Декстран, функционализированный гидрофобными аминокислотами

Иллюстрации

Показать все

Настоящее изобретение относится к новым биологически совместимым полимерам на основе декстрана, а именно функционализированному декстрану общей формулы I. Декстран функционализирован по меньшей мере одним остатком гидрофобной альфа-аминокислоты, причем указанная альфа-аминокислота сшита или соединена с декстраном посредством связующей ветви R и одной функции F, которые имеют значения, указанные в описании. Под остатком гидрофобной аминокислоты подразумевают продукт взаимодействия между амином аминокислоты и кислотой, входящей в состав связующей ветви, причем декстран является амфифильным при нейтральном рН, а степень полимеризации декстрана составляет от 10 до 10000. Согласно одному варианту осуществления гидрофобная аминокислота выбрана из фенилаланина, лейцина, изолейцина и валина и их спиртовых, амидных или декарбоксилированных производных. Настоящее изобретение относится также к фармацевтической композиции, содержащей один из декстранов по изобретению. 2 н. и 10 з.п. ф-лы, 6 пр.

Реферат

Настоящее изобретение относится к новым биологически совместимым полимерам на основе декстрана.

Указанные полимеры могут использоваться, в частности, для введения действующего(их) начала(начал) (РА) людям и животным для лечебной и/или профилактической цели.

Настоящее изобретение относится к новым амфифильным производным декстрана, функционализированным, по меньшей мере, одной гидрофобной альфа-аминокислотой. Указанные новые производные декстрана обладают хорошей биологической совместимостью, и их гиброфобность легко изменяется без нарушения биологической совместимости.

Из амфифильных декстранов карбоксиметилдекстраны Biodex, описанные в патенте US6646120, модифицированы бензиламином. Данная гидрофобная группа не принадлежит к классу альфа-аминокислот.

Dellacherie et al. также описали амфифильные декстраны (Durand, A. et al., Biomacromolecules 2006, 7, 958-964)(Durand, Alain et al., Colloid Polym. Sci. 2006, 284, 536-545), полученные действием гидроксильных групп декстрана на эпоксиды (фенилглицидиловый простой эфир, 1,2-эпоксиоктан или 1,2-эпоксидодекан). Однако описанные амфифильные полимеры не функционализированы производными аминокислоты.

Bauer et al. описывают декстраны, функционализированные С1014 жирными кислотами, в патенте US5750678. Полученные полимеры являются амфифильными, но они не модифицированы гидрофобными аминокислотами.

В недавнем обзоре функциональных полимеров на основе декстранов (Heinze, Thomas et al., Adv. Polym. Sci. 2006, 205, 199-291) не упоминается декстран, функционализированный гидрофобной аминокислотой.

Таким образом, изобретение относится к декстрану, функционализированному, по меньшей мере, одним гидрофобным остатком альфа-аминокислоты, именуемым АА, причем указанная альфа-аминокислота сшита или соединена с декстраном посредством связующей ветви R и функции F, причем

R представляет собой цепь с 1-18 атомами углерода, необязательно разветвленную и/или ненасыщенную, содержащую один или несколько гетероатомов, таких как О, N и/или S, и имеющую, по меньшей мере, одну кислотную группу,

- F представляет собой сложный эфир, сложный тиоэфир, амид, карбонат, карбамат, простой эфир, простой тиоэфир или амин,

- АА представляет собой гидрофобный аминокислотный остаток, L или D, продукт взаимодействия аминогруппы аминокислоты и кислотной группы, входящей в состав группы R.

Под гидрофобным остатком аминокислоты понимают продукт взаимодействия аминогруппы аминокислоты и кислотной группы, входящей в состав группы R, причем декстран является амфифильным при нейтральном рН.

Согласно изобретению функционализированный декстран может отвечать следующим общим формулам:

где

R представляет собой цепь с 1-18 атомами углерода, необязательно разветвленную и/или ненасыщенную, содержащую один или несколько гетероатомов, таких как О, N и/или S, и имеющую, по меньшей мере, одну кислотную группу,

- F представляет собой сложный эфир, сложный тиоэфир, амид, карбонат, карбамат, простой эфир, простой тиоэфир или амин,

- АА представляет собой гидрофобный аминокислотный остаток, L или D, продукт взаимодействия аминогруппы аминокислоты и кислотной группы, входящей в группу R,

i представляет собой молярную долю заместителя F-R-[AA]n в гликозидном звене и составляет от 0,1 до 2,

n представляет собой молярную долю R, замещенных АА, и составляет от 0,05 до 1.

Когда R не замещен АА, тогда кислотная группа или кислотные группы из группы R представляют собой карбоксилаты с щелочным катионом, таким как, предпочтительно, Na, K,

причем указанный декстран является амфифильным при нейтральном рН.

Согласно одному варианту осуществления F представляет собой сложный эфир, карбонат, карбамат или простой эфир.

Согласно одному варианту осуществления полисахарид по изобретению представляет собой карбоксиметилдекстран (DMC) формулы IV:

или соответствующую кислоту.

Согласно одному варианту осуществления полисахарид по изобретению представляет собой декстран моносукцинат или декстранянтарную кислоту (DSA) формулы V:

или соответствующую кислоту.

Согласно одному варианту осуществления полисахарид по изобретению отличается тем, что группа R выбрана из следующих групп:

или из их солей с щелочными катионами.

Согласно одному варианту осуществления декстран по изобретению отличается тем, что гидрофобная аминокислота выбрана из производных триптофана, таких как триптофан, триптофанол, триптофанамид, 2-индолэтиламин и их солей с щелочными катионами.

Согласно одному варианту осуществления декстран по изобретению отличается тем, что производные триптофана выбраны из сложных эфиров триптофана формулы II:

причем Е является группой, которая может быть

- линейным или разветвленным C18алкилом,

- линейным или разветвленным алкилС620арилом или С620арилалкилом.

Согласно одному варианту осуществления декстран по изобретению представляет собой карбоксиметилдекстран, модифицированный сложным этиловым эфиром триптофана, формулы VI:

Согласно одному варианту осуществления декстран по изобретению представляет собой декстран моносукцинат или декстранянтарную кислоту (DSA), модифицированные сложным этиловым эфиром триптофана, формулы VII:

Согласно одному варианту осуществления декстран по изобретению отличается тем, что гидрофобная аминокислота выбрана из фенилаланина, лейцина, изолейцина и валина и их спиртовых, амидных или декарбоксилированных производных.

Согласно одному варианту осуществления декстран по изобретению отличается тем, что производные фенилаланина, лейцина, изолейцина и валина выбраны из сложных эфиров данных аминокислот формул III:

причем Е определено выше.

Декстран может иметь степень полимеризации m, составляющую от 10 до 10000.

Согласно одному варианту осуществления степень полимеризации декстрана m составляет от 10 до 1000.

Согласно другому варианту осуществления степень полимеризации декстрана m составляет от 10 до 500.

Декстраны по изобретению получают путем сшивки указанного сложного эфира аминокислоты с декстраном, модифицированным группой R.

Согласно одному варианту осуществления сложный эфир формулы II

где Е является группой, которая может быть

- линейным или разветвленным С18алкилом.

- линейным или разветвленным алкилС620арилом или С620арилалкилом,

сшит с декстраном (DMC) формулы IV

Согласно другому варианту осуществления сложный эфир формулы II, определенной выше, сшит с декстраном (DSA) формулы V

Изобретение также относится к фармацевтической композиции, содержащей один из декстранов по изобретению, описанных выше, и, по меньшей мере, одно действующее начало.

Под действующим началом подразумевают продукт в виде одного химического соединения или в виде комбинации соединений, обладающих физиологической активностью. Упомянутое действующее вещество может быть экзогенным, т.е. внесенным композицией по изобретению. Оно может быть также эндогенным, например факторы роста, которые выделяются в ране на первой стадии заживления и которые смогут быть удержаны на упомянутой ране композицией по изобретению.

Изобретение относится также к фармацевтической композиции по изобретению, описанной выше, отличающейся тем, что она может быть введена оральным, назальным, вагинальным, буккальным путем.

Изобретение относится также к описанной выше фармацевтической композиции по изобретению, отличающейся тем, что она получена высушиванием и/или лиофилизацией.

Изобретение относится также к описанной выше фармацевтической композиции по изобретению, отличающейся тем, что она может быть введена в виде трубки (stent), пленки или «покрытия» имплантируемых биоматериалов, импланта.

Изобретение относится также к описанной выше фармацевтической композиции по изобретению, отличающейся тем, что действующее начало выбрано из группы, состоящей из протеинов, гликопротеинов, пептидов и непептидных терапевтических молекул.

Приемлемые фармацевтические композиции могут быть либо в жидкой форме (наночастицы или микрочастицы в водной суспензии или в смеси с растворителями), либо в форме порошка, импланта или пленки.

В случае локального и системного высвобождений предлагаемые формы могут быть внесены внутривенно, подкожно, интрадермически, внутримышечно, орально, назально, вагинально, внутриглазно, буккально и т.д.

Изобретение относится также к использованию функционализированных декстранов по изобретению для получения фармацевтических композиций, описанных выше.

Пример 1

Синтез карбоксиметилдекстрана, модифицированного сложным этиловым эфиром триптофана

Кислотные функции (i=1,0) карбоксиметилдекстрана DP moyen 250 (10 г) активируют в присутствии N-метилморфолина (4,7 г) и изобутилхлорформиата (6,4 г) в ДМФ (180 мл). Гидрохлорид сложного этилового эфира триптофана (5,4 г, Bachem), нейтрализованный ТЭА (2,0 г) в ДМФ (54 мл), далее сшивают с активированным полимером при 4°С в течение 45 минут. После гидролиза остающихся активированных кислот (94 мл воды) полимер растворяют в воде (720 мл) и фиксируют рН, равный 7, добавлением гидроксида натрия. Далее полимер очищают ультрафильтрацией. Полученный полимер имеет следующую структуру:

Молярная доля кислот, модифицированных сложным этиловым эфиром триптофана, составляет 0,45, согласно данным ЯМР 1Н в D2O/NaOD (n=0,45). Молярная доля кислот, не модифицированных и модифицированных гликозидным звеном, составляет 1,0 (i=1,0).

Пример 2

Синтез карбоксиметилдекстрана, модифицированного сложным метиловым эфиром лейцина

Кислотные функции (i=1,0) карбоксиметилдекстрана DP moyen 250 (10 г) активируют в присутствии N-метилморфолина (4,7 г) и изобутилхлорформиата (6,4 г) в ДМФ (180 мл). Гидрохлорид сложного метилового эфира лейцина (3,7 г, Bachem), нейтрализованный ТЭА (2,0 г) в ДМФ (54 мл), далее сшивают с активированным полимером при 4°С в течение 45 минут. После гидролиза остающихся активированных кислот (94 мл воды) полимер растворяют в воде (720 мл) и фиксируют рН, равный 7, добавлением гидроксида натрия. Далее полимер очищают ультрафильтрацией. Полученный полимер имеет следующую структуру:

Молярная доля кислот, модифицированных сложным метиловым эфиром лейцина, составляет 0,30, согласно данным ЯМР 1Н в D2O/NaOD (n=0,30). Молярная доля кислот, не модифицированных и модифицированных гликозидным звеном, составляет 1,0 (i=1,0).

Пример 3

Синтез карбоксиметилдекстрана, модифицированного сложным этиловым эфиром фенилаланина

Кислотные функции (i=1,0) карбоксиметилдекстрана DP moyen 250 (10 г) активируют в присутствии N-метилморфолина (4,7 г) и изобутилхлорформиата (6,4 г) в ДМФ (180 мл). Гидрохлорид сложного этилового эфира фенилаланина (4,6 г, Bachem), нейтрализованный ТЭА (2,0 г) в ДМФ (54 мл), далее сшивают с активированным полимером при 4°С в течение 4 5 минут. После гидролиза остающихся активированных кислот (94 мл воды) полимер растворяют в воде (720 мл) и фиксируют рН, равный 7, добавлением гидроксида натрия. Далее полимер очищают ультрафильтрацией. Полученный полимер имеет следующую структуру:

Молярная доля кислот, модифицированных сложным метиловым эфиром фенилаланина, составляет 0,45, согласно данным ЯМР 1Н в D2O/NaOD (n=0,45). Молярная доля кислот, не модифицированных и модифицированных гликозидным звеном, составляет 1,0 (i=1,0).

Пример 4

Синтез карбоксиметилдекстрана, модифицированного натриевой солью триптофана

Полимер, полученный в примере 1, растворяют в воде (30 мг/мл) и фиксируют рН, равный 12,5, путем добавления 1N раствора гидроксида натрия. После перемешивания в течение ночи при температуре окружающей среды продукт очищают ультрафильтрацией.

Молярная доля кислот, модифицированных натриевой солью триптофана, составляет 0,45, согласно данным ЯМР 1Н в D20 (n=0,45). Молярная доля кислот, не модифицированных и модифицированных гликозидным звеном, составляет 1,0 (i=1,0).

Пример 5

Синтез декстранянтарной кислоты, модифицированной сложным этиловым эфиром триптофана

Декстран DP moyen 250, D40 (10 г, Amersham Biosciences) растворяют в ДМСО (25 мл) при 40°С. К этому раствору добавляют раствор янтарного ангидрида в ДМФ (6,2 г в 25 мл) и N-метилморфолин, NMM, растворенный в ДМФ (6,2 г в 25 мл). Через час реакционную смесь растворяют в воде (400 мл) и полимер очищают ультрафильтрацией. Молярная доля сложного эфира янтарной кислоты, образованного гликозидным звеном, составляет 1,0, согласно ЯМР 1Н в D2O/NaOD (i=1,0).

Водный раствор DSA (350 г раствора при 28 мг/мл) окисляют посредством ионообменной смолы (300 мл влажной смолы, Purolite, ClOОН). Полученный раствор замораживают, затем лиофилизируют.

Окисленный DSA (8 г) растворяют в ДМФ (115 мл) при температуре окружающей среды. К раствору, охлажденному до 0°С, добавляют этилхлорформиат (3,3 г), затем NMM (3,1 г). Гидрохлорид сложного этилового эфира триптофана (3,7 г, Bachem), нейтрализованный ТЭА (1,4 г) в ДМФ (37 мл), добавляют затем в реакционную смесь при 4°С и смесь перемешивают в течение 45 минут. После гидролиза остающихся активированных кислот полимер растворяют в воде (530 мл) и фиксируют рН, равный 7, путем добавления гидроксида натрия. Затем полимер очищают ультрафильтрацией. Полученный полимер имеет следующую структуру:

Молярная доля кислот, модифицированных сложным этиловым эфиром триптофана, составляет 0,45, согласно ЯМР 1H в D2O/NaOD (n=0,45). Молярная доля кислот, не модифицированных и модифицированных гликозидным звеном, составляет 1,0 (i=1,0).

Пример 6

Синтез янтарной кислоты декстрана, модифицированной сложным этиловым эфиром триптофана

Декстран DP moyen 250, D40 (20 г, Amersham Biosciences) растворяют в ДМСО (50 мл) при 40°С. К этому раствору добавляют раствор янтарного ангидрида в ДМФ (24,7 г в 50 мл) и N-метилморфолин, NMM, растворенный в ДМФ (25,0 г в 50 мл). Через 3 часа реакционную смесь растворяют в воде (800 мл) и полимер очищают ультрафильтрацией. Молярная доля сложного эфира янтарной кислоты, образованного гликозидным звеном, составляет 1,8, согласно ЯМР 1Н в D2O/NaOD (i=1,8).

Водный раствор DSA (720 г раствора при 29,5 мг/мл) окисляют посредством ионообменной смолы (300 мл влажной смолы, Purolite, ClOOH). Полученный раствор замораживают и лиофилизируют.

Окисленный DSA (22,3 г) растворяют в ДМФ (542 мл) при температуре окружающей среды. К раствору, охлажденному до 0°С, добавляют этилхлорформиат (13,4 г), затем NMM (12,5 г). Гидрохлорид сложного этилового эфира триптофана (7,5 г, Bachem), нейтрализованный ТЭА (2,8 г) в ДМФ (75 мл), далее добавляют в реакционную смесь при 4°С и смесь перемешивают в течение 45 минут. После гидролиза остающихся активированных кислот полимер растворяют в воде (530 мл) и фиксируют рН, равный 7, путем добавления гидроксида натрия. Затем полимер очищают ультрафильтрацией. Полученный полимер имеет следующую структуру:

Молярная доля кислот, модифицированных сложным этиловым эфиром триптофана, составляет 0,25, согласно ЯМР 1Н в D2O/NaOD (n=0,25). Молярная доля кислот, не модифицированных и модифицированных гликозидным звеном, составляет 1,8 (i=1,8).

1. Функционализированный декстран, отличающийся тем, что он отвечает следующей общей формуле: где- R представляет собой цепь, содержащую от 1 до 18 атомов углерода, необязательно, разветвленную и/или ненасыщенную, содержащую один или несколько гетероатомов, таких как О, N и/или S, и имеющую, по меньшей мере, одну кислотную функцию,- F представляет собой сложный эфир, сложный тиоэфир, амид, карбонат, карбамат, простой эфир, простой тиоэфир или амин,- АА представляет собой гидрофобную аминокислоту, L или D, продукт взаимодействия аминогруппы аминокислоты и кислотной группы, входящей в группу R, где АА выбирают из группы, состоящей из триптофана, фенилаланина, лейцина, изолейцина и валина и их спиртовых, амидных или декарбоксилированных производных и их солей с щелочными катионами,i означает молярную долю заместителя F-R-[AA]n в гликозидном звене и составляет от 0,1 до 2,n означает молярную долю R, замещенного АА, и составляет от 0,05 до 1, когда R не замещен АА, кислотная группа или кислотные группы из группы R являются карбоксилатами с предпочтительно щелочным катионом, таким как Na, K,причем указанный декстран является амфифильным при нейтральном рН и степень полимеризации m декстрана составляет от 10 до 10000.

2. Функционализированный декстран по п.1, отличающийся тем, что часть, обозначаемая как «декстран-F-R» представляет собой карбоксиметилдекстран (DMC) формулы IV где m составляет от 10 до 1000, или соответствующую кислоту.

3. Функционализированный декстран по п.1, отличающийся тем, что часть, обозначаемая как «декстран-F-R» представляет собой декстранмоносукцинат или декстранянтарную кислоту (DSA) формулы V где m составляет от 10 до 1000, или соответствующую кислоту.

4. Функционализированный декстран по любому из пп.1-3, отличающийся тем, что группа F представляет собой сложный эфир, карбонат, карбамат или простой эфир.

5. Функционализированный декстран по п.2, отличающийся тем, что группа F представляет собой сложный эфир.

6. Функционализированный декстран по п.3, отличающийся тем, что группа F представляет собой сложный эфир.

7. Функционализированный декстран по любому из пп.1-3, 5 и 6, отличающийся тем, что группа R выбрана из следующих групп: или из их солей со щелочными катионами.

8. Функционализированный декстран по п.5, отличающийся тем, что группа R выбрана из группы или из ее солей со щелочными катионами.

9. Функционализированный декстран по п.6, отличающийся тем, что группа R выбрана из группы или из ее солей со щелочными катионами.

10. Функционализированный декстран по п.2, отличающийся тем, что модифицирован натриевой солью триптофана.

11. Функционализированный декстран по любому из пп.1-3, 5, 6, 8 и 9, отличающийся тем, что гидрофобная аминокислота АА выбрана из фенилаланина, лейцина, изолейцина и валина и их спиртовых, амидных или декарбоксилированных производных.

12. Фармацевтическая композиция, отличающаяся тем, что она содержит декстран по любому из предыдущих пунктов и, по меньшей мере, одно действующее начало.