится легко достигать уменьшения размера и толщины устройства.
Предпочтительно, вышеописанные устройства генерирования ионов дополнительно включают в себя первую подложку, удерживающую оба из положительного разрядного электрода и первого индукционного электрода, и вторую подложку, удерживающую оба из отрицательного разрядного электрода и второго индукционного электрода. Модуль генерирования положительных ионов и модуль генерирования отрицательных ионов располагаются с зазором между ними, таким образом, чтобы первая подложка и вторая подложка были отделены друг от друга.
По сути, первая подложка и вторая подложка отделены друг от друга, и первый и второй индукционные электроды отделены друг от друга, так что между модулем генерирования положительных ионов и модулем генерирования отрицательных ионов имеется зазор.
Предпочтительно вышеописанные устройства генерирования ионов дополнительно включают в себя схемный модуль, имеющий участок, расположенный в вышеописанном зазоре между модулем генерирования положительных ионов и модулем генерирования отрицательных ионов.
Таким образом, является возможным эффективно использовать неиспользуемый зазор, т.е. зазор между модулем генерирования положительных ионов и модулем генерирования отрицательных ионов, и обеспечивается снижение размера и толщины устройства.
Предпочтительно в вышеописанных устройствах генерирования ионов схемный модуль включает в себя схему генерирования высокого напряжения для приложения напряжения к каждому из модуля генерирования положительных ионов и модуля генерирования отрицательных ионов. По меньшей мере, часть схемы генерирования высокого напряжения располагается в зазоре между модулем генерирования положительных ионов и модулем генерирования отрицательных ионов.
Если проводка, проходящая от схемы генерирования высокого напряжения до каждого из модулей генерирования ионов, является длинной, то в проводке генерируется большая емкость, чтобы значение напряжения, приложенного к модулям генерирования ионов, уменьшалось. Однако, согласно вышеописанному устройству генерирования ионов, схема генерирования высокого напряжения располагается в зазоре между модулем генерирования положительных ионов и модулем генерирования отрицательных ионов так, чтобы было возможно уменьшить длину проводки, проложенную от схемы генерирования высокого напряжения до каждого из модуля генерирования положительных ионов и модуля генерирования отрицательных ионов, и позволить этим проводкам иметь, по мере возможности, одинаковое расстояние. Таким образом, является возможным подавить уменьшение значения напряжения, прикладываемого к каждому из модуля генерирования положительных ионов и модуля генерирования отрицательных ионов, и возможно приложить приблизительно одинаковое напряжение к модулю генерирования положительных ионов и модулю генерирования отрицательных ионов.
Предпочтительно, вышеописанные устройства генерирования ионов дополнительно включают в себя корпус, в котором располагаются модуль генерирования положительных ионов, модуль генерирования отрицательных ионов и схемный модуль. Корпус имеет первую перегородку для изолирования области для расположения модуля генерирования положительных ионов от области для расположения схемного модуля, и вторую перегородку для изолирования области для расположения модуля генерирования отрицательных ионов от каждой из области для расположения модуля генерирования положительных ионов и области для расположения схемного модуля.
Таким образом, возможно сформовать цельный схемный модуль в области для расположения схемного модуля, и также возможно сформовать сторону тыльной поверхности каждого из генерирующих ионы модулей, не формуя участок модулей генерирования ионов, изолированных первой и второй перегородками в областях для расположения модулей генерирования положительных и отрицательных ионов. В связи с этим, существует возможность эффективно отделять участок высокого напряжения устройства генерирования ионов с помощью формовочного состава, т.е. изолировать, чтобы стало возможным располагать соответствующие модули близко, и, следовательно, достигать снижения размера и толщины устройства генерирования ионов.
Предпочтительно, в вышеописанных устройствах генерирования ионов, схемный модуль включает в себя схему подачи питания для предоставления входного напряжения к схеме генерирования высокого напряжения и возбуждения схемы генерирования высокого напряжения. Устройства генерирования ионов дополнительно включают в себя входной разъем электропитания, электрически соединенный со схемой подачи питания. Входной разъем электропитания и, по меньшей мере, часть области для расположения схемы подачи питания в корпусе располагаются на любой из сторон, противоположных вышеописанному зазору относительно модуля генерирования положительных ионов, и стороны, противоположной вышеописанному зазору относительно модуля генерирования отрицательных ионов.
Таким образом, существует возможность располагать входной разъем электропитания, который электрически соединен со схемой подачи питания, отдельно от обеих областей, т.е. области для расположения модуля генерирования положительных ионов и области для расположения модуля генерирования отрицательных ионов. Таким образом, возможно предотвратить воздействие на проводник, обеспечивающий присоединение с входным разъемом электропитания, продувочным воздухом вблизи модулей генерирования ионов.
Предпочтительно, в вышеописанных устройствах генерирования ионов, расстояние между положительным разрядным электродом и отрицательным разрядным электродом составляет 35 мм или более и 115 мм или менее.
Если расстояние составляет меньше чем 35 мм, вероятность того, что положительные ионы и отрицательные ионы нейтрализуются и рекомбинируются друг с другом, увеличивается, и эффективная ионная эмиссия не может быть достигнута. Напротив, если расстояние превышает 115 мм, то устройство генерирования ионов увеличивается в размере, и эта компоновка становится подобной той, как в случае эмиссии однополярных ионов. Эмиссия однополярных ионов вызывает окружения, которые должны быть электрически заряжены.
Предпочтительно, в вышеописанных устройствах генерирования ионов, первый индукционный электрод имеет первое сквозное отверстие в положении, обращенном к кончику положительного разрядного электрода. Второй индукционный электрод имеет второе сквозное отверстие в положении, обращенном к кончику отрицательного разрядного электрода. Отношение расстояния между положительным разрядным электродом и отрицательным разрядным электродом относительно каждого из диаметра первого сквозного отверстия и диаметра второго сквозного отверстия составляет 3 или более и 9,5 или менее.
Автором настоящего изобретения было установлено, что задавая отношение расстояния между положительным разрядным электродом и отрицательным разрядным электродом относительно каждого из диаметра первого сквозного отверстия и диаметра второго сквозного отверстия равным 3 или более и 9,5 или менее, возможно эффективно генерировать и осуществлять эмиссию биполярных ионов, а именно положительных ионов и отрицательных ионов, достигая при этом уменьшения размера и толщины устройства генерирования ионов. Причина может заключаться в следующем.
Если расстояние между положительным разрядным электродом и отрицательным разрядным электродом является столь малым, что вышеописанное отношение меньше чем 3, вероятность того, что положительные ионы и отрицательные ионы нейтрализуются и рекомбинируются увеличивается так, что биполярные ионы, а именно положительные ионы и отрицательные ионы, не могут эффективно генерироваться. Напротив, если каждый из диаметров первого и второго сквозных отверстий является столь большим, что вышеописанное отношение меньше чем 3, расстояние между разрядным электродом и индукционным электродом увеличивается так, что требуемое прикладываемое напряжение становится высоким и размер схемы увеличивается, приводя в результате к увеличенному размеру всего устройства генерирования ионов. Другими словами, невозможно эффективно генерировать ионы, и в то же время достигнуть снижения размера и толщины устройства.
Если расстояние между положительным разрядным электродом и отрицательным разрядным электродом является столь же большим, что вышеописанное отношение превышает 9,5, то расстояние между положительным разрядным электродом и отрицательным разрядным электродом становится чрезмерно длинным, и ширина самого устройства генерирования ионов увеличивается. Следовательно, состояние продувки воздуха ухудшается, и невозможно эффективно осуществлять эмиссию биполярных ионов, а именно положительных ионов и отрицательных ионов к наружной стороне устройства. Кроме того, если вышеописанное расстояние является большим, положительный разрядный электрод и отрицательный разрядный электрод отдаляются друг от друга, и эта компоновка становится подобной той, как в случае эмиссии однополярных ионов, и эмиссия однополярных ионов вызывает заряд окружающих участков. Если каждый из диаметров первого и второго сквозных отверстий столь мал, что вышеописанное отношение превышает 9,5, то диапазон между напряжением начала разряда и напряжением перехода искрового разряда становится малым, что затрудняет установку прикладываемого напряжения, приводя в результате к невозможности эффективной генерации ионов. Более того, сгенерированные ионы осуществляют эмиссию к наружной стороне элементов генерирования ионов через первое и второе сквозные отверстия, и, следовательно, если каждый из диаметров первого и второго сквозных отверстий является столь малым, что вышеописанное отношение превышает 9,5, то эмиссия ионов не будет эффективной к наружной стороне элементов генерирования ионов.
Ввиду соответствия между каждым из диаметров первого и второго отверстий и расстоянием между положительным разрядным электродом и отрицательным разрядным электродом, как описано выше, соответствующее отношение, равное 3 или более и 9,5 или менее, рассматривается как обеспечивающее эффективную генерацию и эмиссию биполярных ионов, а именно положительных ионов и отрицательных ионов, при этом позволяя уменьшить размер и толщину устройства генерирования ионов.
Электрическое устройство в настоящем изобретении включает в себя: любое из вышеописанных устройств генерирования ионов; и модуль продувки воздуха для выпуска и положительных ионов, и отрицательных ионов, сгенерированных в устройстве генерирования ионов, по продуваемому воздушному потоку к наружной стороне электрического устройства.
Согласно электрическому устройству в настоящем изобретении, ионы, сгенерированные в устройстве генерирования ионов, могут быть доставлены на воздушном потоке посредством модуля продувки воздуха, так, чтобы, например, было возможно осуществлять эмиссию ионов к наружной стороне устройства кондиционирования воздуха, и осуществлять эмиссию ионов к внутренней стороне и наружной стороне охлаждающегося устройства.
Как описано выше, согласно настоящему изобретению, существует возможность эффективно осуществлять эмиссию как положительных ионов, так и отрицательных ионов к наружной стороне устройства, и легко достигать уменьшения размера и толщины.
Краткое описание чертежей
На чертежах:
Фиг. 1 изображает схематический вид сверху конфигурации устройства генерирования ионов согласно первому варианту осуществления настоящего изобретения, со стороны нижней поверхности корпуса, и показывает участок нижней плиты корпуса и формовочной смолы в перспективе;
Фиг. 2 изображает схематический вид поперечного сечения, выполненного по линии II-II на Фиг. 1;
Фиг. 3 изображает покомпонентный общий вид, который показывает конфигурацию элемента генерирования ионов, показанного на Фиг. 1 и 2;
Фиг. 4 изображает общий вид в сборе, который показывает конфигурацию элемента генерирования ионов, показанного на Фиг. 1 и 2;
Фиг. 5 изображает функциональную блок-схему устройства генерирования ионов в первом варианте осуществления настоящего изобретения, и показывает, каким образом функциональные элементы электрически соединены;
Фиг. 6 (A) изображает схематический вид сверху, который показывает конфигурацию нижней плиты корпуса в устройстве генерирования ионов в первом варианте осуществления настоящего изобретения;
Фиг. 6 (B) изображает схематический вид поперечного сечения, выполненного по линии VI-VI на Фиг. 6 (A).
Фиг. 7 (A) изображает схематический вид сверху, который показывает конфигурацию, в которой часть нижней плиты корпуса выполнена из электродной крышки, отсоединяемой от нижней плиты;
Фиг. 7 (B) изображает схематический вид поперечного сечения, выполненного по линии VII-VII на Фиг. 7 (A).
Фиг. 8 изображает общий вид, который схематично показывает конфигурацию воздухоочистительного устройства, которое использует устройство генерирования ионов, показанное на Фиг. 1 и 2;
Фиг. 9 изображает покомпонентное изображение воздухоочистительного устройства, показывающее, каким образом устройство генерирования ионов располагается в воздухоочистительном устройстве, показанном на Фиг. 8;
Фиг. 10 изображает схематический вид сверху, который показывает конфигурацию двух элементов генерирования ионов, имеющих расположение полярности отрицательная/положительная/отрицательная/положительная, при этом элементы генерирования ионов подготавливают для исследования отношения между диаметром сквозного отверстия каждого из индукционных электродов и оптимальным расстоянием между положительным разрядным электродом и отрицательным разрядным электродом;
Фиг. 11 изображает схематический вид сверху, который показывает конфигурацию двух элементов генерирования ионов, имеющих расположение полярности отрицательная/отрицательная/положительная/положительная, где элементы генерирования ионов подготавливают для исследования отношения между диаметром сквозного отверстия каждого из индукционных электродов и оптимальным расстоянием между положительным разрядным электродом и отрицательным разрядным электродом;
Фиг. 12 изображает диаграмму, которая показывает отношение между диаметром сквозного отверстия индукционного электрода и расстоянием между положительным разрядным электродом и отрицательным разрядным электродом;
Фиг. 13 изображает схему для описания того, что скорость ветра отличается для соответствующих участков в поперечно-проточном вентиляторе;
Фиг. 14 изображает схематический вид сверху конфигурации устройства генерирования ионов во втором варианте осуществления настоящего изобретения со стороны нижней поверхности корпуса, и показывает участок нижней плиты корпуса и формовочную смолу в перспективе;
Фиг. 15 изображает схематический вид сверху, который показывает, как положительный индукционный электрод и отрицательный индукционный электрод электрически соединяются, со стороны крышки корпуса устройства генерирования ионов, и показывает крышку корпуса и формовочную смолу в перспективе.
Варианты осуществления изобретения
Варианты осуществления настоящего изобретения будут в дальнейшем описаны со ссылками на чертежи.
Первый вариант осуществления
Фиг. 1 изображает схематический вид сверху конфигурации устройства генерирования ионов в первом варианте осуществления настоящего изобретения со стороны нижней поверхности корпуса и показывает участок нижней пластины корпуса и формовочную смолу в перспективе. Фиг. 2 изображает схематический вид поперечного сечения, выполненного по линии II-II на Фиг. 1. Фиг. 3 и 4 изображают покомпонентный общий вид и общий вид в сборе, соответственно, которые показывают конфигурацию элемента генерирования ионов, показанного на Фиг. 1 и 2.
Устройство 30 (фиг. 1) генерирования ионов в настоящем варианте осуществления имеет наружный корпус 21, элемент 10а генерирования ионов для генерирования положительных ионов, элемент 10b генерирования ионов для генерирования отрицательных ионов, трансформатор 11 высокого напряжения, схемы 12a, 12b высокого напряжения, схему 23 подачи питания, и входной разъем 22 электропитания.
Наружный корпус 21 сам по себе имеет первую перегородку 21a и вторую перегородку 21b. Внутренняя часть наружного корпуса 21 делится первой перегородкой 21a и второй перегородкой 21b на область 121A для расположения элемента генерирования положительных ионов, область 121B для расположения элемента генерирования отрицательных ионов и область 121C для расположения схемы генерирования высокого напряжения и т.п.
Область 121A для расположения элемента генерирования положительных ионов располагается на одной концевой стороне (слева на Фиг. 1) в корпусе 21, и область 121B для расположения элемента генерирования отрицательных ионов располагается на другой концевой стороне (справа на Фиг. 1) в корпусе 21. Между областью 121A для расположения элемента генерирования положительных ионов и областью 121B для расположения элемента генерирования отрицательных ионов размещается часть области 121C для расположения схемы генерирования высокого напряжения и т.п.
Элемент 10а генерирования ионов для генерирования положительных ионов располагается в области 121A для расположения элемента генерирования положительных ионов, и элемент 10b генерирования ионов для генерирования отрицательных ионов располагается в области 121B для расположения элемента генерирования отрицательных ионов.
Со ссылкой на Фиг. 3 и 4, элементы 10a, 10b генерирования ионов предназначены для генерирования положительных ионов и отрицательных ионов, соответственно, например, коронным разрядом, и имеют индукционный электрод 1, разрядный электрод 2 и поддерживающую подложку 3.
Индукционный электрод 1 изготавливается из цельной металлической пластины и имеет множество (например, два) круговых сквозных отверстий 1а, предусмотренных на участке плоской пластины, что соответствует количеству разрядных электродов 2. Сквозное отверстие 1а является отверстием для ионной эмиссии, сгенерированной коронным разрядом, к наружной стороне элемента 10а или 10b генерирования ионов. Участок плоской пластины индукционного электрода 1 изготавливается из листового металла с отверстием.
Индукционный электрод 1 имеет отогнутый участок на каждом из противоположных концевых участков, при этом отогнутый участок 1b формируется путем сгибания части металлической пластины приблизительно под прямым углом относительно участка плоской пластины. Отогнутый участок 1b имеет поддерживающий участок большой ширины и вставляемый участок небольшой ширины. Вышеописанный поддерживающий участок имеет один конец, связанный с участком из плоской пластины, и другой конец, связанный с вышеописанным вставляемым участком.
Разрядный электрод 2 имеет иглоподобный кончик. Поддерживающая подложка 3 имеет сквозное отверстие 3a для обеспечения возможности вставления через него разрядного электрода 2, и сквозное отверстие 3b для вставления через него вставляемого участка отогнутого участка 1b.
Иглоподобный разрядный электрод 2 поддерживается поддерживающей подложкой 3 при вставлении или запрессовке его в сквозное отверстие 3a и прохождении сквозь поддерживающую подложку 3. Следовательно, один конец разрядного электрода 2, который является иглоподобным концом, выступает на стороне фронтальной поверхности поддерживающей подложки 3. К другому концу разрядного электрода 2, который выступает на стороне тыльной поверхности поддерживающей подложки 3, возможно электрически подсоединить токоподводящий провод или рисунок разводки с использованием припоя (не показан).
Вставляемый участок индукционного электрода 1 поддерживается поддерживающей подложкой 3 при вставлении его в сквозное отверстие 3b и прохождении сквозь поддерживающую подложку 3. К кончику вставляемого участка, который выступает на стороне тыльной поверхности поддерживающей подложки 3, возможно электрически подсоединить токопроводящий провод или разводки с использованием припоя (не показан). Дополнительно, в состоянии, когда индукционный электрод 1 поддерживается поддерживающей подложкой 3, разрядный электрод 2 располагается таким образом, чтобы его иглоподобный кончик располагался приблизительно в центре кругового сквозного отверстия 1а, как показано на Фиг. 1.
Разрядный электрод 2 в элементе 10а генерирования ионов для генерирования положительных ионов служит в качестве положительного разрядного электрода и взаимодействует с индукционным электродом 1 в элементе 10а генерирования ионов, чтобы сконфигурировать модуль генерирования положительных ионов (положительная электродная пара). Разрядный электрод 2 в элементе 10b генерирования ионов для генерирования отрицательных ионов служит в качестве отрицательного разрядного электрода и взаимодействует с индукционным электродом 1 в элементе 10b генерирования ионов, чтобы сконфигурировать модуль генерирования отрицательных ионов (отрицательная электродная пара).
Дополнительно, общий индукционный электрод 1 предусмотрен для множества разрядных электродов 2 для генерирования ионов одинаковой полярности, а именно положительной полярности или отрицательной полярности. В особенности, в элементе 10а генерирования ионов для генерирования положительных ионов, общий индукционный электрод 1 обеспечивается для двух положительных разрядных электродов 2, например, и индукционный электрод 1 снабжается двумя сквозными отверстиями 1а, в соответствии с количеством положительных разрядных электродов 2. По сути, элемент 10а генерирования ионов для генерирования положительных ионов сконфигурирован с возможностью генерирования положительных ионов в множестве (например, двух) модулей генерирования положительных ионов.
В элементе 10b генерирования ионов для генерирования отрицательных ионов общий индукционный электрод 1 обеспечивается для двух отрицательных разрядных электродов 2, и индукционный электрод 1 снабжается двумя сквозными отверстиями 1а в соответствии с количеством отрицательных разрядных электродов 2. По сути, элемент 10b генерирования ионов для генерирования отрицательных ионов конфигурируется с возможностью генерирования отрицательных ионов в множестве (например, двух) модулей генерирования отрицательных ионов.
Ссылаясь на Фиг. 1, элемент 10а генерирования ионов для генерирования положительных ионов, расположенный в области 121A для расположения элемента генерирования положительных ионов, и элемент 10b генерирования ионов для генерирования отрицательных ионов, расположенный в области 121B для расположения элемента генерирования отрицательных ионов, располагаются в корпусе 21 с зазором между ними. Другими словами, модули генерирования положительных ионов и модули генерирования отрицательных ионов располагаются в корпусе 21 с зазором между ними.
Дополнительно, индукционный электрод 1 в элементе 10а генерирования ионов для генерирования положительных ионов и индукционный электрод 1 в элементе 10b генерирования ионов для генерирования отрицательных ионов (структурно) отделены друг от друга зазором. Кроме того, поддерживающая подложка 3 в элементе 10а генерирования ионов для генерирования положительных ионов и поддерживающая подложка 3 в элементе 10b генерирования ионов для генерирования отрицательных ионов (структурно) отделены друг от друга зазором. Отметим, что индукционный электрод 1 в элементе 10а генерирования ионов для генерирования положительных ионов и индукционный электрод 1 в элементе 10b генерирования ионов для генерирования отрицательных ионов могут быть электрически соединены друг с другом таким образом, чтобы они находились под одинаковым потенциалом.
Трансформатор 11 высокого напряжения, схемы 12a, 12b высокого напряжения, схема 23 подачи питания и входной разъем 22 электропитания располагаются в области 121C для расположения схемы генерирования высокого напряжения и т.п. Обе из схемы 12а положительного высокого напряжения и схемы 12b отрицательного высокого напряжения поддерживаются на одной и той же подложке 14. Схема 12a положительного высокого напряжения располагается в корпусе 21 на одной концевой стороне (слева на Фиг. 1) таким образом, чтобы она граничила с элементом 10а генерирования ионов для генерирования положительных ионов. Схема 12b отрицательного высокого напряжения располагается в корпусе 21 на другой концевой стороне (справа на Фиг. 1) таким образом, чтобы она граничила с элементом 10b генерирования ионов для генерирования отрицательных ионов. Часть подложки 14, поддерживающая схемы 12a, 12b высокого напряжения, располагается между областью 121А для расположения элемента генерирования положительных ионов и областью 121B для расположения элемента генерирования отрицательных ионов.
Трансформатор 11 высокого напряжения, схема 23 подачи питания и входной разъем 22 электропитания дополнительно располагаются между областью 121A для расположения элемента генерирования положительных ионов и областью 121B для расположения элемента генерирования отрицательных ионов. В частности, входной разъем 22 электропитания располагается приблизительно в центре между областью 121A для расположения элемента генерирования положительных ионов и областью 121B для расположения элемента генерирования отрицательных ионов. Трансформатор 11 высокого напряжения и схемы 12a, 12b высокого напряжения, как описано выше, конфигурируют схему 20 генерирования высокого напряжения. Схема 20 генерирования высокого напряжения и схема 23 подачи питания конфигурирует схемный модуль.
В планарной топологии (расположение на плоскости) на Фиг. 1 расположение элемента 10a генерирования ионов/схемного модуля/элемента 10b генерирования ионов принимается слева направо на Фиг. 1.
Со ссылкой на Фиг. 2, корпус 21 представляет собой корпус коробчатого типа, имеющий внутри полость. В полости в корпусе 21 располагаются элементы 10а, 10b генерирования ионов, трансформатор 11 высокого напряжения, схемы 12a, 12b высокого напряжения, схема 23 подачи питания и входной разъем 22 электропитания. После того как крышка 24 прикрепляется, в нее заливают формовочную смолу 31.
Корпус 21 имеет отверстие 21d для ионной эмиссии, например, на нижней пластине коробчатого типа. Каждый из элементов 10а, 10b генерирова