Комплексные соединения германия с аминокислотами и карбоновыми кислотами

Иллюстрации

Показать все

Изобретение относится к комплексным соединениям германия с аминокислотами или с аминокислотами и карбоновыми кислотами общей формулы , где АА - аминокислота, СА - карбоновая кислота, а=0÷3, b=1÷3, с=0÷3 и 1≤b+с≤4. При этом все АА в комплексном соединении являются одинаковыми или разными и все СА в комплексном соединении являются одинаковыми или разными. Также предложен способ их получения. Изобретение позволяет получать устойчивые комплексные соединения с регулируемым составом и регулируемым отношением германия к аминокислоте и карбоновой кислоте, которые устойчивы в твердом виде и которые могут быть использованы в медицине. 2 н. и 11 з.п. ф-лы, 11 ил., 1 табл., 13 пр.

Реферат

Область техники, к которой относится изобретение

Изобретение относится к новым комплексным соединениям германия с аминокислотами и карбоновыми кислотами и способу их получения.

Более конкретно, изобретение касается получения комплексных соединений германия с аминокислотами и карбоновыми кислотами, общей формулы (I)

посредством взаимодействия водного раствора аминокислоты или смеси аминокислоты и карбоновой кислоты с диоксидом германия. Полученные комплексные соединения германия могут быть использованы в различных областях техники, преимущественно в медицине.

Предшествующий уровень техники

Германийсодержащие соединения находят широкое применение в различных областях науки и техники, например как полупроводники, катализаторы при получении полиэфиров и полиолефинов, для изготовления оптических волокон для средств телекоммуникации, линз и стекол для ИК-спектроскопии.

В последнее время соединения германия из-за своей фармакологической активности нашли применение и в медицине. Среди биологических свойств соединений германия можно отметить способность обеспечивать перенос кислорода в тканях организма, повышать его иммунный статус, проявлять противоопухолевую активность.

Соединения германия используют в виде двух основных форм: органическая (содержащая связи Ge-C) и неорганическая (соли, оксиды германия и их комплексы). Так патентом США 4271084 (1981 г., МПК C07F 7/30) защищены германийсодержащие органические полимеры - карбоксиэтилгермсесквиоксиды, которые получают полимеризацией 3-трихлоргермилпропионовой кислоты. Исходным сырьем служит диоксид германия, который восстанавливают фосфорноватистой кислотой (Н3РО2) в присутствии соляной кислоты с образованием комплекса хлорида германия и фосфорной кислоты. Образовавшийся комплекс переводят в 3-трихлоргермилпропионовую кислоту при взаимодействии с акриловой кислотой (СН2=СНСООН). В патенте США 5386046 (1995 г., МПК C07F 7/30) раскрыты карбоксиэтилгермсесквиоксиды, которые получают с использованием тетрахлорида германия, тетраметилдисилоксана и акриловой кислоты. Известные германийсодержащие органические полимеры являются эффективными при лечении психоневрологических нарушений (патент США 4281015, 1981 г., МПК А61К 31/28), офтальмологических расстройств (патент США 4296123, 1981 г., МПК А61К 31/28), нарушений печени (патент США 4309412, 1982 г., МПК А61К 31/74), фиброза легких (патент США 4321273, 1982 г., МПК А61К 31/28), аллергических заболеваний (патент США 4322402, 1982 г., МПК А61К 31/74) и гепатита (патент США 5340806, 1994 г., МПК А61К 31/79). Также они способствуют выработке интерферона в организме человека (патент США 4473581, 1984 г., МПК А61К 31/28) и защищают его от простуды (патент США 4898882, 1990 г., МПК А61К 31/28).

В патенте США 3825546 (1974 г., МПК C07D 29/28) описано получение азаспиранов (гетероциклические азотсодержащие соединения), в состав которых входит германий, названных спирогерманий. Процесс получения спирогермания представляет многостадийный синтез, где исходным соединением служит диалкилгерманий, а именно диметил- или диэтилгерманий, R2GeH2. Диалкилгерманий в две стадии переводят в 4,4-диалкил-4-герма-циклогексанон с использованием метилакрилата, трет-бутилата калия и 20% раствора серной кислоты. Далее из 4,4-диалкил-4-герма-циклогексанона в несколько стадий получают спирогерманий.

Как показано в патенте США 4468393 (1984 г., МПК А61К 31/555), соединения спирогермания, особенно диэтилспирогерманий и его соли, могут использоваться для лечения артритов путем инъекции или перорального введения. Для внутривенной инъекции спирогермания необходимы дозы 50-80 мг/м2 поверхности тела. Рекомендованные терапевтические дозы спирогермания для лечения артрита с тяжелыми ревматоидными симптомами составляет 1,5 мл водного раствора (30 мг/мл) внутримышечно. Такая терапия проводится дважды в неделю в течение первых 6 недель и раз в неделю после достижения ремиссии. Для этого обычно требуется 3-6 месяцев. Лечение пероральным введением может быть эффективно при приеме капсул, содержащих 200 мг спирогермания, дважды в день в течение 2 недель и затем один раз в день в течение 6 недель.

Способы получения германийсодержащих органических соединений, описанные выше, являются многостадийными и сложными. Необходимо использование органических растворителей для выделения и очистки соединений. Например, гидролиз и конденсация 3-трихлоргермилпропионовой кислоты зависит от времени проведения процесса и других факторов, что сказывается на характеристиках конечного продукта. Синтез спирогермания состоит из пяти стадий, в результате чего выход конечного продукта по отношению к исходным соединениям является очень низким.

Также известны способы получения германийсодержащих органических соединений, представляющих собой продукт взаимодействия германиевой кислоты или соли щелочного металла метагерманиевой кислоты с некоторыми аминокислотами или органическими кислотами. Так в патенте США 3674823 (1972 г., МПК C07F 7/00) предложено изобретение, которое относится только к соединению германиевой кислоты и цистеина, при их мольном соотношении 1:1. Соединение проявляет активность при лечении гепатита, ревматизма, водной экземы. Это соединение получают растворением водорастворимой формы диоксида германия в горячей воде с получением германиевой кислоты, фильтрацией раствора, регулированием значения рН до 4, и добавлением цистеина к водному раствору германиевой кислоты. Затем раствор нагреют в течение 2 часов, фильтруют и концентрируют методом дистилляции. Из концентрированного раствора при охлаждении выделяют продукт. Продукт также может быть выделен добавлением к раствору этанола или ацетона. Патент США 3674823 не раскрывает возможности получения соединений германия с иными аминокислотами.

Наиболее близким к заявленному и принятым нами в качестве прототипа является способ получения соединений германия, представляющих собой продукт взаимодействия калиевой или натриевой соли метагерманиевой кислоты с рядом карбоновых кислот или аминокислот, раскрытый в патенте ФРГ 3212817, 1983 г., МПК C07F 7/30. Раскрытый в патенте ФРГ 3212817 способ получения соединений германия заключается в том, что оксид германия нагревают с концентрированным водным раствором гидроксида калия или натрия, при этом диоксид германия превращается в растворимую калиевую или натриевую соль метагерманиевой кислоты, смесь выпаривают, охлаждают и суспендируют в воде при нагревании с карбоновой кислотой, смесью карбоновых кислот или аминокислотой. Продукт получают в виде раствора, готового к применению, или высаждают из раствора путем добавления спирта. В качестве аминокислот используют такие аминокислоты как аспарагиновая, глутаминовая кислоты, в качестве карбоновых кислот используют лимонную, изолимонную, янтарную, кетоглутаровую, фумаровую кислоты, могут быть использованы также оксикарбоновые кислоты - молочная, аскорбиновая кислоты. Полученные соединения, представляющие собой продукт взаимодействия соли щелочного металла метагерманиевой кислоты с указанными кислотами и аминокислотами, хорошо растворимы в воде и обладают биологическими и фармакологическими свойствами.

В патенте ФРГ 3212817 методом Литчфилд-Вилкоксона была исследована токсичность соединений германия с янтарной и лимонной кислотами на мышах. При внутрибрюшинном введении ЛД50 составляла 275 мг/кг и >2500 мг/кг, соответственно. Вышеописанные соединения были подвергнуты Allium-тесту. Семена репчатого лука (Allium сера) инкубировали на чашечках Петри. Когда корни проростающего лука достигли длины 1 см, они были перенесены в чашки Петри, содержащие водные растворы исследованных соединений с концентрацей германия 0,0625%, 0,125%, 0,25% и 0,5%. Результаты ясно показали, что соединения германия обладают цитостатическим эффектом, который связан с уменьшением митотического цикла. Соединение германия с аспарагиновой кислотой было протестировано на шести пациентах с диагнозом рак яичников и злокачественная опухоль матки на стационарное лечение. Пациентам вводили перорально 100 мг этого вещества в виде 10% раствора дважды в день. Опухоли были удалены хирургически. У всех пациентов наблюдалось заметное улучшение самочувствия. Кроме того, у пяти пациентов не было обнаружено экссудата ни в брюшной полости, ни во внутренней полости малого таза. У одного больного был обнаружен лишь небольшой экссудат. Не было отмечено никаких токсических побочных эффектов. Через месяц при послеоперационном обследовании у всех пациентов не было зарегистрировано инфильтрации.

Раскрытый в патенте ФРГ 3212817 способ имеет следующие недостатки:

- использование гидроксидов калия и натрия для перевода диоксида германия в растворимую форму через образование калиевых или натриевых солей метагерманиевой кислоты не только усложняет процесс, но также приводит к тому, что конечные продукты содержат катионы щелочного металла, что может быть нежелательным при использовании полученных соединений в фармакологии;

- нередко комплексы германия с кислотами являются устойчивыми только в водных растворах и разрушаются при попытке выделить их из воды; в патенте ФРГ 3212817 только в примере 1 выделяют соединение германия с янтарной кислотой, в остальных примерах получают растворы германия с аспарагиновой и карбоновыми кислотами, что может говорить о неустойчивости их в твердом виде и невозможности их выделения из водных растворов;

- в связи с тем, что в примерах 2-4 конечными продуктами являются растворы, то получаемые водные растворы, содержащие германийорганические соединения, представляют смесь, содержащую калиевые или натриевые соли метагерманиевой кислоты, карбоновые кислоты и соединения германия с карбоновыми кислотами; применение в медицинских целях такого водного раствора, содержащего целевой продукт, затруднительно из-за наличия в растворе указанных загрязнителей;

- получение германийорганических соединений с использованием аминокислот ограничено только аспарагиновой кислотой (пример 3).

Цели изобретения

Целью настоящего изобретения является разработка простого способа получения комплексных соединений германия с различными по природе аминокислотами и карбоновыми кислотами, которые устойчивы в твердом состоянии и легко могут быть переведены в водный раствор.

Другой целью изобретения является разработка такого способа получения комплексных соединений германия с аминокислотами и карбоновыми кислотами, который позволяет регулировать соотношение германия и аминокислоты и карбоновой кислоты в комплексном соединении и регулировать состав комплексного соединения.

Еще одной целью изобретения является предоставление комплексных соединений германия с различными по природе аминокислотами и карбоновыми кислотами, которые устойчивы в твердом состоянии и легко могут быть переведены в водный раствор.

Еще одной целью изобретения является предоставление комплексных соединений германия заданного состава и с заданным соотношением германия и аминокислоты и карбоновой кислоты в комплексном соединении.

Краткое раскрытие изобретения

Заявленные цели достигаются тем, что предложен способ получения комплексных соединений германия с аминокислотами и карбоновыми кислотами, который включает смешивание диоксида германия с водой для получения водной суспензии диоксида германия, добавление к полученной суспензии диоксида германия по крайней мере одной аминокислоты или смеси по крайней мере одной аминокислоты и по крайней мере одной карбоновой кислоты, нагревание полученной смеси при температуре при 40-100°С в течение 2-14 часов для образования целевого продукта - комплексного соединения германия с аминокислотой или с аминокислотой и карбоновой кислотой, удаление воды для получения порошкообразного продукта.

Полученные комплексные соединения германия с аминокислотами или с аминокислотами и карбоновыми кислотами представляют собой белые аморфные порошки, хорошо растворимые в воде, которые имеют общую структурную формулу:

где АА - аминокислота, которая может быть выбрана из большого числа известных α-аминокислот, таких как (но не ограничиваясь этими кислотами) аланин, аминомасляная, аргинин, аспарагиновая, валин, норвалин, гистидин, глицин, глутаминовая, изолейцин, лейцин, норлейцин, лизин, метионин, орнитин, серин, тирозин, треонин, триптофан, фенилаланин, и/или из других аминокислот, таких как γ-аминомасляная;

СА - карбоновая кислота, которая может быть выбрана из монокарбоновых кислот, таких как (но не ограничиваясь этими кислотами) уксусная, дихлоруксусная, изовалериановая; дикарбоновых кислот, таких как (но не ограничиваясь этими кислотами) азелаиновая, малоновая, щавелевая, фталевая, янтарная; гидроксикарбоновых кислот, таких как (но не ограничиваясь этими кислотами) винная, лимонная, молочная, яблочная; оксибензойных кислот, таких как (но не ограничиваясь указанным) салициловая кислота; пиридинмонокарбоновых кислот, таких как (но не ограничиваясь указанным) никотиновая кислота;

где а=0÷3, b=1÷3, с=0÷3, при этом 1≤b+c≤4,

при этом все АА в комплексном соединении являются одинаковыми или разными и все СА в комплексном соединении являются одинаковыми или разными.

Подробное раскрытие изобретения

Изобретение предлагает простой, содержащий минимальное количество стадий, способ получения устойчивых комплексных соединений германия с широким кругом аминокислот и карбоновых кислот, которые могут быть легко выделены в виде порошка и повторно переведены в водный раствор при растворении в воде. Способ позволяет получать комплексные соединения германия с различным соотношением германия к аминокислотам и карбоновым кислотам. Соединения не содержат нежелательных ионов и могут быть полезными для применения в составе фармацевтических препаратов.

Способ по изобретению характеризуется тем, что диоксид германия смешивают с водой для получения водной суспензии, к перемешиваемой водной суспензии диоксида германия добавляют аминокислоту или аминокислоту и карбоновую кислоту, смесь перемешивают при 40-100°С в течение 2-14 часов для получения раствора целевого продукта, затем удаляют воду и получают целевой продукт в виде белого аморфного порошка.

В качестве диоксида германия может быть использован диоксид германия как α-модификации, который нерастворим в воде, так и β-модификации, который растворяется в воде. Предпочтительно использовать диоксид германия α-модификации, который не растворяется в воде, и при смешивании с водой образует суспензию диоксида германия в воде.

По способу могут быть добавлены несколько аминокислот и несколько карбоновых кислот.

В качестве аминокислот (АА) в способе по изобретению могут быть использованы аминокислоты из широкого круга известных α-аминокислот, таких как, но не ограничиваясь указанными аминокислотами, аланин, аминомасляная, аргинин, аспарагиновая, валин, норвалин, гистидин, глицин, глутаминовая, изолейцин, лейцин, норлейцин, лизин, метионин, орнитин, серин, тирозин, треонин, триптофан, фенилаланин, а также других аминокислот, таких как γ-аминомасляная. Может быть использована смесь различных аминокислот, в частности, смесь из перечисленных выше аминокислот. Предпочтительно в способе используют α-аминокислоты.

В качестве карбоновых кислот (СА) в способе по изобретению могут быть использованы монокарбоновые кислоты, дикарбоновые кислоты, гидроксикарбоновые кислоты, оксибензойные кислоты или смеси этих кислот. В качестве монокарбоновых кислот используют такие кислоты как (но не ограничиваясь указанным) уксусная, дихлоруксусная, изовалериановая. В качестве дикарбоновых кислот используют такие кислоты как (но не ограничиваясь указанным) азелаиновая, малоновая, щавелевая, фталевая, янтарная. В качестве гидроксикарбоновых кислот используют такие кислоты как (но не ограничиваясь указанным) винная, лимонная, молочная, яблочная. В качестве оксибензойных кислот используют такие кислоты как (но не ограничиваясь указанным) салициловая кислота. В качестве пиридинмонокарбоновых кислот используют такие кислоты как (но не ограничиваясь указанным) никотиновая кислота.

Соотношение германия и кислоты в комплексном соединении германия зависит от количества аминокислоты и карбоновой кислоты, которые добавляют к водной суспензии диоксида германия. Регулируя соотношение между количеством добавленной кислоты и диоксидом германия, можно получать комплексные соединения с различным соотношением кислоты и диоксида германия. При смешивании кислоты с диоксидом германия в стехиометрическом соотношении, образуется комплексное соединение, в котором мольное отношение германия к кислоте составляет 1:1. При добавлении удвоенного, утроенного или учетверенного количества кислоты по отношению к стехиометрическому, получают комплексное соединение с мольным отношением кислоты к германию 2:1, 3:1 или 4:1, соответственно.

Термин «кислота» в контексте данной заявки означает аминокислоту или смесь аминокислот, карбоновую кислоту или смесь карбоновых кислот, а также общее количество аминокислоты и карбоновой кислоты.

Температура, при которой проводят реакцию образования целевого комплексного соединения германия с аминокислотами и карбоновыми кислотами, составляет 40-100°С, предпочтительной является температура 80-100°С, более предпочтительной является температура 85-100°С.

Время проведения реакции составляет 2-14 часов. Предпочтительно время реакции составляет 4-10 часов, еще более предпочтительно 4-6 часов.

Образование германийсодержащих комплексных соединений контролируется по полному растворению диоксида германия (в случае использования нерастворимого диоксида германия) и образованию прозрачного раствора. Могут быть использованы любые другие методы контролирования образования продукта, например, основанные на отборе и анализе проб.

Для выделения германийсодержащих соединений раствор фильтруют, а затем из раствора удаляют воду любым известным методом. Для этого может быть использован любой из известных методов, например, выпаривание воды, вакуумная дистилляция при нагревании или лиофильная (сублимационная) сушка.

Различные аминокислоты и карбоновые кислоты могут быть добавлены к водной суспензии диоксида германия одновременно в виде смеси кислот или в виде последовательного введения различных аминокислот и карбоновых кислот.

Одним вариантом способа является способ, в котором к водной суспензии оксида германия добавляют аминокислоту, нагревают полученную смесь при перемешивании при 80-100°С в течение 5-10 часов до образования прозрачного раствора, затем добавляют карбоновую кислоту и продолжают нагревание при 80-100°С в течение 1-2 часов, раствор фильтруют и удаляют воду для получения комплексного соединения в твердом виде.

Другим вариантом способа является способ, в котором к водной суспензии оксида германия добавляют карбоновую кислоту, нагревают полученную смесь при перемешивании при 80-100°С в течение 5-10 часов до образования прозрачного раствора, затем добавляют аминокислоту и продолжают нагревание при 80-100°С в течение 1-2 часов, раствор фильтруют и удаляют воду для получения комплексного соединения в твердом виде.

Еще одним вариантом способа является способ, в котором к водной суспензии оксида германия добавляют смесь аминокислоты и карбоновой кислоты, нагревают полученную смесь при перемешивании при 80-100°С в течение 2-10 часов до образования прозрачного раствора, раствор фильтруют и удаляют воду для получения комплексного соединения в твердом виде.

Полученный продукт представляет собой белый аморфный порошок, который легко растворяется в воде.

Были изучены ЯМР и ИК-спектры различных комплексных соединений германия с аминокислотами и карбоновыми кислотами, полученными по способу в соответствии с изобретением, а также выполнен их элементный анализ. Полученные данные свидетельствуют, что германийсодержащие соединения имеют общую структурную формулу:

где АА - аминокислота, которая может быть выбрана из большого числа известных α-аминокислот, таких как (но не ограничиваясь ими) аланин, аминомасляная, аргинин, аспарагиновая, валин, норвалин, гистидин, глицин, глутаминовая, изолейцин, лейцин, норлейцин, лизин, метионин, орнитин, серии, тирозин, треонин, триптофан, фенилаланин, и/или из других аминокислот, таких как γ-аминомасляная;

СА - карбоновая кислота, которая может быть выбрана из монокарбоновых кислот, таких как (но не ограничиваясь ими) уксусная, дихлоруксусная, изовалериановая; дикарбоновых кислот, таких как (но не ограничиваясь ими) азелаиновая, малоновая, щавелевая, фталевая, янтарная; гидроксикарбоновых кислот, таких как (но не ограничиваясь ими) винная, лимонная, молочная, яблочная; оксибензойных кислот, таких как (но не ограничиваясь указанным) салициловая; пиридинмонокарбоновых кислот, таких как (но не ограничиваясь указанным) никотиновая;

а=0÷3, b=1÷3, с=0÷3, при этом 1≤b+c≤4.

Представленные кислоты образуют в водных растворах с диоксидом германия комплексные соединения, которые устойчивы не только в водных растворах, но могут быть выделены в чистом виде. Этому способствует образование координационной связи между атомами азота и германия (N→Ge) либо кислородом ОН-группы гидроксикарбоновой кислоты и германия (HO→Ge).

Ниже приведены конкретные структурные формулы предпочтительных соединений II-XI, полученных по изобретению.

где R1 - фрагменты соответствующей α-аминокислоты; R2, R3 - фрагменты соответствующей гидроксикарбоновой кислоты; R4 - фрагменты соответствующей дикарбоновой кислоты.

Все соединения II-ХI охватываются общей структурной формулой (I). Так, например, соединения II-IV представляют собой комплексные соединения германия с α-аминокислотами, где мольное отношение аминокислоты к германию (коэффициент (b) в структурной формуле (I)) составляет 1, 2 и 3, соответственно, а отношение числа ОН-групп к германию (коэффициент (а) в структурной формуле (I)) составляет 3, 2 и 0, соответственно. Соединения V и VIII представляют собой комплекс германия с двумя молекулами α-аминокислоты и одной молекулой α-гидроксикарбоновой кислоты (в структурной формуле (I) b=2, с=1, а=0); соединение VI представляет собой комплекс германия с одной молекулой α-аминокислоты и одной молекулой α-гидроксикарбоновой кислоты (b=1, с=1, а=1), соединение VII - комплекс германия с двумя молекулами α-аминокислоты и одной молекулой двухосновной карбоновой кислоты (b=2, с=1, а=0) и т.д.

Присутствие аминокислоты в германийсодержащих соединениях придает комплексным соединениям высокую биологическую активность, и они могут быть полезны при разработке и приготовлении новых фармацевтических препаратов.

Сущность предлагаемого изобретения иллюстрируется следующими примерами, которые служат лишь для иллюстрации изобретения, но не для ограничения изобретения.

Пример 1

В круглодонную колбу, снабженную мешалкой и термометром, загружают 3,12 г (0,03 моль) α-диоксида германия, GeO2, 5,22 г (0,03 моль) аргинина, HN=C(NH2)NH(CH2)3CH(NH2)COOH, и 150 мл дистиллированной воды. Суспензию перемешивают при нагревании (85-95°С) в течение 2 часов. Образовавшийся прозрачный раствор охлаждают, фильтруют и удаляют воду на роторном испарителе. Получают 8,4 г (94%) белого аморфного порошка. ЯМР и ИК-спектры полученного соединения приведены на фиг.1а, б. Данные элементного анализа представлены в таблице 1. Данные элементного и спектрального анализа доказывают, что продукт соответствует соединению (II).

Пример 2

В круглодонную колбу, снабженную мешалкой и термометром, загружают 3,12 г (0,03 моль) α-диоксида германия, GeO2, 9,84 г (0,06 моль) моногидрата лизина, Н2N(СН2)4СН(NH2)СООН·H2O, и 200 мл дистиллированной воды. Суспензию перемешивают при нагревании (85-95°С) в течение 2 часов до образования прозрачного раствора. Далее раствор охлаждают, фильтруют и удаляют воду на роторном испарителе. Получают 11,4 г (96%) белого аморфного порошка. ЯМР и ИК-спектры полученного соединения приведены на фиг.2а, б. Данные элементного анализа представлены в таблице 1. Данные элементного и спектрального анализа доказывают, что продукт соответствует соединению (III).

Пример 3

В круглодонную колбу, снабженную мешалкой и термометром, загружают 3,12 г (0,03 моль) α-диоксида германия, GeO2, 10,71 г (0.09 моль) треонина, СН3СН(ОН)СН(NH2)СООН, и 300 мл дистиллированной воды. Суспензию перемешивают при нагревании (90-100°С) в течение 2 часов до образования прозрачного раствора. Затем раствор охлаждают, фильтруют и удаляют воду на роторном испарителе. Получают 12,4 г (97%) белого аморфного порошка. ЯМР и ИК-спектры полученного соединения приведены на фиг. 3а, б. Данные элементного анализа представлены в таблице 1. Данные элементного и спектрального анализа доказывают, что продукт соответствует соединению (IV).

Пример 4

В круглодонную колбу, снабженную мешалкой и термометром, загружают 3,12 г (0,03 моль) α-диоксида германия, GeO2, 10,44 г (0,06 моль) аргинина,

HN=C(NH2)NH(CH2)3CH(NH2)COOH, и 300 мл дистиллированной воды. Суспензию перемешивают при нагревании (85-95°С) в течение 1 часа до образования прозрачного раствора. Затем прибавляют 5,64 г (0,03 моль) азелаиновой кислоты, НООС(СН2)7СООН и дополнительно перемешивают в течение 2 часов. Далее раствор охлаждают, фильтруют и удаляют воду на роторном испарителе. Получают 17,2 г (95%) белого аморфного порошка. ЯМР и ИК-спектры полученного соединения приведены на фиг.4а, б. Данные элементного анализа представлены в таблице 1. Данные элементного и спектрального анализа доказывают, что продукт соответствует соединению (VII).

Пример 5

В круглодонную колбу, снабженную мешалкой и термометром, загружают 3,12 г (0,03 моль) α-диоксида германия, GeO2, 4,92 г (0,03 моль) моногидрата лизина, H2N(CH2)4CH(NH2)COOH·H2O, и 150 мл дистиллированной воды. Суспензию перемешивают при нагревании (85-95°С) в течение 1 часа до образования прозрачного раствора и затем прибавляют 6,3 г (0,03 моль) моногидрата лимонной кислоты, (НООССН2)2С(ОН)СООН·H2O. После перемешивания в течение 1 часа раствор охлаждают, фильтруют и удаляют воду на роторном испарителе. Получают 12,2 г (96%) белого аморфного порошка. ЯМР и ИК-спектры полученного соединения приведены на фиг.5а, б. Данные элементного анализа представлены в таблице 1. Данные элементного и спектрального анализа доказывают, что продукт соответствует соединению (VI).

Пример 6

В круглодонную колбу, снабженную мешалкой и термометром, загружают 3,12 г (0,03 моль) α-диоксида германия, GeO2, 4,5 г (0,06 моль) глицина, H2NCH2COOH, 6,3 г (0,03 моль) моногидрата лимонной кислоты, (НООССН2)2С(ОН)СООН·H2O, и 350 мл дистиллированной воды. Суспензию перемешивают при нагревании (90-100°С) в течение 4 часов. Образовавшийся прозрачный раствор охлаждают, фильтруют и удаляют воду на роторном испарителе. Получают 11,7 г (95%) белого аморфного порошка. ЯМР и ИК-спектры полученного соединения приведены на фиг.6а, б. Данные элементного анализа представлены в таблице 1. Данные элементного и спектрального анализа доказывают, что продукт соответствует соединению (VIII).

Пример 7

В круглодонную колбу, снабженную мешалкой и термометром, загружают 3,12 г (0,03 моль) α-диоксида германия, GeO2, 8,82 г (0,06 моль) глутаминовой кислоты, HOOC(CH2)2CH(NH2)COOH, 4,02 г (0,03 моль) яблочной кислоты, НООССН(ОН)СН2СООН, и 350 мл дистиллированной воды. Суспензию перемешивают при нагревании (85-100°С) в течение 3 часов. Образовавшийся прозрачный раствор охлаждают, фильтруют и удаляют воду на роторном испарителе. Получают 14,0 г (94%) белого аморфного порошка. ЯМР и ИК-спектры полученного соединения приведены на фиг.7а, б. Данные элементного анализа представлены в таблице 1. Данные элементного и спектрального анализа доказывают, что продукт соответствует соединению (VIII).

Пример 8

В круглодонную колбу, снабженную мешалкой и термометром, загружают 3,12 г (0,03 моль) α-диоксида германия, GeO2, 7,14 г (0,06 моль) треонина, CH3CH(OH)CH(NH2)COOH, 3,48 г (0,03 моль) фумаровой кислоты,

НООССН=СНСООН, и 350 мл дистиллированной воды. Суспензию перемешивают при нагревании (85-100°С) в течение 5 часов. Образовавшийся прозрачный раствор охлаждают, фильтруют и удаляют воду на роторном испарителе. Получают 11,8 г (93%) белого аморфного порошка. ЯМР и ИК-спектры полученного соединения приведены на фиг.8а, б. Данные элементного анализа представлены в таблице 1. Данные элементного и спектрального анализа доказывают, что продукт соответствует соединению (VII).

Пример 9

В круглодонную колбу, снабженную мешалкой и термометром, загружают 3,12 г (0,03 моль) α-диоксида германия, GeO2, 9,84 г (0,06 моль) моногидрата лизина, H2N(CH2)4CH(NH2)COOH·H2O, 4,14 г (0,03 моль) салициловой кислоты, НОС6Н4СООН, и 300 мл дистиллированной воды. Суспензию перемешивают при нагревании (85-100°С) в течение 5 часов. Образовавшийся прозрачный раствор охлаждают, фильтруют и удаляют воду на роторном испарителе. Получают 14,1 г (94%) белого аморфного порошка. ЯМР и ИК-спектры полученного соединения приведены на фиг.9а, б. Данные элементного анализа представлены в таблице 1. Данные элементного и спектрального анализа доказывают, что продукт соответствует соединению (V).

Пример 10

В круглодонную колбу, снабженную мешалкой и термометром, загружают 3,12 г (0,03 моль) α-диоксида германия, GeO2, 5,22 г (0,03 моль) аргинина,

HN=C(NH2)NH(CH2)3CH(NH2)COOH, 3,48 г (0,03 моль) фумаровой кислоты,

НООССН=СНСООН, и 300 мл дистиллированной воды. Суспензию перемешивают при нагревании (80-90°С) в течение 4 часов. Образовавшийся прозрачный раствор охлаждают, фильтруют и удаляют воду на роторном испарителе. Получают 15,2 г (95%) белого аморфного порошка. ЯМР и ИК-спектры полученного соединения приведены на фиг.10а, б. Данные элементного анализа представлены в таблице 1. Данные элементного и спектрального анализа доказывают, что продукт соответствует соединению (VII).

Пример 11

В круглодонную колбу, снабженную мешалкой и термометром, загружают 3,12 г (0,03 моль) α-диоксида германия, GeO2, 7,14 г (0,06 моль) треонина, СН3СН(ОН)СН(NH2)СООН, 3,69 г (0,03 моль) никотиновой кислоты, NC5H4СООН, и 350 мл дистиллированной воды. Суспензию перемешивают при нагревании (85-100°С) в течение 5 часов. Образовавшийся прозрачный раствор охлаждают, фильтруют и удаляют воду на роторном испарителе. Получают 12,0 г (93%) белого аморфного порошка. ЯМР и ИК-спектры полученного соединения приведены на фиг.11а, б. Данные элементного анализа представлены в таблице 1. Данные элементного и спектрального анализа доказывают, что продукт соответствует соединению (IX).

Пример 12

В круглодонную колбу, снабженную мешалкой и термометром, загружают 3,12 г (0,03 моль) α-диоксида германия, GeO2, 7,74 г (0,06 моль) дихлоруксусной кислоты, Cl2CHCOOH и 250 мл дистиллированной воды. Суспензию перемешивают при нагревании (85-100°С) в течение 4-5 часов. К полученному прозрачному раствору добавляют 3,57 г (0,03 моль) треонина, СН3СН(ОН)СН(NH2)СООН. Раствор дополнительно перемешивают при нагревании (85-100°С) в течение 2 часов. Далее раствор охлаждают, фильтруют и удаляют воду методом лиофильной (сублимационной) сушки. Получают 12,8 г (96%) белого аморфного порошка. Данные элементного анализа представлены в таблице 1 (соединение X).

Пример 13

В круглодонную колбу, снабженную мешалкой и термометром, загружают 3,12 г (0,03 моль) α-диоксида германия, GeO2, 6,3 г (0,03 моль) моногидрата лимонной кислоты, (НООССН2)2С(ОН)СООН·H2O, 4,02 г (0,03 моль) яблочной кислоты, НООССН(ОН)СН2СООН, 4,5 г (0,06 моль) глицина, H2NCH2COOH, и 350 мл дистиллированной воды. Суспензию перемешивают при нагревании (90-100°С) в течение 4 часов. Образовавшийся прозрачный раствор охлаждают, фильтруют и удаляют воду на роторном испарителе. Получают 15,5 г (95%) белого аморфного порошка. Данные элементного анализа представлены в таблице 1 (соединение XI).

Острая токсичность

Определение острой токсичности проводили на нелинейных белых мышах-самцах массой 18-20 г при однократном внутрижелудочном (в/ж) введении в дозах 1000, 2000, 3000, 4000 и 5000 мг/кг 20% водного раствора по 0,1; 0,2; 0,3; 0,4; и 0,5 мл на 20 г массы мыши, соответственно. Введение каждого из соединений, полученных в примерах 1-13, проводили в отдельности.

В течение 14 дней после введения каждого из соединений не обнаружено признаков интоксикации, отставания прироста массы тела и гибели животных.

В интервале исследованных доз не наблюдалось какого-либо нарушения движений животных, рефлексов и поведения. Анатомические исследования не обнаружили изменений в легких, почках, селезенке и других органах.

Для мышей величина LD50 для исследованных соединений составила более 5000 мг/кг, что позволяет отнести их к IV классу опасности в соответствии с классификацией опасности веществ по степени воздействия на организм по ГОСТу 12.1.007-76 или к V классу токсичности (практически нетоксичным веществам) по Hodge, Sterner (1943).

Промышленная применимость

Присутствие аминокислоты в германийсодержащих соединениях придает им высокую биологическую активность и они могут быть полезны при разработке и приготовлении новых фармацевтических препаратов. Полученные соединения нетоксичны и могут найти применение в качестве новых средств в фармакотерапии, в здравоохранении и медицине, медицинской, фармацевтической, ветеринарной, биотехнологической, парфюмерно-косметической и пищевой промышленности.

1. Комплексные соединения германия с аминокислотами или с аминокислотами и карбоновыми кислотами общей формулы где АА - аминокислота,СА - карбоновая кислота,а=0÷3, b=1÷3, с=0÷3 и 1≤b+с≤4,при этом все АА в комплексном соединении являются одинаковыми или разными и все СА в комплексном соединении являются одинаковыми или разными.

2. Комплексные соединения германия по п.1,где аминокислоты АА выбраны из группы, содержащей α-аминокислоты, например аланин, аминомасляная, аргинин, аспарагиновая, валин, норвалин, гистидин, глицин, глутаминовая, изолейцин, лейцин, норлейцин, лизин, метионин, орнитин, серин, тирозин, треонин, триптофан, фенилаланин, и аминокислоты, которые не являются α-аминокислотами, например γ-аминомасляная;карбоновые кислоты выбраны из группы, содержащей монокарбоновые кислоты, такие как уксусная, дихлоруксусная, изовалериановая; дикарбоновые кислоты, такие как азелаиновая, малоновая, щавелевая, фталевая, янтарная; гидроксикарбоновые кислоты, такие как винная, лимонная, молочная, яблочная; оксибензойные кислоты, например салициловая кислота; пиридинмонокарбоновые кислоты, например никотиновая кислота.

3. Комплексные соединения германия по п.1, имеющие структурные формулы II-XI где R1 - фрагменты соответствующей α-аминокислоты; R2, R3 - фрагменты соответствующей гидроксикарбоновой кислоты; R4 - фрагменты соответствующей дикарбоновой кисл