Способ и устройство для повторного использования частот в системе связи с множеством несущих

Иллюстрации

Показать все

Изобретение относится к беспроводной связи. Описаны система и способы, которые облегчают оценку условий узлов (например, точек доступа, терминалов доступа и т.д.) в среде беспроводной связи, имеющей множество несущих для определения степени невыгодности для заданного узла относительно других узлов. Узел может передавать сообщение использования ресурсов (RUM), которое представляет степень невыгодности для узла, и запрашивать другие мешающие узлы для возврата к одной или более несущих. Это позволило бы многократно использовать частоты, если узлы изменяют мощность передачи для конкретных несущих, в сочетании с соседними узлами. Техническим результатом является снижение помех и улучшение пропускной способности в среде беспроводной связи. 6 н. и 15 з.п. ф-лы, 19 ил.

Реферат

Область техники

Последующее описание относится в общем к беспроводной связи, более конкретно к уменьшению помех и улучшению пропускной способности и качества канала в среде беспроводной связи.

Уровень техники

Системы беспроводной связи стали преобладающим средством, с помощью которого большинство людей по всему миру общаются друг с другом. Устройства беспроводной связи стали миниатюрнее и более мощными, чтобы удовлетворять потребительские нужды и улучшать портативность и удобство. Увеличение в мощности обработки в мобильных устройствах, например сотовых телефонах, привело к увеличению потребностей в системах передачи в беспроводных сетях. Подобные системы типично не так легко обновляются, как сотовые устройства, которые осуществляют в них связь. Так как возможности мобильных устройств расширяются, может быть сложным поддерживать устаревшую систему беспроводных сетей способом, который обеспечивает полное использование новых и улучшенных возможностей беспроводных устройств.

Типичная сеть беспроводной связи (например, использующая методы с частотным, временным и кодовым разделением) включает в себя одну или более базовых станций, которые предоставляют зону покрытия и один или более мобильных (например, беспроводных) терминалов, которые могут передавать и принимать данные в зоне покрытия. Типичная базовая станция может одновременно передавать множество потоков данных для услуг широковещательной передачи, групповой передачи и/или одноадресной передачи, при этом поток данных является потоком данных, которые могут представлять независимый интерес при приеме на мобильный терминал. Мобильный терминал в зоне покрытия этой базовой станции может быть заинтересован в приеме одного, больше одного или всех потоков данных, передаваемых составным потоком. Аналогично мобильный терминал может передавать данные в базовую станцию или другой мобильный терминал. Подобная коммуникация между базовой станцией и мобильным терминалом или между мобильными терминалами может ухудшаться из-за изменений канала и/или изменений мощности помех. Соответственно, в технике существует потребность в системах и/или способах, которые способствуют снижению помех и улучшают пропускную способность в среде беспроводной связи.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Последующее представляет упрощенную сущность изобретения одного или более аспектов, чтобы обеспечить базовое понимание подобных аспектов. Это краткое изложение не является исчерпывающим обзором всех рассматриваемых аспектов и не имеет намерением ни идентифицировать ключевые или критические элементы всех его аспектов, ни установить границы объема каких-либо или всех его аспектов. Его единственная цель - представить некоторые понятия одного или более аспектов в упрощенной форме в качестве вступления к более подробному описанию, которое представлено далее.

Согласно различным аспектам, сущность изобретения относится к системам и/или способам, которые предоставляют единую технологию для глобальных и локальных сетей беспроводной связи для того, чтобы облегчить достижение преимуществ, ассоциируемых и с сотовыми, и с Wi-Fi-технологиями, наряду с тем, что смягчают недостатки, ассоциируемые с ними. Например, сотовые сети могут быть выполнены в соответствии с планируемым развертыванием, которое может повысить эффективность во время проектирования или создания сети, наряду с тем, что сети Wi-Fi типично используются более удобным специальным (ad hoc) образом. Сети Wi-Fi могут дополнительно облегчать предоставление симметричного MAC-канала (управление доступом к среде передачи) для точек доступа и терминалов доступа, а также обратной поддержки с беспроводными возможностями в полосе, которые не предусмотрены сотовыми системами.

Единые технологии, описанные в данном документе, облегчают развертывание сети гибким образом. Способы, описанные в этом изобретении, позволяют адаптацию рабочих характеристик в соответствии с развертыванием, таким образом, предоставляя высокую эффективность, если развертывание является планируемым или наполовину планируемым, и предоставляя адекватную надежность, если сеть не планируется. То есть, различные аспекты, описанные в данном документе, допускают развертывание сети с использованием планируемого развертывания (например, в качестве сценария сотового развертывания), ad hoc развертывания (например, которое может применяться для развертывания сетей Wi-Fi) или их комбинации. Кроме того, другие аспекты относятся к поддержке узлов с изменяющимися уровнями мощности передачи и достижению межсотового равноправия в отношении распределения ресурсов, причем эти аспекты неадекватно поддерживаются Wi-Fi или сотовыми системами.

Например, согласно некоторым аспектам, взвешенное равноправное совместное использование набора беспроводных несущих может облегчаться с помощью объединенного планирования передачи как передатчиком, так и приемником, используя сообщение использования ресурсов (RUM), при этом передатчик запрашивает набор ресурсов на основе знания доступности в его соседстве, и приемник предоставляет подмножество запрашиваемых несущих на основе знания доступности в его соседстве. Передатчик анализирует доступность на основе прослушивания приемников в его окрестности и приемник анализирует потенциальные помехи путем прослушивания передатчиков в его окрестности. Согласно связанным аспектам, RUM могут быть взвешены для указания не только того, что узел, который принимает передачи данных, находится в невыгодном положении (из-за помех, которые он воспринимает во время приема) и желает режима передачи с исключением столкновений, но также степени, в которой узел находится в невыгодном положении. Узел, принимающий RUM, может использовать тот факт, что он принял RUM, а также его вес, чтобы определить подходящий ответ. В качестве примера, подобное объявление весов дает возможность исключить столкновения равноправным образом. Настоящее раскрытие описывает подобную методологию.

Согласно связанному аспекту, узел, передающий RUM, может указывать свою степень невыгодности с помощью указания числа несущих, для которых используется RUM, так что число несущих (в общем, это могут быть ресурсы, каналы, частотные несущие/поднесущие и/или временные интервалы) указывает на степень невыгодности. Если степень невыгодности уменьшается в ответ на RUM, тогда число несущих, для которых отсылается RUM, может уменьшаться для последующей передачи RUM. Если степень невыгодности не уменьшается, тогда число каналов, для которых используется RUM, может увеличиваться для последующей передачи RUM.

RUM может отсылаться при постоянной спектральной плотности мощности (PSD), и принимающий узел может использовать принятую спектральную плотность мощности и/или принятую мощность RUM для оценки коэффициента усиления РЧ-канала (RF-канала) между ним и узлом, передающим RUM, для определения, вызовет ли он помехи в передающем узле (например, вышеупомянутый заранее определенный принятый уровень предельной величины), если он передает. Таким образом, могут быть ситуации, когда узел, принимающий RUM, может декодировать RUM от узла, передающего RUM, но определяет, что узел, принимающий RUM, не вызовет помех. Когда узел, принимающий RUM, определяет, что он должен подчиниться RUM, он может выполнить это, выбирая полный «откат» (снижение нагрузки) с этого ресурса полностью, либо выбирая использование достаточно уменьшенной мощности передачи, что устанавливает его оцениваемый потенциальный уровень помех ниже заранее определенного приемлемого порогового уровня. Таким образом, как "жесткое" исключение помех (полный откат), так и "мягкое" исключение помех (управление мощностью) поддерживаются единым образом. Согласно связанному аспекту, RUM может использоваться принимающим узлом для определения коэффициента усиления канала между принимающим узлом и узлом, передающим RUM, чтобы облегчить определение того, передавать ли или нет на основе оцениваемых помех, обусловленных передающим узлом.

В подходе исключения помех путем управления мощностью узлы, например, точки доступа могут быть упорядочены так, чтобы использовать тот же набор несущих для обслуживания ассоциированных узлов, например, терминалов доступа, близких к ним, с низкой мощностью передачи. Остальные несущие используются с более высокой мощностью передачи и могут использоваться как удаленными, так и близкими ассоциированными узлами. Для того чтобы минимизировать помехи несущих с высокой мощностью для клиентов соседних узлов, например, точек доступа, соты, содержащие узел и его ассоциированные узлы, дополнительно упорядочиваются таким образом, чтобы две смежные соты не использовали те же самые несущие с высокой мощностью. Таким образом, удаленные ассоциированные терминалы узла не воспринимают несущие с высокой мощностью соседних узлов как помехи. Этот подход также упоминается как подход с гибким диапазоном частот либо подход с гибким диапазоном.

Согласно аспекту, способ для передачи данных может включать в себя прием, по меньшей мере, одного RUM, связанного с множеством ресурсов; определение профиля передачи для, по меньшей мере, одного ресурса из множества ресурсов на основе, по меньшей мере, одного RUM; и планирование передачи на, по меньшей мере, одном ресурсе на основе профиля передачи.

Другой аспект относится к устройству для передачи данных, содержащему средство для приема, по меньшей мере, одного RUM, связанного с множеством ресурсов; средство для определения профиля передачи для, по меньшей мере, одного ресурса из множества ресурсов на основе, по меньшей мере, одного RUM; и средство для планирования передачи на, по меньшей мере, одном ресурсе на основе профиля передачи.

Другой аспект относится к точке доступа, которая имеет антенну и систему обработки, связанную с антенной. Система обработки конфигурирована для приема, по меньшей мере, одного RUM, связанного с множеством ресурсов, через антенну; определения профиля передачи для, по меньшей мере, одного ресурса из множества ресурсов на основе, по меньшей мере, одного RUM; и планирования передачи на, по меньшей мере, одном ресурсе на основе профиля передачи.

Другой аспект относится к терминалу доступа, который имеет преобразователь и систему обработки, соединенную с преобразователем. Система обработки конфигурирована для приема, по меньшей мере, одного RUM, связанного с множеством ресурсов, используемых для передачи данных, используемых преобразователем; определения профиля передачи для, по меньшей мере, одного ресурса из множества ресурсов на основе, по меньшей мере, одного RUM; и планирования передачи на, по меньшей мере, одном ресурсе на основе профиля передачи.

Другой аспект относится к компьютерному программному продукту для передачи данных, который имеет машиночитаемый носитель, имеющий исполняемые коды для приема, по меньшей мере, одного RUM, связанного с множеством ресурсов; определения профиля передачи для, по меньшей мере, одного ресурса из множества ресурсов на основе, по меньшей мере, одного RUM; и планирования передачи на, по меньшей мере, одном ресурсе на основе профиля передачи.

Другой аспект относится к устройству для передачи данных, которое имеет систему обработки. Система обработки конфигурирована для приема, по меньшей мере, одного RUM, связанного с множеством ресурсов; определения профиля передачи для, по меньшей мере, одного ресурса из множества ресурсов на основе, по меньшей мере, одного RUM; и планирования передачи на, по меньшей мере, одному ресурсе на основе профиля передачи.

Для достижения вышеизложенных и связанных целей, один или более аспектов содержат признаки, описанные полностью в дальнейшем в данном документе и конкретно указанные в формуле изобретения. Последующее описание и прилагаемые чертежи подробно излагают определенные иллюстративные аспекты одного или более аспектов. Эти аспекты, тем не менее, указывают только на некоторые из множества способов, в которых могут быть использованы принципы различных аспектов, и описанные аспекты предназначены, чтобы включать в себя все подобные аспекты и их эквиваленты.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг. 1 является схемой сети примерной системы беспроводной связи с многочисленными точками доступа и многочисленными терминалами доступа, которые могут быть использованы в сочетании с одним или более аспектами методологии для управления помехами с использованием сообщения использования ресурсов (RUM).

Фиг. 2 является схемой процесса для последовательности событий запроса-предоставления, которые могут облегчать назначение ресурсов согласно одному или более аспектам, описанным в данном документе.

Фиг. 3 является блок-схемой примерной методологии для создания RUM.

Фиг. 4 является схемой отображения маски несущей на несущую для использования в RUM в системе с множеством несущих в соответствии с одним или более аспектами.

Фиг. 5 является иллюстрацией методологии для реализации системы с гибким диапазоном, использующей псевдослучайные маски несущей в соответствии с одним или более аспектами.

Фиг. 6 является иллюстрацией методологии для создания динамического обучения/корректировки масок несущих соседствующих базовых станций в соответствии с одним или более аспектами.

Фиг. 7 является иллюстрацией методологии для терминала доступа при запросе диапазона частот от точки доступа на основе принятых RUM, в соответствии с одним или более аспектами.

Фиг. 8 является иллюстрацией последовательности масок несущих, созданных на основе одного или более принятых RUM, в соответствии с одним или более аспектами.

Фиг. 9 является иллюстрацией методологии для определения числа и выбора несущих, которые должны быть запрошены как часть запроса для передачи терминалом доступа в точку доступа, а также определения числа и выбора несущих, которые должны быть предоставлены как часть предоставления на запрос точкой доступа в терминал доступа.

Фиг. 10 является блок-схемой, которая иллюстрирует процесс создания маски несущей, который основан на списке приоритетов масок псевдослучайных несущих.

Фиг. 11 является схемой для иллюстрации работы процесса выбора псевдослучайной несущей фиг. 10.

Фиг. 12 является блок-схемой, иллюстрирующей процесс создания маски несущей, который основан на списке приоритетов масок несущих, приоритизированном с использованием измерений помех над тепловым шумом.

Фиг. 13 является блок-схемой, которая иллюстрирует процесс регулирования мощности, который основан на оценке узлом несущих, на которых мешающие узлы вызовут наименьшие/наибольшие помехи.

Фиг. 14 является блок-схемой, которая иллюстрирует создание маски несущей на основе процесса выбора несущей фиг. 13.

Фиг. 15 является иллюстрацией методологии для формирования предоставления для запроса на передачу согласно одному или более аспектам.

Фиг. 16 является иллюстрацией среды беспроводной сети, которая может использоваться в связи с различными системами и способами, описанными в данном документе.

Фиг. 17 является иллюстрацией устройства, которое способствует беспроводной передаче данных согласно различным аспектам.

Фиг. 18 является иллюстрацией устройства, которое способствует беспроводной связи с использованием RUM согласно одному или более аспектам.

Фиг. 19 является иллюстрацией устройства, которое способствует планированию передачи на основе профиля передачи.

ПОДРОБНОЕ ОПИСАНИЕ

Различные аспекты изобретения описаны ниже. Должно быть очевидно, что представленные решения могут быть реализованы в разнообразии форм и что любая определенная структура и или функция, раскрытые в данном документе, являются лишь представительными. На основе раскрытых решений специалист в данной области техники примет во внимание, что аспект, раскрытый в данном документе, может быть реализован независимо от каких-либо других аспектов и что два или более из этих аспектов могут быть объединены различными способами. Например, устройство может быть реализовано и/или способ может быть осуществлен на практике, используя любое число аспектов, изложенных в данном документе. В дополнение, подобное устройство может быть реализовано, либо подобный способ может быть осуществлен на практике, используя другую структуру, функциональные возможности либо структуру и функциональные возможности в дополнение или отличающиеся от одного или более из аспектов, изложенных в данном документе. Кроме того, аспект может содержать, по меньшей мере, один элемент формулы изобретения.

Слово "примерный" используется в данном документе для обозначения "служащий в качестве примера, экземпляра или иллюстрации". Любой аспект, описанный в данном документе как "примерный", необязательно должен быть истолкован как предпочтительный или преимущественный над другими аспектами. Более того, ссылки на список элементов, содержащий "по меньшей мере один из А, В и С", должен быть интерпретирован для ссылки на каждый из элементов А, В и С отдельно, а также любые сочетания из элементов А, В и С. Кроме того, также описание использует сеть, которая включает в себя стандарт IEEE 802.11, сети, которые используют другие протоколы, могут извлекать преимущество из различных методов и систем, раскрытых в данном документе.

Понятно, что "узел", как используется в данном документе, может быть терминалом доступа или точкой доступа, и каждый узел может быть принимающим узлом, а также передающим узлом. Например, каждый узел может содержать, по меньшей мере, одну приемную антенну и связанный приемный тракт, а также, по меньшей мере, одну передающую антенну и связанный тракт передачи. Более того, каждый узел может содержать один или более процессоров для выполнения программного кода для осуществления любого и всех способов и/или протоколов, описанных в данном документе, а также память для хранения данных и/или машиноисполняемых команд, ассоциируемых с различными способами и/или протоколами, описанными в данном документе.

Фиг. 1 иллюстрирует несколько выборочных аспектов системы 100 беспроводной связи. Система 100 включает в себя несколько беспроводных узлов, в целом обозначенных как узлы 102 и 104. Указанный узел может принимать и/или передавать один или более потоков трафика (например, потоки данных). Например, каждый узел может содержать, по меньшей мере, одну антенну и ассоциированные компоненты приемника и передатчика. В последующем пояснении термин «принимающий узел» может использоваться для ссылки на узел, который принимает, и термин «передающий узел» может использоваться для ссылки на узел, который передает. Подобная ссылка не подразумевает, что узел неспособен осуществлять как операции передачи, так и операции приема.

Узел может быть реализован различными способами. Например, в некоторых вариантах осуществления узел может содержать терминал доступа, точку ретрансляции или точку доступа. Ссылаясь на фиг. 1, узлы 102 могут содержать точки доступа либо точки ретрансляции, и узлы 104 могут содержать терминалы доступа. В некоторых вариантах осуществления узлы 102 облегчают связь между узлами сети (например, сеть Wi-Fi, сотовая сеть связи, либо сеть WiMAX). Например, когда терминал доступа (например, терминал 104А доступа) находится в зоне покрытия точки доступа (например, точка 102А доступа) либо точки ретрансляции, терминал 104А доступа может таким образом взаимодействовать с другим устройством системы 100 либо какой-либо другой сети, которая соединена для осуществления связи с системой 100. В данном документе один или более из узлов (например, узлы 102В и 102D) могут содержать проводную точку доступа, которая предусматривает возможность соединения с другой сетью либо сетями (например, глобальная сеть 108, например, Интернет).

В некоторых аспектах два или более узлов системы 100 (например, узлы набора общих независимых служб) ассоциируются друг с другом для создания потоков трафика между узлами через один или более каналов связи. Например, узлы 104А и 104В могут ассоциироваться друг с другом через соответствующие точки 102А и 102С доступа. Таким образом, один или более потоков трафика могут быть созданы к и от терминала 104А доступа через точку 102А доступа и один или более потоков трафика могут быть созданы к и от терминала 104В доступа через точку 102С доступа.

В некоторых случаях несколько узлов в системе 100 могут пытаться передавать в то же самое время (например, в течение того же самого интервала времени). В зависимости от относительных положений передающего и принимающего узлов и мощности передачи передающих узлов, может оказаться невозможным надежно осуществлять подобную параллельную связь. При этих обстоятельствах беспроводные ресурсы системы 100 могут достаточно использоваться в сравнении с, например, системой, которая просто использует CSMA-режим работы ("множественный доступ с контролем несущей").

Однако в других обстоятельствах беспроводные передачи от узла в системе 100 могут являться помехой приему в неассоциированном узле в системе 100. Например, узел 104В может быть принимающим от узла 102С (как представлено символом 106А беспроводной связи), в то время как узел 102D передает в узел 104С (как представлено символом 106В). В зависимости от расстояния между узлами 104В и 102D и мощности передачи узла 102В, передачи от узла 102D (как представлено пунктирным символом 106С) могут являться помехой приему в узле 104В. Аналогичным образом, передачи от узла 104В могут являться помехой приему в узле 102D в зависимости от мощности передачи узла 104В.

Для уменьшения подобных помех, узлы системы беспроводной связи могут использовать схему обмена сообщениями между узлами. Например, принимающий узел, который испытывает помехи, может передавать RUM (сообщение использования ресурсов) для обозначения, что узел находится в невыгодном положении каким-либо образом. Соседний узел, который может быть потенциальным источником помех, который принимает RUM, может выбирать ограничение своих будущих передач каким-либо образом, чтобы избежать помех с узлом, передающим RUM - то есть, принимающим узлом, который передал RUM. В данном документе решение принимающим узлом о передаче RUM может быть основано, по меньшей мере, частично, на качестве услуги, ассоциированной с данными, принятыми в этом узле.

Сообщения запроса, сообщения предоставления и передачи данных могут быть управляемыми по мощности; однако, несмотря на это, узел может испытывать избыточные помехи, которые вызывают неприемлемые уровни отношения "сигнал-шум плюс взаимные помехи" (SINR). Для того чтобы смягчить нежелательно низкое SINR, могут использоваться RUM. RUM может широковещательно передаваться приемником, когда уровни помех на желательных несущих приемника превышают заранее определенный пороговый уровень. Как рассмотрено в данном документе, в аспекте развертывания RUM, RUM передается принимающим узлом, когда он не может выполнить требования качества обслуживания (QoS). Требования QoS могут быть заранее определены и могут выражаться в виде пропускной способности (например, для полного трафика буфера), задержки (например, для голосового трафика), средней спектральной эффективности, минимального отношения мощности несущей к помехе (C/I), либо других соответствующих показателей. RUM инкапсулирует вес, который обозначает степень невыгодности, с которой сталкивается узел, который передает RUM. Другими словами, в аспекте использования веса, степень невыгодности является функцией QoS узла и его требуемого QoS. Этот вес RUM может квантоваться, используя заранее определенное число битов.

"Невыгодность", как используется в данном документе, может определяться как функция, например, отношения целевого значения к фактическому значению для заданного узла. Например, когда невыгодность измеряется как функция пропускной способности, спектральной эффективности, скорости передачи данных или некоторого другого параметра, где желательны более высокие значения, то когда узел находится в невыгодном положении, фактическое значение будет относительно ниже, чем целевое значение. В подобных случаях взвешенное значение, которое указывает на уровень невыгодного положения узла, может быть функцией отношения целевого значения к фактическому значению. В случаях, когда желательно, чтобы параметр, на котором основывается невыгодность, был низким (например, задержка), обратное отношение целевого значения к фактическому значению может использоваться для формирования веса. Как используется в данном документе, узел, который описан, как имеющий "лучшее" состояние относительно другого узла, может трактоваться как имеющий меньшую степень невыгодности (например, узел с лучшим состоянием имеет меньшие помехи, меньшую задержку, более высокую скорость передачи данных, более высокую производительность, более высокую спектральную эффективность и т.д., чем другой узел, с которым он сравнивается).

Используя RUM, принимающий узел (например, точка доступа) может блокировать мешающие узлы, которые вызывают слишком много помех. Другими словами, принимающий узел может запрашивать другие узлы из передачи на несущей. В схемах сети, где диапазон частот содержит только одну несущую, когда RUM отсылается принимающим узлом, весь диапазон частот блокируется для предназначенного ему терминала доступа. В системе связи с множеством несущих, в которой доступный диапазон частот разделяется на отдельные части, каждая из которых упоминается как несущая либо канал, только определенные несущие могут блокироваться, так что принимающий узел может еще достичь своей желательной пропускной способности, при ограничении воздействия на остальную систему.

Например, доступный диапазон частот в системе связи с множеством несущих может разделяться на четыре (4) несущих. Каждый передающий узел может затем планироваться для передачи на одной (1) или более несущих, таким образом разрешая лучшее совместное использования ресурсов. Для того чтобы гарантировать, что исключение помех происходит равноправным образом, то есть, чтобы гарантировать, что все узлы получают равноправное совместное использование возможностей передачи, RUM может содержать перечень несущих, на которых принимающему узлу желательно снижение помех, а также вышеупомянутую информацию о весах, как описано в данном документе. Вес заданного принимающего узла может использоваться для вычисления равноправного совместного использования ресурсов для выделения узлу.

Фиг. 2 иллюстрирует примерную последовательность 200 событий запрос-предоставление, которая включает в себя использование RUM для облегчения выделения ресурсов, согласно одному или более аспектам, описанным в данном документе. В примере, показанном на чертеже, ассоциированная пара узлов 290 включает в себя терминал 292 доступа и первую точку 1 294 доступа, а также вторую точку 2 296 доступа, которая является неассоциированной с ассоциированной парой узлов 290.

Последовательность 200 начинается с 204 и 206, во время которой точка 1 294 доступа и точка 2 296 доступа, каждая формирует RUM для трансляции в другие узлы, включая терминал 292 доступа. RUM включает в себя вес, который обозначает, как существуют точки доступа в невыгодном положении, а также какие несущие, по которым точка доступа желает блокировать передачу других узлов, как дополнительно описано в данном документе со ссылкой на фиг. 3.

На 212 точка 1 294 доступа и точка 2 296 доступа транслирует свое соответствующее RUM в узлы, например, терминал 292 доступа.

В 222 терминал 292 доступа обрабатывает все RUM, принятые на 212. Обработка RUM, которая осуществляется терминалом 292 доступа, описана в данном документе со ссылкой на фиг. 7.

На 232, если терминал 292 доступа определяет, что существуют несущие, доступные после обработки принятых RUM, тогда он определит несущие, для которых он желает отправить запрос на передачу от точки 1 294 доступа в 242.

На 252 запрос на передачу отсылается из терминала 292 доступа в точку 1 294 доступа. Запрос может включать в себя перечень несущих, на которых терминал 292 доступа хотел бы передать данные. Последовательность событий 200 может осуществляться с учетом множества ограничений, которые могут принудительно применяться во время события связи. Например, терминал 292 доступа может запрашивать любую несущую(ие), которые не блокированы с помощью RUM в предыдущем временном интервале. Запрошенные несущие могут быть расположены в приоритетном порядке с предпочтением для успешной несущей в самом последнем цикле передачи.

На 264 точка 1 294 доступа определяет несущие, которым она предоставит терминал 292 доступа для передачи на основе запроса, принятого от терминала 292 доступа. Предоставление включает в себя все или подмножество запрошенных несущих. Таким образом, предоставление от точки 1 294 доступа может быть подмножеством несущих, перечисленных в запросе, отсылаемом терминалом 292 доступа. Точка 1 294 доступа может быть наделена полномочием, чтобы избегать несущих, которые показывают высокие уровни помех во время самой последней передачи.

На 272 точка 1 294 доступа может затем отсылать сообщение предоставления в терминал 292 доступа, которое указывает, что всем или подмножеству запрошенных несущих предоставлено разрешение.

На 282 терминал 292 доступа может затем передавать пилотное сообщение в точку 1 294 доступа, при приеме которого точка 1 294 доступа может передавать информацию о скорости обратно в терминал 292 доступа, чтобы способствовать снижению нежелательно низкого SINR. При приеме информации о скорости терминал доступа 292 может продолжить передачу данных на предоставленных несущих и при указанной скорости передачи. Во время передачи терминал 292 доступа дополнительно может отсылать данные на всех или подмножестве несущих, предоставленных в сообщении предоставления. Терминал 292 доступа может снижать мощность передачи на некоторых или всех несущих во время своей передачи данных.

Фиг. 3 является иллюстрацией методологии 300 для формирования RUM в системе с множеством несущих в соответствии с различными аспектами, описанными выше. Метод для достижения равноправия среди соперничающих узлов осуществляется с помощью корректировки числа несущих, для которых необходимо передать RUM согласно степени невыгодности, ассоциированной с указанным узлом, в соответствии с одним или более аспектами. Как описано в данном документе, RUM передается принимающим узлом, например, точкой доступа для указания, что она испытывает плохие условия связи и желает снижения помех, с которыми сталкивается. RUM включает в себя вес, который измеряет степень невыгодности, которую испытывает узел. Согласно аспекту, вес может быть задан как функция пороговой величины, упоминаемая как пороговая величина отправки RUM (RST). В другом аспекте, вес может быть установлен на среднюю пропускную способность. В данном документе, RST является средней пропускной способностью, которая желательна узлу. Когда передающий узел, например, терминал доступа прослушивает многочисленные RUM, он может использовать соответствующие веса для разрешения состязания между ними. Если, например, терминал доступа принимает многочисленные RUM и RUM с наивысшим весом, исходящий из собственной точки доступа терминала доступа, то он может решить передать запрос на отправку данных в свою точку доступа. Если нет, терминал доступа может удерживаться от передачи.

RUM позволяет точке доступа очистить помехи в своем непосредственном соседстве, так как узлы, которые принимают RUM, могут побуждаться удерживаться от передачи. Наряду с тем, что веса дают возможность равноправного состязания (например, точка доступа с наибольшим невыгодным положением выигрывает), наличие МАС с несколькими несущими может предоставить другую степень свободы. А именно, когда система поддерживает многочисленные несущие, RUM может передавать CM (например, битовую маску) в дополнение к весу. CM указывает несущие, на которых это RUM является применимым. Число каналов, для которых точка доступа может отсылать RUM, может быть основано на его собственной степени невыгодности, чтобы позволить узлам с очень плохой историей быстрее вызывать изменения. Когда RUM являются успешными, и скорость передачи, принятая в ответ на это точкой доступа, улучшает ее состояние, точка доступа может снижать число несущих, для которых она отсылает RUM. Если из-за сильной перегрузки RUM первоначально не имеют успеха и пропускная способность не улучшается, точка доступа может увеличить число несущих, для которых она отсылает RUM. В очень загруженной ситуации точка доступа может находиться в очень невыгодном положении и может отсылать RUM для всех несущих, таким образом вырождаясь в случай единственной несущей.

На 302 степень невыгодности может быть определена для точки доступа, и RUM может формироваться для обозначения степени невыгодности для других узлов в диапазоне "прослушивания" (т.е., отсылают ли они данные в точку доступа или нет), при этом RUM содержит информацию, которая указывает, что первая заранее определенная пороговая величина удовлетворена или превышена. Первая заранее определенная пороговая величина может представлять собой, например, уровень помех над тепловым шумом (IOT), скорость передачи данных, отношение мощности несущей к помехе (C/I), уровень пропускной способности, уровень спектральной эффективности, уровень задержки или любое другое соответствующее измерение, с помощью которого услуга в первом узле может быть измерена.

На 304 RUM может быть взвешено, чтобы указывать степень, в которой вторая заранее определенная величина превышена. Вторая заранее определенная пороговая величина может представлять собой, например, уровень помех над тепловым шумом (IOT), скорость передачи данных, отношение мощности несущей к помехе (C/I), уровень пропускной способности, уровень спектральной эффективности, уровень задержки или любое другое соответствующее измерение, с помощью которого уровень услуги в первом узле может быть измерен. Согласно некоторым аспектам, значение весов может быть квантованным значением. Хотя первая и вторая заранее определенные пороговые величины могут быть в основном равными, им необязательно быть равными.

Информация весов, передаваемая в каждом RUM, предназначена для передачи всем узлам в диапазоне прослушивания степени, в которой точке доступа не хватало диапазона частот из-за помех от других передач. Вес может представлять степень невыгодности и может быть больше, когда точка доступа находилась в более невыгодном положении, и меньше, когда находилась в менее невыгодном положении. Степень невыгодности может извлекаться, используя множество факторов. В качестве примера, если пропускная способность используется для измерения степени невыгодного положения, тогда возможное соотношение может быть представлено как:

где Rtarget представляет собой желаемую пропускную способность, Ractual является фактической пропускной способностью, которая достигнута, и Q(x) представляет собой квантованное значение x. Когда существует единственный поток в точке доступа, Rtarget может представлять собой минимальную желаемую пропускную способность для этого потока, и Ractual может представлять собой среднюю пропускную способность, которая достигнута для этого потока. Следует заметить, что более высокие веса значений, которые представляют собой более высокую степень невыгодности, являются условными. В качестве примера предположим, что желаемая пропускная способность для узла равна 500 кбит/c. Однако узел достигает лишь фактической пропускной способности в 250 кбит/c. В этом случае вес может вычисляться на основе узла, нуждающегося в двойной текущей величине пропускной способности (500 кбит/c/250 кбит/c=2), чтобы достичь желаемой пропускной способности.

Аналогичным образом, условие, где более высокие веса значений представляют собой более низкую степень невыгодности, может использоваться, если логика точности по весу соответствующим образом модифицируется. Например, можно использовать отношение фактической пропускной способности к целевой пропускной способности (противоположность примера показана выше), чтобы вычислить веса. Таким образом, используя вышеупомянутые значения, отношение составило бы 250 кбит/с/500 кбит/с, кото