Способы и аппараты для имитации резистивных нагрузок

Иллюстрации

Показать все

Изобретение относится к области электротехники. Способы и аппараты для имитации резистивных нагрузок и осуществления последовательных, параллельных и/или последовательно-параллельных соединений многочисленных нагрузок для потребления рабочей мощности. Осуществляют изменение вольтамперных характеристик нагрузок заданным образом, способствуя предсказуемому и/или желаемому поведению многочисленных нагрузок, потребляющих мощность из источника питания. Возможные нагрузки включают в себя источники света на основе СИД и осветительные блоки на основе СИД. Измененные вольтамперные характеристики могут привести к тому, что нагрузка поведет себя как, по существу, линейный или резистивный элемент для источника питания, по меньшей мере, в некотором рабочем диапазоне. При соединениях многочисленных таких нагрузок напряжение на каждой нагрузке оказывается относительно более предсказуемым. В одном примере последовательное соединение многочисленных нагрузок с измененной вольтамперной характеристикой может работать от линейного напряжения, не требуя трансформатора. Технический результат - упрощение управления напряжением нагрузки. 9 н. и 61 з.п. ф-лы, 27 ил.

Реферат

Предшествующий уровень техники

Светоизлучающие диоды (СИД) - это источники света на основе полупроводников, традиционно применяемые в целях индикации в приложениях, связанных с маломощными измерительными приборами и бытовыми электроприборами, и поставляемые во множестве цветов (например, красного, зеленого, желтого, синего, белого) на основе типов материалов, используемых для их изготовления. Эти СИД множества цветов недавно начали применять для создания новых источников света на основе СИД, имеющих достаточную светоотдачу для новых приложений, связанных с освещением пространства и прямым наблюдением. Например, как рассмотрено в патенте США № 6016038, упоминаемом здесь в качестве ссылки, многочисленные СИД разных цветов можно объединять в осветительном приборе, имеющем один или более внутренних микропроцессоров, при этом управление интенсивностью каждого из СИД разных цветов и ее изменение осуществляют независимо, чтобы получить некоторое количество разных оттенков. В одном примере такого аппарата СИД красного, зеленого и синего цвета используют совместно для получения буквально сотен разных оттенков из единственного осветительного прибора. Кроме того, управление относительными интенсивностями СИД красного, зеленого и синего цвета можно осуществлять с помощью компьютера, тем самым обеспечивая программируемый многоканальный источник света, способный генерировать любой цвет и любую последовательность цветов с изменяемыми интенсивностями и насыщениями, гарантируя широкий диапазон световых эффектов, бросающихся в глаза. Такие источники света на основе СИД недавно начали применяться во множестве типов приборов и множестве приложений, связанных с освещением, в которых желательны цветоизменяемые световые эффекты.

Управление этими осветительными системами и эффектами, которые они дают, а также их координацию можно осуществлять посредством сети, в которой поток данных, содержащий пакеты информации, передается к осветительным устройствам. Каждое из осветительных устройств может регистрировать все пакеты информации, пропускаемые через систему, и реагировать лишь на пакеты, которые адресованы конкретному устройству. Как только прибывает должным образом адресованный пакет информации, осветительное устройство может прочитать и выполнить команды. Эта компоновка требует, чтобы каждое из осветительных устройств имело адрес, а эти адреса должны быть однозначно определяемыми по отношению к другим осветительным устройствам в сети. Адреса обычно задают путем задания переключателей на каждом из осветительных устройств во время установки. Настройка переключателей проявляет тенденцию к затратам времени и подвержена ошибкам.

Осветительные системы для мест проведения зрелищных мероприятий, розничной торговли и расположения архитектурных достопримечательностей, таких как театры, казино, тематические парки, магазины и торговые пассажи, требуют ассортимента детально разработанных осветительных приборов и систем управления для эксплуатации средств освещения. Обычные осветительные устройства, объединяемые в сеть, имеют свои адреса, задаваемые посредством ряда переключателей, таких как дисковые номеронабиратели, микропереключатели в корпусах DIP или кнопки. Конкретные адреса этих устройств приходится задавать индивидуально, и этот процесс может быть обременительным. Фактически, одну из наиболее трудных задач проектировщиков освещения - конфигурирование системы - приходится решать после установки всех средств освещения. Эта задача, как правило, требует участия, по меньшей мере, двух человек и обуславливает необходимость подойти к каждому осветительному приспособлению или прибору, а также определить и задать сетевой адрес для него посредством использования переключателей или дисковых номеронабирателей, после чего определить параметры наладки и соответствующий элемент на щите управления освещением или в компьютере. Неудивительно, что конфигурирование осветительной сети может занимать много часов в зависимости от местонахождения и сложности. Например, на новой аллее парка с аттракционами могут использоваться сотни осветительных приборов, управляемых по сети, которые не находятся на линии прямой видимости ни друг с другом, ни от какой-либо отдельной точки. Каждый прибор нужно идентифицировать и соотнести с его заданными параметрами на щите управления освещением. Неразбериха и путаница оказываются обычными явлениями во время этого процесса. При удовлетворительном планировании и координировании выбор и задание этого адреса априори провести можно, но это по-прежнему требует значительного времени и сил.

Чтобы устранить эти недостатки, в патенте США № 6777891, упоминаемом здесь в качестве ссылки, предлагается расположение множества осветительных блоков на основе СИД в виде контролируемой компьютером «осветительной гирлянды», в которой осветительный блок представляет собой индивидуально управляемый «узел» осветительной гирлянды. Приложения, подходящие для таких осветительных гирлянд, включают в себя приложения освещения, являющиеся декоративными и ориентированными на развлечения (например, освещение для рождественских елок, освещение шоу, осветительные средства тематических парков, осветительные средства галерей автоматов для видео- и других игр, и т.д.). Посредством компьютерного управления одна или более таких осветительных гирлянд обеспечивают множество сложных временных и цветоизменяющих световых эффектов. Во многих воплощениях данные освещения передаются в один или более узлов заданной осветительной гирлянды последовательно в соответствии с множеством разных схем передачи и обработки данных, а параллельно этому в соответствующие осветительные блоки гирлянды подается питание (например, из источника выпрямленного высокого напряжения, в некоторых случаях - с существенным напряжением пульсаций). В других воплощениях отдельные осветительные блоки осветительной гирлянды соединены друг с другом посредством множества разных трубных конфигураций для обеспечения простого соединения и расположения многочисленных осветительных блоков, составляющих осветительную гирлянду. Кроме того, малые осветительные блоки на основе СИД, которые можно располагать в конфигурации осветительной гирлянды, часто изготавливают в виде интегральных схем, включающих в себя схемы обработки данных и схемы управления источниками света на основе СИД, а заданный узел осветительной гирлянды может включать в себя одну или более интегральных схем, заключенных в одном корпусе с СИД для удобного сочленения с трубкой, предназначенной для соединения многочисленных узлов.

Таким образом, подход, описанный в патенте США № 6777891, обеспечивает гибкое низковольтное многоцветное решение для осветительных гирлянд на основе СИД, которое минимизирует количество компонентов в узлах СИД. Ввиду коммерческого успеха этого подхода промышленности осветительных приборов нужны более длинные гирлянды, в которых больше узлов, для сложных приложений.

Краткое изложение существа изобретения

Заявитель обнаружил и понял, что зачастую полезно рассматривать соединение многочисленных осветительных блоков или источников света, а также нагрузки других типов в контексте получения рабочей мощности последовательно, а не параллельно. Последовательное взаимное соединение многочисленных нагрузок может позволить использование повышенных напряжений для выдачи рабочей мощности на нагрузки, а также может обеспечить работу многочисленных нагрузок, не требуя наличия трансформатора между источником питания (например, напряжения настенной розетки или напряжения линии, имеющего номинал 120 В переменного тока или 240 В переменного тока) и нагрузкой (т.е. многочисленные последовательно соединенные нагрузки могут работать «непосредственно» от напряжения линии).

Соответственно, различные аспекты данного изобретения направлены в общем на создание способов и аппаратов, облегчающих последовательное соединение многочисленных нагрузок для потребления рабочей мощности из источника питания. Некоторые из вариантов осуществления изобретения, описанных здесь, относятся к конфигурациям, модификациям и усовершенствованиям, которые приводят к получению измененных вольтамперных (I-V) характеристик, связанных с нагрузками. Например, вольтамперные характеристики можно изменять заданным образом, что способствует предсказуемому и/или желательному поведению нагрузок, когда они соединены последовательно для потребления рабочей мощности из источника питания, а также параллельных или последовательно-параллельных соединений. В некоторых возможных вариантах осуществления изобретения нагрузки включают в себя источники света на основе СИД (включающие в себя один или более СИД) или осветительные блоки на основе СИД, а вольтамперные характеристики, связанные с источниками света на основе СИД или осветительными блоками, изменяются заданным образом, что способствует предсказуемому и/или желательному поведению источников света на основе СИД / осветительных блоков, когда они соединены во множестве последовательных, параллельных или последовательно-параллельных компоновок для потребления рабочей мощности из источника питания.

В частности, заявитель обнаружил и понял, что создание различных последовательных, параллельных и последовательно-параллельных соединений многочисленных нагрузок, потребляющих мощность из источника питания, в целом облегчается за счет применения резистивных нагрузок. Соответственно, в некоторых вариантах осуществления изобретения измененные вольтамперные характеристики, соответствующие способам и аппаратам, описываемым здесь, вызывают проявление нагрузки как, по существу, линейного или «резистивного» элемента (т.е. ведущего себя аналогично резистору), по меньшей мере, в некотором рабочем диапазоне для источника питания, от которого нагрузка потребляет энергию.

В частности, в некоторых вариантах осуществления данного изобретения нагрузки с нелинейными и/или изменяющимися вольтамперными характеристиками, такие, как источники света на основе СИД или осветительные блоки на основе СИД, модифицированы для имитации, по существу, линейных или резистивных элементов, по меньшей мере, в некотором рабочем диапазоне, когда они потребляют мощность из источника питания. Это, в свою очередь, облегчает предназначенное для потребления мощности последовательное соединение модифицированных источников света или осветительных блоков на основе СИД с каждым модифицированным источником света или осветительным блоком сравнительно более предсказуемым образом. Короче говоря, напряжение на зажимах источника питания, из которого последовательное соединение потребляет мощность, совместно используется более предсказуемым образом (т.е. одинаково) среди модифицированных источников света или осветительных устройств. За счет имитации резистивной нагрузки такие модифицированные нагрузки также можно соединять параллельно или в различных последовательно-параллельных комбинациях с результатом, предсказуемым применительно к токам и напряжениям на зажимах.

Например, один вариант осуществления направлен на создание аппарата, содержащего, по меньшей мере, одну нагрузку, имеющую нелинейную или изменяющуюся вольтамперную характеристику, и схему преобразователя, соединенную с, по меньшей мере, одной нагрузкой и имеющего такую конфигурацию, что аппарат имеет, по существу, линейную вольтамперную характеристику, по меньшей мере, в некотором рабочем диапазоне. В одном аспекте первый ток, проводимый аппаратом, когда этот аппарат потребляет мощность из источника питания, не зависит от второго тока, проводимого нагрузкой.

Еще один вариант осуществления направлен на создание аппарата, содержащего, по меньшей мере, один осветительный блок, имеющий рабочее напряжение VН и рабочий ток IН, в котором первая вольтамперная характеристика, основанная на рабочем напряжении VН и рабочем токе IН, является, по существу, нелинейной или изменяющейся. Этот аппарат дополнительно содержит схему преобразователя, соединенную с, по меньшей мере, одним осветительным блоком для обеспечения рабочего напряжения VН, причем схема преобразователя имеет такую конфигурацию, что аппарат поводит ток IЗ на зажимах и имеет напряжение VЗ на зажимах, когда этот аппарат потребляет мощность из источника питания. В различных аспектах рабочее напряжение VH, по меньшей мере, одного осветительного блока меньше, чем напряжение VЗ на зажимах аппарата, ток IЗ на зажимах не зависит от рабочего тока IH или рабочего напряжения VH, по меньшей мере, одного осветительного блока, а вторая вольтамперная характеристика аппарата, основанная на напряжении VЗ на зажимах и токе IЗ на зажимах, является, по существу, линейной в диапазоне напряжений на зажимах в окрестности номинальной рабочей точки VЗ=Vном.

Еще один вариант осуществления направлен на создание способа, заключающегося в том, что преобразуют нелинейную или изменяющуюся вольтамперную характеристику, по меньшей мере, одной нагрузки в, по существу, линейную вольтамперную характеристику, причем эта, по существу, линейная вольтамперная характеристика не зависит от тока, проводимого нагрузкой.

Еще один вариант осуществления направлен на создание осветительной системы, содержащей множество осветительных узлов, соединенных последовательно для потребления мощности из источника питания. Каждый осветительный узел множества осветительных узлов содержит, по меньшей мере, один осветительный блок, имеющий, по существу, нелинейную или изменяющуюся вольтамперную характеристику, и схему преобразователя, соединенную с, по меньшей мере, одним осветительным блоком и имеющую такую конфигурацию, что осветительный узел имеет, по существу, линейную вольтамперную характеристику, по меньшей мере, в некотором рабочем диапазоне.

Еще один вариант осуществления направлен на создание способа освещения, заключающегося в том, что: соединяют множество осветительных узлов последовательно для потребления мощности из источника питания, причем каждый осветительный узел включает в себя, по меньшей мере, один осветительный блок, и преобразуют нелинейную или изменяющуюся вольтамперную характеристику, по меньшей мере, одного осветительного блока каждого осветительного узла в, по существу, линейную вольтамперную характеристику.

Еще один вариант осуществления направлен на создание осветительной системы, содержащей множество осветительных узлов, соединенных последовательно для потребления мощности из источника питания. Каждый осветительный узел множества осветительных узлов содержит, по меньшей мере, один осветительный блок, имеющий, по существу, нелинейную или изменяющуюся вольтамперную характеристику, и схему преобразователя, соединенную с, по меньшей мере, одним осветительным блоком для обеспечения рабочего напряжения для, по меньшей мере, одного осветительного блока. Каждая схема преобразователя имеет такую конфигурацию, что соответствующие напряжения узлов множества осветительных узлов оказываются, по существу, одинаковыми, по меньшей мере, в некотором рабочем диапазоне, когда множество осветительных узлов потребляет мощность из источника питания.

Еще один вариант осуществления направлен на создание способа освещения, заключающегося в том, что: соединяют множество осветительных узлов последовательно для потребления мощности из источника питания, причем каждый осветительный узел включает в себя, по меньшей мере, один осветительный блок; и преобразуют нелинейную или изменяющуюся вольтамперную характеристику, по меньшей мере, одного осветительного блока каждого осветительного узла таким образом, что соответствующие напряжения узлов оказываются по, существу, одинаковыми, по меньшей мере, в некотором рабочем диапазоне, когда множество осветительных узлов потребляет мощность из источника питания.

Еще один вариант осуществления направлен на создание аппарата, содержащего, по меньшей мере, одну нагрузку, имеющую первую вольтамперную характеристику, и схему преобразователя, соединенную с, по меньшей мере, одной нагрузкой для изменения первой вольтамперной характеристики заданным образом, способствующим предсказуемому поведению, по меньшей мере, одной нагрузки, когда эта, по меньшей мере, одна нагрузка соединена последовательно, по меньшей мере, с одной другой нагрузкой для потребления мощности из источника питания. В одном аспекте, первый ток, проводимый аппаратом, когда этот аппарат потребляет мощность из источника питания, не зависит от второго тока, проводимого нагрузкой.

Еще один вариант осуществления направлен на создание аппарата, содержащего, по меньшей мере, один источник света, имеющий рабочее напряжение VH и рабочий ток IH и первую вольтамперную характеристику на основе рабочего напряжения VH и рабочего тока IH. Аппарат также содержит схему преобразователя, соединенную с, по меньшей мере, одним источником света для обеспечения рабочего напряжения VH, причем схема преобразователя имеет такую конфигурацию, что аппарат проводит ток IЗ на зажимах и имеет напряжение VЗ на зажимах, когда этот аппарат потребляет мощность из источника питания. В различных аспектах рабочее напряжение VH, по меньшей мере, одного источника света меньше, чем напряжение VЗ на зажимах аппарата, ток IЗ на зажимах аппарата не зависит от рабочего тока IH или рабочего напряжения VH, по меньшей мере, одного осветительного блока, схема преобразователя изменяет первую вольтамперную характеристику заданным образом, чтобы на основании напряжения VЗ на зажимах и тока IЗ на зажимах обеспечить для аппарата вторую вольтамперную характеристику, которая существенно отличается от первой вольтамперной характеристики, и эта вторая вольтамперная характеристика способствует предсказуемому поведению, по меньшей мере, одной нагрузки, когда эта, по меньшей мере, одна нагрузка соединена последовательно, по меньшей мере, с одной другой нагрузкой для потребления мощности из источника питания.

Еще один вариант осуществления направлен на создание способа, заключающегося в том, что изменяют первую вольтамперную характеристику заданным образом, по меньшей мере, одной нагрузки, чтобы способствовать предсказуемому поведению, по меньшей мере, одной нагрузки для потребления мощности из источника питания, при этом первый ток, проводимый из источника питания, не зависит от второго тока, проводимого, по меньшей мере, одной нагрузкой.

Еще один вариант осуществления направлен на создание аппарата, содержащего, по меньшей мере, одну нагрузку, имеющую нелинейную вольтамперную характеристику, при этом, по меньшей мере, одна нагрузка имеет множество рабочих состояний, и схему преобразователя, соединенную с, по меньшей мере, одной нагрузкой и имеющую такую конфигурацию, что ток, проводимый аппаратом, когда аппарат потребляет мощность из источника питания, не зависит от множества рабочих состояний нагрузки.

В том смысле, в каком он употребляется в данном описании, термин «СИД» следует понимать как включающий в себя любой электролюминесцентный диод или систему другого типа, основанную на наличии перехода/инжекции носителей заряда, способную генерировать излучение в ответ на электрический сигнал. Таким образом, термин «СИД» включает в себя - но не в ограничительном смысле - различные структуры на основе полупроводников, излучающие свет в ответ на ток, светоизлучающие полимеры, органические светоизлучающие диоды (ОСИД), электролюминесцентные полоски и аналогичные средства. В частности, термин «СИД» обозначает светоизлучающие диоды всех типов (включая полупроводниковые и органические светоизлучающие диоды), которые могут быть выполнены с возможностью генерирования излучения в одной (одном) или более из инфракрасной области спектра, ультрафиолетовой области спектра и различных участков видимой области спектра (в целом включающих в себя длины волн излучения от приблизительно 400 нанометров до приблизительно 700 нанометров). Некоторые примеры СИД включает в себя - но не в ограничительном смысле - различные типы СИД инфракрасного диапазона, СИД ультрафиолетового диапазона, СИД красного цвета, СИД синего цвета, СИД зеленого цвета, СИД желтого цвета, СИД янтарно-желтого цвета, СИД оранжевого цвета и СИД белого цвета (подробнее рассматриваемых ниже). Следует также понять, что можно предусмотреть конфигурирование СИД и/или управление ими таким образом, что при этом обеспечивается излучение, имеющее различные полосы пропускания (например, полные ширины на уровне полуамплитуды (ПШУА (FWHM)) для заданного спектра (например, узкую полосу пропускания, широкую полосу пропускания), и множество доминирующих длин волн в пределах заданной общей классификации цветов.

Например, одно воплощение СИД, выполненного с возможностью генерирования, по существу, белого света (например, СИД белого цвета), может включать в себя некоторое количество кристаллов, которые соответственно излучают разные спектры электролюминесценции, которые в совокупности смешиваются, образуя, по существу, белый свет. В другом воплощении СИД, излучающий белый свет, может быть связан с люминофорным материалом, который преобразует электролюминесценцию, имеющую первый спектр, в отличающийся второй спектр. В одном примере этого воплощения электролюминесценция, имеющая спектр, имеющий относительно короткую длину волны и узкую ширину полосы, «накачивает» люминофорный материал, который, в свою очередь, испускает излучение большей длины волны, имеющее несколько более широкий спектр.

Следует также понять, что термин «СИД» не ограничивает физический и/или электрический тип корпуса СИД. Например, как описано выше, термин «СИД» может относиться к единственному светоизлучающему устройству, имеющему многочисленные кристаллы, которые выполнены с возможностью испускания излучения разных спектров (например, которые могут быть или не быть индивидуально управляемыми). Кроме того, СИД может быть связан с люминофором, который рассматривается как неотъемлемая часть СИД (например, в некоторых типах СИД белого цвета). Вообще говоря, термин «СИД» может относиться к СИД в корпусном исполнении, СИД в бескорпусном исполнении, СИД поверхностного монтажа, СИД в исполнении «перевернутый чип на плате», СИД монтажа в Т-образном корпусе, СИД в радиальном корпусе, СИД в силовом корпусе, СИД, включающим в себя некоторого типа кожух и/или оптический элемент (например, диффузионную линзу), и т.д.

Термин «источник света» следует понимать как относящийся к любому одному или нескольким из множества источников излучения включая - но не в ограничительном смысле - источники на основе СИД (включающие в себя один или более вышеописанных СИД), температурные источники света (например, лампы накаливания, галогенные лампы), флуоресцентные источники света, фосфорицирующие источники света, газоразрядные источники высокой интенсивности (например, натриевые, ртутные и металлогалогенные лампы), лазеры, электролюминесцентные источники других типов, пиролюминесцентные источники (например, факелы), свечелюминесцентные источники (например, калильные сетки газовых фонарей, источники излучения с дугами между угольными электродами), фотолюминесцентные источники (например, газоразрядные источники), источники с катодной люминесценцией, использующие электронное насыщение, гальванолюминесцентные источники, кристаллолюминесцентные источники, источники с экранной люминесценцией, термолюминесцентные источники, триболюминесцентные источники, звуколюминесцентные источники, радиолюминесцентные источники и люминесцентные полимеры.

Заданный источник света может быть выполнен с возможностью генерирования электромагнитного излучения в пределах видимой области спектра, вне видимой области спектра или генерирование комбинации обоих этих случаев. Здесь термины «свет» и «излучение» употребляются взаимозаменяемо. Кроме того, источник света может включать в себя в качестве неотъемлемого компонента один или более фильтров (например, цветных светофильтров), линз или других оптических компонентов. Следует также понять, что источникам света можно придать конфигурации, подходящие для многих приложений, включая - но не в ограничительном смысле - указание, отображение и/или освещение. «Источник освещения» - это источник света, который выполнен с возможностью, в частности, генерирования излучения, имеющего достаточную интенсивность для эффективного освещения внутреннего или внешнего пространства. В этом контексте термин «достаточная интенсивность» относится к той мощности излучения в видимой области спектра, генерируемого в пространстве или окружающей среде (для выражения суммарного света, выдаваемого из источника света во всех направлениях, применительно к мощности излучения или «световому потоку» часто употребляются такие единицы измерения, как «люмены»), которая достаточна для того, чтобы обеспечить освещение в окружающем пространстве (т.е. свет, который может восприниматься непосредственно и который может, например, отражаться от одного или более из множества промежуточных поверхностей перед тем, как будет воспринят полностью или частично).

Термин «спектр» следует понимать как относящийся к любой одной или нескольким частотам (или длинам волн) излучения, создаваемого одним или более источниками света. Соответственно, термин «спектр» относится к частотам (или длинам волн) не только в видимой области спектра, но и к частотам (или длинам волн) в инфракрасной, ультрафиолетовой или других областях всего электромагнитного спектра. Кроме того, заданный спектр может иметь относительно малую ширину полосы (например, ПШУМ, имеющую, по существу, лишь немного составляющих частот или длин волн) или относительно большую ширину полосы (несколько составляющих частот или длин волн, имеющих разные относительные интенсивности). Следует также понять, что заданный спектр может быть результатом смешения двух или более других спектров (например, смешения излучений, соответственно испускаемых из нескольких источников света).

В целях, преследуемых этим описанием, термин «цвет» употребляется взаимозаменяемо с термином «спектр». Вместе с тем, термин «цвет» обычно употребляется для обозначения главным образом свойства излучения, которое воспринимается наблюдателем (хотя это употребление не следует считать ограничивающим объем этого термина). Соответственно, термины «разные цвета» неявно относится к нескольким спектрам, имеющим разные составляющие длин волн и/или ширины полос. Следует также понять, что термин «цвет» можно употреблять в связи как с белым, так и с небелым светом.

Термин «цветовая температура» обычно употребляется здесь в связи с белым светом, хотя это употребление не следует считать ограничивающим объем этого термина. Термин «цветовая температура», по существу, относится к конкретному цветовому содержанию или оттенку (например, красноватому, синеватому) белого света. Соответственно, цветовая температура выборки заданного излучения обычно характеризуется в градусах Кельвина (К) излучателя, считающегося абсолютно черным телом, который излучает, по существу, тот же самый спектр, что и в выборке излучения, о которой идет речь. Цветовые температуры излучателя, считающегося абсолютно черным телом, обычно находятся в диапазоне от приблизительно 700 К (эту температуру, как правило, считают первой различимой для человеческого глаза) до свыше 10000 К; белый свет обычно воспринимается при цветовых температурах свыше 1500-2000 К.

Пониженные цветовые температуры обычно указывают на белый свет, имеющий более значительную составляющую красного цвета или «ощущаемый как более теплый», а повышенные цветовые температуры обычно указывают на белый свет, имеющий более значительную составляющую синего цвета или «ощущаемый как более холодный». В качестве примера отметим, что огонь имеет цветовую температуру приблизительно 1800 градусов К, обычная лампа накаливания имеет цветовую температуру приблизительно 2848 К, дневной свет ранним утром соответствует цветовой температуре приблизительно 3000 К, а свет неба в пасмурный полдень соответствуют цветовой температуре приблизительно 10000 К. Цветное изображение, видимое в дневном свете, соответствующем цветовой температуре приблизительно 3000 К, имеет относительно красноватый тон, тогда как то же самое цветное изображение, видимое в дневном свете, соответствующем цветовой температуре приблизительно 10000 К, имеет относительно синеватый тон.

Употребляемый здесь термин «осветительный прибор» относится к одному или более осветительным устройствам, воплощенным с конкретными конструктивными параметрами в сборке или корпусе. Употребляемый здесь термин «осветительный блок» относится к аппарату, включающему в себя один или более источников света одинакового типа или разных типов. Данный осветительный блок может иметь одну из множества установочных компоновок для источника (источников) света, компоновок и форм оболочек и/или кожухов и/или конфигураций электрических и механических соединений. Кроме того, данный осветительный блок может быть, по выбору, связан с различными другими компонентами (например, может включать в себя такие компоненты, быть подключенным к ним и/или установленным в корпусе вместе с ними) (например, со схемами управления), связанными с работой источника (источников) света. Термин «осветительный блок на основе СИД» относится к осветительному блоку, который включает в себя один или более вышеуказанных источников света на основе СИД по отдельности или в сочетании с другими источниками света не на основе СИД. Термин «многоканальное осветительный блок» относится к осветительному блоку на основе СИД или не на основе СИД, который включает в себя, по меньшей мере, два источника света, выполненных с возможностью соответственного генерирования разных спектров излучения, при этом спектр каждого отличающегося источника света можно назвать «каналом» многоканального осветительного блока.

Термин «контроллер» употребляется здесь в основном для описания различных аппаратов, связанных с работой одного или более источников света. Контроллер может быть воплощен многочисленными способами (например, такими, как в виде специализированных аппаратных средств) для выполнения различных функций, рассматриваемых здесь. «Процессор» является одним из примеров контроллера, в котором применяются один или более микропроцессоров, которые можно запрограммировать с использованием программных средств (например, микрокода) для выполнения различных функций, рассматриваемых здесь. Контроллер может быть воплощен с применением или без применения процессора, а также может быть воплощен в виде совокупности специализированных аппаратных средств для выполнения различных функций и процессора (например, одного или более запрограммированных микропроцессоров и связанных с ними схем) для выполнения других функций. Примеры компонентов контроллера, применимые в различных вариантах осуществления настоящего изобретения, включают в себя - но не в ограничительном смысле - обычные микропроцессоры, специализированные интегральные схемы (СИС) и программируемые логические матрицы (ПЛМ (FPGAs)).

В различных воплощениях процессор или контроллер может быть связан с одним или более носителей информации (которые рассматриваются здесь как «запоминающее устройство», например энергозависимое или энергонезависимое запоминающее устройство компьютера, такое как оперативное запоминающее устройство (ОЗУ), программируемое постоянное запоминающее устройство (ППЗУ), стираемое программируемое постоянное запоминающее устройство (СППЗУ) и электрически стираемое программируемое постоянное запоминающее устройство (ЭСППЗУ), флоппи-диски, компакт-диски, оптические диски, магнитная лента, и т.д.). В некоторых воплощениях носители информации могут быть закодированы одной или более программами, которые при их исполнении на одном или более процессорах и/или контроллерах выполняют, по меньшей мере, некоторые из рассматриваемых здесь функций. Различные носители информации могут быть установлены внутри процессора или контроллера либо могут быть переносными таким образом, что одну или более хранящихся на них программ можно загружать в процессор или контроллер для воплощения различных аспектов данного изобретения, рассматриваемых здесь. Термины «программа» или «компьютерная программа» употребляются здесь в родовом смысле для обозначения компьютерного кода любого типа (например, кода программного обеспечения или микрокода), который можно применять для программирования одного или более процессоров или контроллеров.

Употребляемый здесь термин «адресуемое» относится к устройству (например, источнику света в целом, осветительному блоку или прибору, контроллеру или процессору, связанному с одним или более источниками света или осветительными блоками, другими устройствами, не связанными с освещением, и т.д.), выполненному с возможностью приема информации (например, данных), предназначенной для многочисленных устройств, включая его, и избирательного ответа на конкретную информацию, предназначенную для последнего. Термин «адресуемое» часто употребляется в связи с сетевой средой (или «сетью», подробно рассматриваемой ниже), в которой многочисленные устройства подключены друг к другу с помощью одного и того же средства (одних и тех же средств) связи.

В одном сетевом воплощении одно или более устройств, подключенных к сети, могут служить в качестве контроллера для одного или более других устройств, подключенных к сети (например, с созданием взаимосвязи типа «ведущее устройство - ведомое устройство»). В других воплощениях сетевая среда может включать в себя один или несколько специально выделенных контроллеров, которые выполнены с возможностью управления одним или более устройствами, подключенными к сети. В общем случае каждое из многочисленных устройств, подключенных к сети, может иметь доступ к данным, которые представлены на средстве (средствах) связи; вместе с тем, данное устройство может быть «адресуемым» в том смысле, что выполнено с возможностью избирательного обмена данными с сетью (например, прием данных из нее и/или передачу данных в нее) на основании, например, одного или более конкретных идентификаторов (например, «адресов»), присвоенных этому устройству.

Употребляемый здесь термин «сеть» относится к любой взаимосвязи двух или более устройств (включая контроллеры или процессоры), которая облегчает передачу информации (например, для управления устройствами, хранения данных, обмена данными, и т.д.) между любыми двумя или более устройствами и/или среди многочисленных устройств, подключенных к сети. Как должно быть совершенно ясно, различные воплощения сетей, подходящие для взаимосвязи многочисленных устройств, могут включать в себя любую из множества топологий сетей и использовать любой из множества протоколов связи. Кроме того, в различных сетях, соответствующих данному изобретению, любое соединение между двумя устройствами может представлять собой специально выделенное соединение между двумя системами или - в альтернативном варианте - соединение, не являющееся специально выделенным. В дополнение к перенесению информации, предназначенной для двух устройств, такое соединение, не являющееся специально выделенным, может перенести информацию, не обязательно предназначенную для любого из этих двух устройств (например, это может быть соединение открытой сети). Помимо этого, должно быть совершенно ясно, что в рассматриваемых здесь различных сетях устройств возможно применение одной или более беспроводных, проводных или кабельных и/или волоконно-оптических линий связи для облегчения передачи информации через сеть.

Употребляемый здесь термин «интерфейс пользователя» относится к интерфейсу между человеком-