Устройство датчика для целевых частиц в пробе

Иллюстрации

Показать все

Это изобретение относится к устройству (100) датчика и способу для определения величины целевых частиц (1) на контактной поверхности (112), прилегающей к пробоотборной камере (2). Целевые частицы (1) в пробоотборной камере обнаруживаются посредством элемента датчика (SE), и обеспечивается, по меньшей мере, один соответствующий сигнал датчика (s, s'). Блок оценки (EU) затем определяет величину целевых частиц (1) в первой зоне (Z1) непосредственно на контактной поверхности (112) и второй зоне (Z2) на расстоянии (z) от контактной поверхности на основе этого сигнала датчика. В подходе с использованием оптического измерения нарушенное полное внутреннее отражение, происходящее при разных рабочих условиях (например, длине волны, угле падения), может использоваться, чтобы извлекать информацию о первой и второй зонах (Z1, Z2). В подходе магнитного измерения разные магнитные поля возбуждения могут использоваться, чтобы возбуждать магнитные целевые частицы различным образом в первой и второй зоне (Z2). Более того, может оцениваться временной курс сигналов датчика (s, s'), в частности, по отношению к стохастическим перемещениям целевых частиц (1). Техническим результатом изобретения является повышение точности и надежности определения величины целевых частиц. 3 н. и 11 з.п. ф-лы, 28 ил.

Реферат

Изобретение относится к способу и устройству датчика для определения величины целевых частиц на контактной поверхности, прилегающей к пробоотборной камере, в которой могут обеспечиваться целевые частицы. Помимо этого, изобретение относится к использованию такого устройства.

US 2005/213204 A1 описывает систему трехмерного конфокального микроскопа для выполнения обработки изображений на основе данных съема изображения срезовых изображений пробы, выведенной из конфокального сканера, и, таким образом, получения трехмерного изображения пробы.

WO 91/03728 описывает систему химического датчика направляемой оптической волны, выполненную с возможностью измерения концентрации химических частиц в присутствии тонкой пленки загрязняющих поверхность веществ на волноводе.

US 2005/0048599 A1 раскрывает оптический способ для исследования микроорганизмов, которые метятся с помощью частиц, так что на них может действовать (например, магнитная) сила. В одном варианте осуществления этого способа световой луч направляется через прозрачный материал к поверхности, где он испытывает полное внутреннее отражение. Свет этого луча, который покидает прозрачный материал как быстро затухающая волна, рассеивается микроорганизмами и/или другими компонентами на поверхности и затем обнаруживается фотодетектором или используется, чтобы высвечивать микроорганизмы для визуального наблюдения.

Более того, из WO 2005/010543 A1 и WO 2005/010542 A2 известно устройство магнитного датчика (которые включаются в настоящую заявку по ссылке), которое может, например, использоваться в микрожидкостном биодатчике для обнаружения молекул, например биологических молекул, помеченных с помощью магнитных бусин. Устройство магнитного датчика обеспечивается матрицей блоков датчика, содержащих провода для генерирования магнитного поля и гигантских магнитных сопротивлений (GMR) для обнаружения полей утечки, сгенерированных намагниченными бусинами. Сигнал GMR при этом показывает количество капель рядом с блоком датчика.

Исходя из описанной ситуации, цель настоящего изобретения представляет собой обеспечение альтернативного средства для определения величины целевых частиц в зоне пробоотборной камеры, в частности на контактной поверхности, с улучшенной точностью и надежностью.

Эта цель достигается посредством устройства датчика по п. 1 формулы изобретения, способа по п. 9 формулы изобретения и применения по п. 14 формулы изобретения. Предпочтительные варианты осуществления раскрываются в зависимых пунктах формулы изобретения.

Устройство датчика согласно настоящему изобретению служит для определения величины целевых частиц на контактной поверхности, прилегающей к пробоотборной камере, в которой может обеспечиваться проба с упомянутыми целевыми частицами.

Термин "целевая частица" относится в этом контексте к любой связанной части материала, который подлежит обнаружению, такого как, например, биологическое вещество (биомолекула, комплекс, клеточная фракция, клетка и т.д.). Предпочтительно "целевая частица" содержит интересующее вещество и ассоциированную помечающую частицу (атом, молекула, комплекс, наночастица, микрочастица и т.д.), которое обладает некоторым свойством (например, оптической плотностью, магнитной восприимчивостью, электрическим зарядом, флуоресценцией, радиоактивностью и т.д.), которое может обнаруживаться, таким образом, косвенно выявляя присутствие интересующего ассоциированного вещества. Более того, целевые частицы, подлежащие определению, могут все быть одного и того же типа или разных типов (например, разные биомолекулы).

"Пробоотборная камера" является обычно пустой полостью или полостью, заполненной некоторым веществом, таким как гель, которое может абсорбировать вещество пробы; она может быть открытой полостью, закрытой полостью или полостью, соединенной с другими полостями посредством каналов соединения текучей среды.

"Контактная поверхность" является границей раздела между пробоотборной камерой и другим компонентом, например прозрачным носителем или некоторой (например, полупроводниковым) подложкой, на которой целевые частицы могут собираться.

В заключение следует отметить, что "величина целевых частиц" может выражаться различными соответствующими способами, например, как абсолютное количество или полная масса целевых частиц (в заданном объеме), или как плотность (т.е. количество или масса целевых частиц в расчете на единичную область или объем).

Устройство датчика содержит следующие компоненты:

a) элемент датчика для обнаружения целевых частиц в пробоотборной камере и для обеспечения, по меньшей мере, одного соответствующего сигнала датчика (при этом термин "сигнал датчика" должен в последующем использоваться как однозначное указание на этот конкретный сигнал элемента датчика). Как будет иллюстрироваться по отношению к предпочтительным вариантам осуществления этого изобретения, элемент датчика может обеспечивать обнаружение целевых частиц посредством любого подходящего способа или принципа, например, посредством оптических, магнитных, механических, акустических, термических и/или электрических измерений.

Сигнал датчика обычно представляет собой электрический сигнал, соответствующий скалярному значению, которое относится к величине целевых частиц в некоторой области пробоотборной камеры;

b) блок оценки для определения величины целевых частиц в "первой зоне" и в другой "второй зоне" на основе упомянутого, по меньшей мере, одного сигнала датчика, при этом "первая зона" по определению является подобластью пробоотборной камеры, которая размещается непосредственно на контактной поверхности, и при этом "вторая зона" по определению является подобластью пробоотборной камеры, которая размещается на ненулевом расстоянии от контактной поверхности, т.е. отделена от контактной поверхности посредством некоторого промежуточного пространства. Первая и вторая зоны часто являются неперекрывающимися, хотя в общем случае допускается ограниченная величина перекрытия. Более того, величина целевых частиц в первой и/или второй зоне может определяться непосредственно или косвенно, т.е. блок оценки может обеспечивать значения, которые непосредственно представляют упомянутые величины, или значения, которые только неявно зависят от упомянутых величин. Блок оценки может, например, обеспечивать одиночное выходное значение, которое напрямую представляет величину целевых частиц в первой зоне, прилегающей к контактной поверхности, при этом это значение определяют посредством принятия в рассмотрение величины целевых частиц во второй зоне (например, как корректирующий коэффициент).

В заключение следует отметить, что блок оценки может реализовываться посредством специализированного электронного аппаратного обеспечения, аппаратного обеспечения для обработки цифровых данных с соответствующим программным обеспечением или их комбинации.

Описанное устройство датчика обеспечивает преимущество, заключающееся в том, что величина целевых частиц (непосредственно или косвенно) оценивается в двух разных зонах, именно первой зоне, прилегающей к контактной поверхности - которая обычно является зоной первичного интереса, например, если биологические целевые молекулы ограничиваются конкретными сайтами связывания на контактной поверхности, - и одновременно в другой второй зоне. Вследствие своей удаленности от контактной поверхности вторая зона обеспечивает информацию о величине или концентрации целевых частиц в объемной пробе. Эта информация является очень ценной во многих случаях, так как величины целевых частиц в двух зонах обычно имеют сильную взаимозависимость, так что корректные заключения по измерениям требуют принятия в рассмотрение обоих величин. В конкурентном анализе, в котором биомолекулы конкурируют с сайтами связывания на контактной поверхности за целевые частицы, величина биомолекул может, например, корректно определяться, только если обе величины связанных целевых частиц (первая зона) и свободных целевых частиц (вторая зона) известны.

Конкретные варианты реализации устройства датчика могут быть выполнены во множестве различных форм. Одна большая группа вариантов реализации ("подход с двумя сигналами датчика") отличается тем, что элемент датчика обеспечивает, по меньшей мере, два сигнала датчика, которые разным образом относятся или являются чувствительными к величине целевых частиц в первой зоне и второй зоне, соответственно. Комбинирование этих, по меньшей мере, двух сигналов датчика соответствующим способом может, таким образом, выявлять величину целевых частиц в первой зоне и/или второй зоне. Одна непосредственная реализация этого подхода использует элемент датчика, который может осуществлять измерение в двух зонах с разными чувствительностями, например, обеспечивая первый сигнал датчика, измеренный с высокой чувствительностью в первой зоне и низкой чувствительностью во второй зоне, и второй сигнал датчика, полученный противоположным образом.

Во многих вариантах осуществления вышеупомянутого случая блок оценки может быть выполнен с возможностью определения взвешенной разницы упомянутых, по меньшей мере, двух сигналов датчика (или, эквивалентно, линейной комбинации всех сигналов датчика). Таким образом, простая математическая операция часто будет уже достаточной для извлечения интересующей информации.

Согласно другому варианту осуществления этого изобретения, пробоотборная камера содержит зону исключения, прилегающую к части контактной поверхности, в которую по определению не могут входить целевые частицы. Выполнение в такой зоне исключения измерений с помощью элемента датчика может способствовать более четкому определению различий между первой и второй зоной в сигнале (сигналах) датчика.

В последующем будут описываться более подробно конкретные реализации "подхода с двумя сигналами датчика", которые основываются на оптических измерениях. В этих вариантах осуществления элемент датчика содержит:

a) по меньшей мере, один источник света для излучения двух световых лучей, которые в последующем называются "входные световые лучи", так что они полностью внутренне отражаются при разных условиях на контактной поверхности, давая соответствующие "выходные световые лучи".

Следует отметить, что различие между двумя входными световыми лучами может быть чисто концептуальным, т.е. фотоны, испущенные одним и тем же источником света, могут приписываться первому или второму входному световому лучу, соответственно, согласно некоторому заданному критерию, например, их длине волны в случае полихроматического источника света.

Источник света может, например, содержать лазер или излучающий свет диод (LED), необязательно снабженный оптикой для придания формы и направления входных световых лучей. Более того, следует отметить, что наступление полного внутреннего отражения требует, чтобы преломляющий индекс среды, в которой входные световые лучи распространяются к контактной поверхности, был больше, чем преломляющий индекс материала, прилегающего к контактной поверхности (обычно пробы). Это имеет место, например, в случае, если среда распространения света выполнена из стекла (n=1,6-2) и прилегающий материал является водой (n=1,3). Следует дополнительно отметить, что термин "полное внутреннее отражение" должен включать в себя случай, называемый "нарушенное полное внутреннее отражение", где некоторое количество падающего света теряется (абсорбируется, рассеивается и т.д.) в течение процесса отражения;

b) по меньшей мере, один световой детектор для определения величины света в выходных световых лучах и для обеспечения соответствующих сигналов датчика. Световой детектор может содержать любой подходящий датчик или множество датчиков, посредством которых свет заданного спектра может обнаруживаться, например фотодиоды, фоторезисторы, фотоэлементы, чип CCD или фотоэлектронный умножитель. "Величина света" может, например, выражаться посредством интенсивности света выходных световых лучей в, по меньшей мере, части их поперечного сечения.

Оптические измерения с полным внутренним отражением имеют преимущества, что они могут делаться без физического контакта с пробой, что они являются независимыми от, например, магнитных манипуляций целевыми частицами и что они могут ограничиваться только маленьким объемом, прилегающим к контактной поверхности.

Вышеупомянутое ограничение описанных оптических измерений до маленького объема на контактной поверхности - следствие факта, что в процессе полного внутреннего отражения генерируются быстро затухающие волны, которые проникают, экспоненциально затухая, в прилегающую среду, т.е. пробу. Требуемые разные условия, при которых два входных световых луча полностью внутренне отражаются, будут, таким образом, предпочтительно такими, что быстро затухающие волны имеют разные расстояния затухания (которые определяются как расстояние, где амплитуды быстро затухающих волн падают до 1/e≈37%). Быстро затухающие волны при этом зондируют объемы разных толщин, прилегающих к контактной поверхности, что может использоваться, чтобы извлекать информацию о целевых частицах в первой и второй зоне, соответственно.

Два входных световых луча могут предпочтительно иметь разный спектральный состав и/или углы падения на контактную поверхность. Этими двумя параметрами можно легко управлять, и они имеют определяющее влияние на расстояние затухания быстро затухающих волн.

В последующем, будут более подробно описываться конкретные варианты реализации "подхода с двумя сигналами датчика", которые основываются на магнитном обнаружении "магнитных целевых частиц", т.е. целевых частиц, которые являются магнитными или могут намагничиваться. Базовый вариант осуществления такого устройства магнитного датчика содержит:

a) по меньшей мере, один генератор магнитного поля для генерирования, по меньшей мере, двух магнитных полей возбуждения разной конфигурации в пробоотборной камере. В этом контексте два магнитных поля рассматриваются как имеющие "разную конфигурацию", если векторы их магнитной индукции внутри пробоотборной камеры не являются пропорциональными друг с другом с единственным, глобальным коэффициентом пропорциональности;

b) элемент магнитного датчика для обнаружения магнитных реакционных полей, сгенерированных магнитными целевыми частицами в виде реакции на вышеупомянутые магнитные поля возбуждения и для обеспечения соответствующих сигналов датчика. Элемент магнитного датчика может содержать любое устройство, которое подходит для обнаружения магнитных полей, например, катушку, датчик Холла, плоский датчик Холла, чувствительный прибор для обнаружения неоднородностей магнитного поля, SQUID (сверхпроводящий квантовый интерферометр), датчик магнитного резонанса, магнито-ограничительный датчик или магниторезистивный датчик типа, описанного в WO 2005/010543 A1 или WO 2005/010542 A2, особенно GMR (гигантское магнитное сопротивление), TMR (туннельное магнитное сопротивление) или AMR (анизотропное магнитное сопротивление).

Посредством обеспечения магнитных полей возбуждения с разными конфигурациями, описанное устройство магнитного датчика является способным обнаруживать целевые частицы в пробоотборной камере с разной чувствительностью в первой и второй зоне, соответственно.

Генератор магнитного поля может предпочтительно содержать, по меньшей мере, два проводящих провода, на которые могут избирательно подаваться токи возбуждения для генерирования магнитных полей возбуждения и которые имеют разное геометрическое расположение по отношению к элементу магнитного датчика. Таким образом, могут легко генерироваться магнитные поля возбуждения разной конфигурации, что обеспечивает возможность избирательного зондирования первой и второй зоны.

В другом варианте осуществления устройство магнитного датчика может содержать пары проводящих проводов, при этом проводящие провода каждой пары располагаются симметрично по отношению к элементу магнитного датчика. Такое симметричное расположение имеет преимущество, заключающееся в том, что некоторые нежелательные эффекты (например, перекрестная помеха) будут взаимно компенсироваться.

До настоящего времени в отношении контактной поверхности только предполагалось, что она является некоторой границей раздела с пробоотборной камерой, где могут собираться целевые частицы. В предпочтительных вариантах осуществления этого изобретения контактная поверхность будет дополнительно содержать сайты связывания для целевых частиц. Сайты связывания могут, например, быть биологическими молекулами (например, антителами), с которыми могут специфически связываться некоторые целевые частицы (например, антигены). Помимо лишения подвижности целевых частиц на контактной поверхности для легкого обнаружения, важным назначением сайтов связывания часто является, поэтому, конкретный выбор интересующих конкретных молекул из сложной смеси.

В другом варианте осуществления этого изобретения устройство датчика может содержать устройство манипулирования для активного перемещения целевых частиц. Устройство манипулирования может, в частности, содержать генератор магнитного поля, например электромагнит, для воздействия магнитными силами (посредством полевых градиентов) на магнитные целевые частицы. Манипулирование может, например, использоваться, чтобы перемещать целевые частицы ускоренным способом к контактной поверхности.

В сочетании с контактной поверхностью, которая покрывается сайтами связывания, вышеупомянутое устройство манипулирования может быть необязательно выполнено с возможностью удаления целевых частиц, которые не связаны с сайтами связывания, из чувствительной области элемента датчика. Таким образом, может выполняться процесс промывания, оставляя в области, которая может наблюдаться элементом датчика, только связанные целевые частицы.

В последующем будет описываться другая большая группа вариантов реализации, в которых блок оценки выполнен с возможностью оценки временного курса упомянутого, по меньшей мере, одного сигнала датчика ("подход временного анализа"). Это требует, чтобы были доступными, по меньшей мере, два значения сигнала датчика, полученного в разных точках во времени, (предпочтительно сигнал датчика является непрерывным или квазинепрерывным по времени). В этих вариантах осуществления информация о первой зоне и второй зоне пробоотборной камеры извлекается из временной вариантности сигнала (сигналов) датчика. Следует отметить, что границы между "подходом двух сигналов датчика" и "подходом временного анализа" являются нечеткими и в значительной степени зависят от определения сигнала (сигналов) датчика. Таким образом, каждый сигнал датчика с временным курсом может при некотором типе демультиплексирования произвольным образом разделяться на первый сигнал датчика, соответствующий первому временному интервалу, и второй сигнал датчика, соответствующий второму временному интервалу. В контексте настоящего изобретения предположение с использованием "подхода двух сигналов датчика" является предпочтительным, если элемент датчика выполняет измерения при разных рабочих условиях (например, со светом разных длин волны или с магнитными полями разной конфигурации), в то время как "подход временного анализа" указывает более на ситуации, в которых причины для изменений сигнала лежат внутри пробы (например, перемещения целевых частиц).

Один из вариантов осуществления с использованием "подхода временного анализа" связан с вышеописанной возможностью удалять свободные (несвязанные) целевые частицы из чувствительной области элемента датчика с помощью устройства манипулирования. Таким образом, временной курс сигнала датчика может соответствовать (i) в первый временной момент ситуации, в которой непривязанные целевые частицы присутствуют, и (ii) во второй временной момент ситуации, в которой они удаляются из полной чувствительной области элемента датчика, т.е. в которой присутствуют только целевые частицы, привязанные к сайтам связывания на контактной поверхности. Измерения в двух временных моментах будут, поэтому, обеспечивать возможность выводить требуемые величины целевых частиц в первой и второй зоне, соответственно.

В другой важной реализации "подхода временного анализа" временная оценка сигнала датчика происходит по отношению к стохастическим перемещениям целевых частиц. Так как эти частицы обычно являются микроскопическими сущностями, такими как атомы, молекулы, комплексы или клетки, они будут подвержены стохастическим перемещениям в жидкой пробе, что известно как "броуновское движение". Эти перемещения обычно являются разными в первой и второй зоне, соответственно, и могут, поэтому, использоваться для извлечения информации об этих зонах. Если целевые частицы являются, например, связанными в первой зоне на контактной поверхности, их стохастические перемещения будут там приблизительно нулевыми.

Согласно предпочтительному варианту осуществления вышеупомянутого устройства датчика блок оценки может быть выполнен с возможностью определения мощности шума сигнала датчика (которая обычно относится к величине целевых частиц во второй зоне). Это определение факультативно делается после фильтрации верхних частот для удаления медленных изменений (вследствие, например, процесса привязки). Мощность шума переменного по времени сигнала s(t) со средним значением <s>=0 может определяться посредством формулы

В другом варианте осуществления блок оценки может быть выполнен с возможностью определения среднего количества целевых частиц во второй зоне и дисперсию этого количества. Так как кластеризация целевых частиц увеличивает дисперсию, упомянутая кластеризация может обнаруживаться, если как среднее количество, так и дисперсия известны.

Другими словами, блок оценки устройства датчика может быть выполнен с возможностью вывода информации о величине кластеризованных целевых частиц, о покрытии контактной поверхности (например, посредством воздушных пузырьков) и/или о диффузионных характеристиках целевых частиц. Они являются примерами параметров, которые могут использоваться для увеличения точности измерений.

Это изобретение дополнительно относится к способу для определения величины целевых частиц на контактной поверхности, прилегающей к пробоотборной камере, в которой обеспечивается проба с упомянутыми целевыми частицами, при этом способ содержит следующие этапы:

a) обнаружение целевых частиц в пробоотборной камере и обеспечение, по меньшей мере, одного соответствующего сигнала датчика с помощью элемента датчика;

b) прямое или косвенное определение, с помощью блока оценки, величины целевых частиц в первой зоне непосредственно на контактной поверхности и второй зоне на расстоянии от контактной поверхности на основе упомянутого, по меньшей мере, одного сигнала датчика.

Согласно первому предпочтительному варианту осуществления способа обеспечиваются, по меньшей мере, два сигнала датчика, которые проявляют различную чувствительность к величине целевых частиц в первой зоне и второй зоне, соответственно.

В вышеупомянутом случае, по меньшей мере, один из сигналов датчика может относиться к области пробоотборной камеры, которая является свободной от целевых частиц. Эта область может, например, быть зоной исключения, в которую не могут входить целевые частицы, или областью пробоотборной камеры, из которой несвязанные целевые частицы были вымыты.

В подходе с использованием оптического измерения упомянутые два сигнала датчика могут определяться из нарушенного полного внутреннего отражения с быстро затухающими волнами разных расстояний затухания.

Альтернативно два сигнала датчика могут определяться из магнитных реакционных полей магнитных целевых частиц, которые были возбуждены с помощью магнитных полей возбуждения разной конфигурации.

Более того, временной курс упомянутого, по меньшей мере, одного сигнала датчика может оцениваться, в частности, по отношению к стохастическим перемещениям целевых частиц.

Вышеописанные варианты осуществления способа описывают, в общей форме, этапы, которые могут исполняться с устройствами датчика типа, описанного выше. Ссылка, поэтому для получения дополнительной информации о деталях, преимуществах и модификациях этих способов следует обратиться к приведенному выше описанию устройств датчика.

Изобретение дополнительно относится к применению устройства датчика, описанного выше, для молекулярной диагностики, биологического анализа проб или химического анализа проб, анализа пищи и/или судебного анализа. Молекулярная диагностика может, например, выполняться с помощью магнитных бусин или флуоресцентных частиц, которые непосредственно или опосредованно прикрепляются к целевым молекулам.

Эти и другие аспекты настоящего изобретения будут видны из описанного ниже варианта (вариантов) осуществления, и объяснены со ссылкой на него. Эти варианты осуществления будут описываться в качестве примера с помощью сопровождающих чертежей, на которых:

Фиг. 1 схематически показывает устройство оптического датчика согласно настоящему изобретению, которое основано на использовании нарушенного полного внутреннего отражения.

Фиг. 2 показывает модификацию устройства из фиг. 1, в котором используются входные световые лучи с разными углами падения.

Фиг. 3 показывает полевую амплитуду как функцию расстояния от контактной поверхности для быстро затухающих волн разной длины волны и разных углов падения.

Фиг. 4 показывает расстояния затухания быстро затухающих волн в зависимости от угла падения для разных длин волны.

Фиг. 5 показывает на диаграмме, подобной диаграмме по фиг. 3, полевую амплитуду быстро затухающих волн в зависимости от расстояния от контактной поверхности для угла падения 65° и для двух в значительной степени разных длин волны.

Фиг. 6 показывает (a) первое и (b) второе рабочее состояние устройства магнитного датчика с четырьмя проводящими проводами и датчиком GMR в одной плоскости.

Фиг. 7 показывает сигналы измерения устройства магнитного датчика из фиг. 6 в зависимости от расстояния от контактной поверхности в (a) первом рабочем состоянии и (b) втором рабочем состоянии, также как (c) взвешенную разницу этих данных.

Фиг. 8 показывает (a) первое и (b) второе рабочее состояние устройства магнитного датчика с двумя проводящими проводами на одной стороне датчика GMR.

Фиг. 9 показывает (a) первое и (b) второе рабочее состояние устройства магнитного датчика с четырьмя проводящими проводами, расположенными в двух параллельных плоскостях.

Фиг. 10 показывает сигналы измерения устройства магнитного датчика из фиг. 9 в зависимости от расстояния от контактной поверхности в (a) первом рабочем состоянии и (b) втором рабочем состоянии, также как (c) взвешенную разницу этих данных.

Фиг. 11 показывает диаграмму, соответствующую фиг. 10 c) в случае других геометрических параметров.

Фиг. 12 показывает (a) первое и (b) второе рабочее состояние устройства магнитного датчика с двумя проводами и датчиком GMR в одной плоскости и зоной исключения полпути выше их.

Фиг. 13 показывает сигналы измерения устройства магнитного датчика из фиг. 12 в зависимости от расстояния от контактной поверхности в (a) первом рабочем состоянии и (b) втором рабочем состоянии, также как (c) взвешенную разницу этих данных.

Фиг. 14 представляет собой сводку различных математических выражений, относящихся к устройствам магнитного датчика.

Фиг. 15 показывает нормализованный отклик устройства датчика в течение обычного анализа с измерениями до и после этапа промывания.

Фиг. 16 иллюстрирует распределение вероятностей количества одиночных целевых частиц в заданном объеме для двух разных степеней кластеризации.

Фиг. 17 показывает спектр Лоренца.

Фиг. 18 представляет собой сводку различных математических выражений, относящихся к стохастической оценке сигналов датчика.

Подобные ссылочные позиции или числовые обозначения, отличающиеся целочисленными, кратными 100, указывают на фигурах на идентичные или аналогичные компоненты.

Биодатчики могут, например, использоваться для придорожного тестирования на запрещенное употребление наркотиков по слюне. Наркотики запрещенного употребления являются, в общем, маленькими молекулами, которые обладают только одним эпитопом и по этой причине не могут обнаруживаться сэндвич-анализом. Конкурентный анализ или анализ подавления является способом, чтобы обнаруживать эти молекулы. Хорошо известный подход конкурентного анализа - присоединение интересующих молекул на контактную поверхность и подготовка целевых частиц посредством связывания антител с меткой обнаружения (например, энзим, флуорофор или магнитная бусина). Эта система используется, чтобы выполнять конкурентный анализ в отношении представляющих интерес молекул в пробе и на поверхности, с использованием помеченных антител (целевых частиц). Очевидно, что величина связанных целевых частиц относится к концентрации целевых частиц, которые были добавлены к пробе. Как следствие, для получения точных количественных результатов количество добавленных целевых частиц должно быть известным априори или определяться в течение измерения.

Вышеописанный сценарий конкурентного анализа иллюстрирует в одном примере, что объемная концентрация целевых частиц (меток) в объеме выше поверхности датчика содержит ценную информацию. В общем, измерения обычно должны калиброваться на величины целевых частиц в растворе. Эта величина является, однако, часто априори неизвестной вследствие изменяющихся свойств повторного диспергирования целевых частиц, высушенных в картридже. Поэтому ниже объясняются различные подходы к определению величины целевых частиц в растворе.

I. Подход с использованием двух сигналов датчика с устройством оптического датчика с использованием FTIR

Фиг. 1 показывает общую конфигурацию установки с устройством 100 датчика согласно настоящему изобретению. Установка содержит носитель 111, который может, например, выполняться из стекла или прозрачного пластика, такого как полистирол. Носитель 111 располагается рядом с пробоотборной камерой 2, в которой может обеспечиваться текучая среда пробы с целевыми компонентами, подлежащими обнаружению (например, наркотики, антитела, DNA и т.д.). Проба дополнительно содержит магнитные частицы, например суперпарамагнитные бусины, при этом эти частицы обычно связываются в качестве меток с вышеупомянутыми целевыми компонентами. Для простоты изложения в последующем комбинация целевых компонентов и магнитных частиц показана на фигуре и будет называться "целевая частица 1". Следует отметить, что вместо магнитных частиц могут также использоваться другие помечающие частицы, например электрически заряженные или флуоресцентные частицы.

Граница раздела между носителем 111 и пробоотборной камерой 2 формируется поверхностью, называемой "контактная поверхность" 112. Эта контактная поверхность 112 покрыта захватывающими элементами 3, например антителами, которые могут специфически связывать целевые частицы.

Устройство датчика содержит генератор 141 магнитного поля, например электромагнит с катушкой и сердечником, для генерирования управляемым образом магнитного поля на контактной поверхности 112 и в прилегающем пространстве пробоотборной камеры 2. С помощью этого магнитного поля может осуществляться манипулирование целевыми частицами 1, т.е. они могут намагничиваться и, в частности, перемещаться (если используются магнитные поля с градиентами). Таким образом, является, например, возможным притягивать целевые частицы 1 к контактной поверхности 112, с целью ускорения их связывания с упомянутой поверхностью или для вымывания несвязанных целевых частиц с контактной поверхности до измерения.

Устройство датчика дополнительно содержит источник 121 света, который генерирует входной световой луч L1, который передается в носитель 111 через "окно входа". В качестве источника 121 света может использоваться лазер или LED, в частности, коммерческий DVD (λ=658 нм) лазерный диод. Для обеспечения параллельности входного светового луча L1 могут использоваться линзы коллиматора, и может использоваться булавочное отверстие, например, 0,5 мм, чтобы уменьшать диаметр луча. Входной световой луч L1 прибывает на контактную поверхность 112 при угле θ, большем, чем критический угол θc полного внутреннего отражения (TIR), и поэтому испытывает полное внутреннее отражение в "выходной световой луч" L2. Выходной световой луч L2 покидает носитель 111 через другую поверхность ("окно выхода") и обнаруживается посредством светового детектора 131. Световой детектор 131 определяет величину света выходного светового луча L2 (например, выраженного посредством интенсивности света этого светового луча в полном спектре или некоторой части спектра). Соответствующий сигнал датчика s оценивается и необязательно наблюдается в течение периода наблюдения посредством модуля 132 оценки и записи блока оценки EU, который соединен с детектором 131.

Является возможным использовать детектор 131 также для отбора света флуоресценции, испущенного флуоресцентными частицами 1, которые были возбуждены входным световым лучом L1, при этом эта флуоресценция может, например, спектрально выделяться из отраженного света L2. Хотя последующее описание концентрируется на измерении отраженного света, принципы, описанные здесь, также могут с соответствующим изменением применяться к обнаружению флуоресценции.

Описанное устройство 100 датчика применяет оптическое средство для обнаружения целевых частиц 1. Для устранения или, по меньшей мере, минимизации влияния фона (например, текучей среды пробы, такой как слюна, кровь и т.д.) способ обнаружения должен быть специфичным для поверхности. Как показано выше, это достигается посредством использования принципа нарушенного полного внутреннего отражения (FTIR). Этот принцип базируется на факте, что быстро затухающая волна затухает (с экспоненциальным уменьшением интенсивности) в пробе 2, когда луч L1 падающего света испытывает полное внутреннее отражение. Если эта быстро затухающая волна затем взаимодействует с другой средой, такой как связанные целевые частицы 1, часть входного света будет проходить в текучую среду пробы (это называется "нарушенное полное внутреннее отражение"), и отраженная интенсивность будет уменьшаться (в то время как отраженная интенсивность будет 100% для чистой границы раздела и без взаимодействия). В зависимости от величины возмущения, т.е. величины целевых частиц на поверхности TIR или очень близко (в пределах около 200 нм) к поверхности TIR (не в оставшейся части пробоотборной камеры 2), отраженная интенсивность будет падать соответственно. Это падение интенсивности является, таким образом, прямой мерой для величины связанных целевых частиц 1.

Описанная процедура является независимой от применяемых магнитных полей. Это обеспечивает возможность оптического наблюдения в реальном времени этапов подготовки, измерения и промывания. Наблюдаемые сигналы могут также использоваться, чтобы управлять измерением или индивидуальными этапами обработки.

Преимущества описанных вариантов оптического считывания, скомбинированных с магнитными метками для активизации, являются следующими.

Дешевый картридж: Носитель 111 может состоять из относительно простой, полученной литьем части полимерного материала.

Большие возможности мультиплексирования при тестировании множества аналитов: Контактная поверхность 112 в имеющемся в распоряжении картридже может оптически сканироваться по большой области. Альтернативно, является возможным формирование изображений большой области, обеспечивая возможность большой детектирующей матрицы. Такая матрица (расположенная на оптической прозрачной поверхности) может выполняться посредством, например, струйной печати разных связывающих молеку