Лазерная офтальмологическая многофункциональная система

Иллюстрации

Показать все

Изобретение относится к медицинской технике. Лазерная офтальмологическая многофункциональная система, использующая длину волны лазерного излучения в пределах от 1,3 мкм до 2,9 мкм, содержит устройство лазерного излучения, содержащее излучатель и волоконный световод, блок управления, связанный с устройством лазерного излучения, рабочий элемент для выполнения офтальмологических операций. В рукоятке для рабочего элемента размещены средство для центрирования, стыковки и фиксации волоконного световода и средство для центрирования, стыковки и фиксации рабочего элемента, установленные в рукоятке с противоположных сторон рукоятки, устройство ирригации-аспирации для подачи офтальмологического сбалансированного солевого раствора из емкости для сбалансированного солевого раствора в полость глаза и удаления указанного раствора вместе с фрагментами разрушенных тканей, связанное с блоком управления, со средством для ирригации и со средством для аспирации. Изобретение позволяет увеличить количество функций и обеспечить безопасность проведения операций. 35 з.п. ф-лы, 12 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к офтальмологии, а более точно к лазерной офтальмологической многофункциональной системе, которая может быть использована для проведения офтальмологических операций и лечебно-диагностических процедур, включая коагуляцию сосудов конъюнктивы и роговицы, удаление катаракты, включая лазерный капсулорексис, витрэктомию, риностомию, диафаноскопию, гипертермию и лечебно-профилактические процедуры эндо- и экзолазерной стимуляции тканей глаза.

Предшествующий уровень техники

Известно устройство (см., например, патент US 7182759 или заявка US 2006/0084961 A1, 2006) для разрушения и аспирации хрусталика через микроскопические разрезы шириной 1,5 мм, содержащее отдельный лазерный наконечник, совмещенный с каналом для ирригации, и наконечник, сочетающий функции аспирации и ультразвукового дробления удаляемых частиц хрусталика. Задание параметров операции регулируется центральным блоком управления, включающим систему регулирования параметров ультразвука (частота, мощность, длительность ультразвуковых импульсов), вакуума (набор вакуума в зависимости от окклюзии), регулирования ирригации, а также компьютер, регулирующий и обеспечивающий сбалансированную работу всех вышеперечисленных систем устройства.

В описании устройства указано, что устройство позволяет дробить и отсасывать вещество хрусталика, при этом комбинированное использование лазерного излучения и ультразвука позволяет снизить суммарную энергетическую нагрузку на глаз и исключить вероятность появления ряда осложнений, типичных для технологий ультразвукового удаления катаракты. Речь идет, в первую очередь, о снижении опасности появления ожога роговицы в месте контакта рабочих наконечников с внутренней поверхностью разреза роговицы. При проведении ультразвуковой факоэмульсификации катаракты ожог роговицы возможен вследствие нагрева ультразвуковой иглы и развивается по мере генерации ультразвуковых колебаний.

Использование лазерного излучения позволяет существенно снизить вероятность возникновения ожога роговицы из-за физических особенностей взаимодействия данного вида энергии с тканями. Кроме того, используются более щадящие режимы ультразвука в виде коротких импульсов высокой амплитуды, следующих через достаточно большие временные интервалы, рассчитанные исходя из времени тепловой релаксации среды, т.е. времени между импульсами достаточно для того, чтобы среда остыла, а тепло распределилось в ткани. Возможность применения таких параметров ультразвука появляется в связи с тем, что основную функцию по разрушению ткани хрусталика берет на себя лазерное излучение, ультразвук выполняет вспомогательную роль, не требуется полной ультразвуковой нагрузки на ткани глаза.

Однако устройство имеет следующие существенные недостатки.

В установке используется эрбиевый YAG лазер, генерирующий длину волны, которая заведомо обладает низкой эффективностью для разрушения хрусталиковых масс. Ее главной особенностью является очень высокий коэффициент поглощения молекулами воды, что приводит к формированию очень больших (до 1000 мкм) парогазовых пузырей, имеющих низкий кавитационный потенциал. Низкая эффективность лазерного излучения эрбиевого лазера в отношении хрусталика приводит к необходимости дополнительного использования ультразвукового излучения для усиления эффекта и окончательного дробления хрусталиковых масс.

Так как приходится использовать два вида энергии, то существует опасность при проведении операции на тканях глаза. Само по себе лазерное излучение менее опасно для глаза, чем ультразвук, ввиду ограниченной глубины распространения энергии в зоне операции, т.к. излучение не достигает сетчатки и стекловидного тела. Но при сочетании с ультразвуком положительные моменты использования лазера в целом нивелируются и уходят на второй план, так как могут проявляться негативные моменты использования ультразвука, обусловленные большой дистанцией распространения ультразвуковых колебаний в тканях глаза, возможностью дистанционных повреждений центральной зоны сетчатки и стекловидного тела.

К явным недостаткам конструкции аспирационной системы относится то, что она не может самостоятельно удалять из зоны операции разрушенные лазерным излучением хрусталиковые массы. В этой связи использование ультразвука можно рассматривать как способ повышения эффективности или обеспечения работы аспирационной системы и удаления из зоны операции хрусталиковых масс. Проблемы с аспирацией появляются из-за разбалансированности работы лазерного наконечника и аспирационной иглы. Они не работают синхронно, так как генерируемые лазерным излучением акустические колебания гасятся в передней камере глаза и не участвуют в процессе разрушения хрусталикового материала в аспирационной игле. Для того чтобы обеспечить равномерный ход аспирации и прохождение частиц в аспирационном канале, приходится применять сложную систему регулировки параметров ультразвука и вакуума. Все это приводит к усложнению техники операции, дополнительным трудностям при работе с вакуумной системой. Конструкция прибора является громоздкой, повышается цена установки в целом.

Кроме того, узкий ирригационный канал, совмещенный с лазерным наконечником, не может обеспечить высокую скорость поступления ирригационного раствора в переднюю камеру глаза. Соответственно, используется сложная система регулировки вакуума, направленная на то, чтобы сбалансировать подачу офтальмологического сбалансированного солевого раствора для удаления хрусталиковых масс и аспирацию, а также исключить коллапс передней камеры глаза при максимально высоком разрежении (при прорыве окклюзии аспирационного канала).

В устройстве не предусмотрена сменность лазерного волокна, что затрудняет клиническое использование устройства. Невозможна качественная стерилизация световода между операциями. В ходе операции возможно разрушение рабочего края оптического волокна, затруднен контроль и адекватная оценка стабильности выходных параметров лазерных импульсов, что приводит к снижению эффективности работы лазерной установки.

Известен медицинский держатель для световода, устанавливаемого в осевом направлении, предназначенный для выполнения лазерных хирургических манипуляций (см., например, патент US 6461349 B1, 2002) и содержащий специальную рукоятку, в которой закреплен лазерный световод, идущий от лазерной установки, отдельный отрезок световода, выполненный из кварца или сапфира, использующийся непосредственно для подвода энергии лазерного излучения к биологической ткани и представляющий собой сменную часть волоконного световода, средство стыковки лазерного световода и отрезка световода, а также рабочую часть рукоятки, содержащую аспирационный канал с установленной в нем сменной частью лазерного световода.

Указанный держатель позволяет подводить энергию к биологической ткани, например к хрусталику, разрушать ее и проводить отсасывание разрушенных фрагментов хрусталика из зоны операции. При этом специальная система подвода энергии к биологической ткани посредством двух отрезков оптического волокна, стыкующихся в теле рукоятки, позволяет в значительной мере оптимизировать работу хирурга при выполнении хирургических манипуляций. Обеспечивается стабильность параметров лазерных импульсов на протяжении всей операции, так как имеется возможность быстрой замены сменной части световода при появлении признаков разрушения края оптического волокна. Возможность замены отдельного участка световода в рабочей части наконечника позволяет обеспечить высокую скорость стерилизации отдельных элементов рукоятки, а также обеспечивает более высокое качество стерилизации.

К недостаткам данной системы можно отнести сужение аспирационного канала в рабочей части рукоятки за счет введенного в просвет канала световода, что затрудняет отведение разрушенных в ходе операции частиц биологического материала. Наиболее существенные трудности появляются в ходе удаления плотных катаракт, поскольку неизбежно появление крупных и твердых частиц хрусталика, которые застревают в узкой кольцевидной щели аспиратора, расположенной вокруг оптического волокна. При работе с такой биологической тканью, как хрусталик, обтурация аспирационного канала обусловлена еще и клейкостью разрушенных частиц хрусталика, прилипанием волокон хрусталика к стенкам аспирационного канала.

Необходимо также отметить, что аспирационный канал в рабочей части рукоятки переходит в аспирационный канал корпуса рукоятки, который, в свою очередь, имеет изгиб на угол 90°, обеспечивающий стыковку канала с аспирационным шлангом. Такая конструкция аспирационного канала уменьшает линейную скорость прохождения удаляемых частиц биологического материала и создает дополнительные условия для обтурации канала в области изгиба.

В месте стыковки оптического волокна от лазерной установки и сменной части волоконного световода средство стыковки обеспечивает контакт поверхностей лазерного волокна и сменной части световода, но не гарантирует при этом их плотного контакта. Нельзя в полной мере исключить наличия микроскопического зазора между рабочими поверхностями оптических волокон, что, в свою очередь, приводит к потерям энергии в зоне стыковки.

Потеря энергии на 10-20% критична для проведения операции экстракции катаракты, так как при направлении лазерного луча на хрусталик желательно избежать коагуляции, появление которой неизбежно при снижении плотности энергии в зоне лазерного воздействия. Необходимо индуцировать процесс формирования ударной волны, для реализации которого важна высокая плотность энергии.

Следует заметить, что рабочий край сменной части световода имеет плоскую поверхность, перпендикулярную оси световода. Эта особенность конструкции не обеспечивает проведения таких манипуляций с лазерным излучением, которые необходимы для осуществления капсулорексиса.

Ближайшим техническим решением для заявленного изобретения является устройство для экстракции катаракты (см., например, патент RU №1257158), содержащее отдельный наконечник, имеющий только функцию доставки лазерного излучения в зону операции и отдельное средство для ирригации-аспирации.

При применении указанного устройства удается эффективно отводить разрушенные хрусталиковые массы, исключив обтурацию аспирационного канала.

После выполнения нескольких операций по удалению катаракты возможно ухудшение оптических свойств рабочего конца световода вследствие разрушения края оптического волокна, сопровождающееся снижением плотности энергии излучения и появлением феномена коагуляции вещества хрусталика, что, в свою очередь, существенно затрудняет разрушение катаракты и аспирацию хрусталиковых масс. В связи с этим возникает необходимость шлифовки торца оптического волокна.

При использовании оптического волокна без стыков затруднен процесс стерилизации оптического волокна, не удается использовать принцип одноразовости инструментов при хирургии катаракты, что не соответствует медицинским критериям безопасности и стерильности для современных офтальмологических хирургических приборов.

Более того, для осуществления других манипуляций, применяемых в офтальмохирургии, таких как капсулорексис, трансиллюминация, лазерная стимуляция и передняя витрэктомия, требуется иное распределение энергии на выходе из световода.

Краткое изложение существа изобретения

Задачей настоящего изобретения является создание лазерной офтальмологической системы, которая являлась бы многофункциональной системой, т.е. обеспечила бы проведение офтальмологических операций, включающих коагуляцию сосудов конъюнктивы и роговицы, удаление катаракты, включая лазерный капсулорексис, витрэктомию, риностомию, диафаноскопию, гипертермию и лечебно-профилактические процедуры эндо- экзо-лазерной стимуляции тканей глаза, обеспечила бы возможность использования сменных и одноразовых рабочих элементов, а также обеспечила бы безопасность путем исключения ожогов роговицы и сетчатки при использовании лазерного излучения и возможность быстрого проведения офтальмологических операций.

Другой задачей настоящего изобретения является возможность использования в предложенной системе разнофункциональных сменных, одноразовых рабочих элементов для реализации разных функций, т.е. для выполнения разных офтальмологических операций.

Другой задачей настоящего изобретения является обеспечение высокого качества рабочей поверхности световода, что позволит обеспечить стабильность параметров лазерных импульсов на протяжении всей операции, исключить при этом необходимость постоянного контроля состояния края оптического волокна, позволит осуществлять быструю замену сменной части световода в случае появления признаков разрушения края оптического волокна, сократит время проведения операции, а следовательно, уменьшит операционную травму.

Еще одной задачей настоящего изобретения является обеспечение высокой эффективности и быстрого проведения операции разрушения катаракты, снижение температуры в зоне проведения операции и вследствие этого исключение ожога роговицы при разрушении катаракты, исключение повреждения роговицы и сетчатки в ходе операции и воспаления тканей глаза в послеоперационный период, исключение мануальной фрагментации хрусталика и дополнительного использования ультразвука за счет использования лазера с длиной волны в пределах от 1,3 до 2,9 мкм.

Еще одной задачей является обеспечение возможности использования низкоэнергетического излучения гелий-неонового или диодного лазера не только в качестве светового маркера, но и для биостимуляции тканей глаза в процессе операции.

Еще одной задачей настоящего изобретения является возможность выполнения различных вариантов операции лазерной экстракции катаракты и особенностей клинического случая.

Предложенная система позволяет:

проводить бесконтактную коагуляцию сосудов при проведении хирургического разреза конъюнктивы, склеры и роговицы;

минимизировать операционные разрезы в ходе операции удаления катаракты;

выполнять передний дозированный непрерывный круговой капсулорексис с помощью лазерного воздействия;

разрушать вещество хрусталика глаза любой плотности и выводить продукты разрушения без дополнительного использования ультразвуковой энергии и мануальной фрагментации ядра;

оптимизировать гидродинамические процессы в передней камере глаза в ходе операции;

разделить ирригационный и аспирационный потоки сбалансированного солевого раствора в передней камере глаза и создать линейный безвихревой поток;

сократить объем сбалансированного солевого раствора, проходящего через глаз в процессе операции удаления катаракты;

обеспечить надежную стерильность сменных рабочих элементов или наконечников;

комбинировать в одном или в двух рабочих наконечниках основные функции прибора - лазерное излучение, ирригацию, аспирацию при проведении операции экстракции катаракты;

исключить предоперационную обработку поверхности конца кварцевого волокна;

обеспечить равномерную аспирацию, т.е. исключить обтурацию аспирационного канала;

минимизировать потери лазерной энергии на стыке лазерного волоконного световода и сменного отрезка световода;

исключить ожог роговицы и повреждение внутренних тканей глаза;

проводить коагуляцию роговицы в рефракционных целях;

удалять измененное стекловидное тело;

производить операцию дакриоцисториностомии, причем сделать эту операцию кратковременной, бескровной, эстетичной, сохранить слезный мешок; избавить пациента от разреза и последующего рубца на коже лица, от обширной трепанации кости и грубого отека в послеоперационном периоде;

уменьшить до минимума время проведения перечисленных выше офтальмологических операций, т.е. снизить травму, наносимую пациенту;

выполнять стимулирующее фототерапевтическое воздействие низкоэнергетического излучения гелий-неонового или диодного лазера на ткани глаза в зависимости от необходимости: в процессе выполнения хирургического вмешательства, перед проведением операции, а также в качестве самостоятельной лечебной процедуры;

использовать излучение гелий-неонового или диодного лазера в качестве маркера невидимого излучения лазера с длиной волны в пределах от 1,3 до 2, 9 мкм;

проводить диафаноскопию глаза и трансиллюминацию в ходе операции, а также в качестве самостоятельной диагностической процедуры;

предложенная система избавляет небольшие клиники от необходимости дополнительного приобретения отдельных приборов:

диатермического капсулотома, коагулятора сосудов, диафаноскопа, витреотома, гелий-неонового или диодного лазера для проведения терапевтических процедур, специальных инструментов для трепанации кости носа при выполнении дакриоцисториностомии.

Поставленная задача решена путем создания лазерной офтальмологической многофункциональной системы, использующей длину волны лазерного излучения в пределах от 1,3 мкм до 2,9 мкм и содержащей

устройство лазерного излучения, содержащее излучатель и волоконный световод,

блок управления, связанный с устройством лазерного излучения,

рабочий элемент для выполнения офтальмологических операций, содержащий сменную часть, установленный в рукоятке для рабочего элемента и связанный с волоконным световодом устройства лазерного излучения,

при этом в рукоятке для рабочего элемента размещены средство для центрирования, стыковки и фиксации волоконного световода от устройства лазерного излучения и средство для центрирования, стыковки и фиксации рабочего элемента, установленные соосно в рукоятке с противоположных сторон рукоятки, устройство ирригации-аспирации для подачи офтальмологического сбалансированного солевого раствора из емкости для сбалансированного солевого раствора в полость глаза и удаления указанного раствора вместе с фрагментами разрушенных тканей, связанное с блоком управления, со средством для ирригации и со средством для аспирации,

при этом средство для ирригации содержит съемную трубку для ирригации, одним концом подключенную к устройству ирригации-аспирации, а другой конец съемной трубки предназначен для размещения в полости глаза при проведении операции,

средство для аспирации содержит металлическую трубку для удаления офтальмологического сбалансированного солевого раствора вместе с продуктами разрушения катаракты, один конец которой связан с устройством ирригации-аспирации, а другой конец металлической трубки предназначен для установки на нем сменных наконечников различных диаметров,

узел подсветки, связанный с источником подсветки, который подключен к блоку управления,

блок питания, подключенный к устройству лазерного излучения, блоку управления, рукоятке узла подсветки, устройству ирригации-аспирации,

при этом блок управления содержит блок задания диапазона параметров, выбранных из группы, состоящей из подаваемой энергии лазерного излучения, частоты следования лазерных импульсов, длительности лазерного импульса, формы лазерного импульса, величины аспирации и величины ирригации.

Предпочтительно в качестве сменной части рабочего элемента использовать отрезок волоконного световода.

Целесообразно в качестве сменной части рабочего элемента использовать отрезок трубки, прозрачно для длины волны 1,3 мкм до 2,9 мкм.

Предпочтительно, чтобы средство для аспирации дополнительно содержало по меньшей мере два сменных наконечника в виде трубки, один из которых, имеющий больший внутренний диаметр аспирационного канала, предназначен для использования на первой стадии проведения офтальмологической операции для удаления из полости глаза офтальмологического сбалансированного солевого раствора вместе с крупными продуктами разрушения катаракты и выполнен из материала, прозрачного для длины волны 1,3 мкм до 2,9 мкм, причем диаметр входного отверстия сменной трубки меньше внутреннего диаметра металлической трубки, на которой он размещен, а второй из которых, имеющий меньший внутренний диаметр аспирационного канала, предназначен для использования на заключительной стадии проведения офтальмологической операции для удаления из полости глаза офтальмологического сбалансированного солевого раствора вместе с мелкими продуктами разрушения катаракты.

Полезно, чтобы трубка для ирригации была размещена в рукоятке для рабочего элемента.

Полезно, чтобы трубка для ирригации была размещена в аспирационном наконечнике.

Предпочтительно, чтобы в рукоятке для рабочего элемента были размещены сменная часть рабочего элемента в виде отрезка трубки, прозрачной для длины волны 1,3-2,9 мкм, трубка для ирригации, трубка для аспирации.

Полезно, чтобы сменная часть рабочего элемента, выполненная в виде отрезка волоконного световода, имела торцевую рабочую поверхность, обеспечивающую подвод лазерного излучения от источника лазерного излучения к тканям глаза, причем диаметр отрезка волоконного световода больше или равен диаметру волоконного световода устройства лазерного излучения.

Предпочтительно, торцевая рабочая поверхность сменной части рабочего элемента представляет собой плоскость.

Предпочтительно, торцевая рабочая поверхность сменной части рабочего элемента представляет собой либо сферу либо цилиндр, конус, либо усеченный конус.

Полезно, чтобы торцевая рабочая поверхность сменной части рабочего элемента была образована пересечением двух или более поверхностей выше первого порядка, либо пересечением по меньшей мере двух плоскостей.

Предпочтительно, чтобы сменная часть рабочего элемента для капсулорексиса была изогнута и установлена в рукоятке так, что ось сменной части была отклонена от оси рукоятки под углом от 30 до 90°.

Полезно, чтобы система содержала переходник в виде плоскопараллельной пластины из сапфира, установленный в рукоятке для рабочего элемента между торцом волоконного световода и торцом сменной части рабочего элемента, принимающим лазерное излучение, при этом плоскопараллельная пластина имела показатель преломления больший чем 1,5.

Предпочтительно, чтобы лазерная система содержала по меньшей мере одну линзу, установленную в рукоятке для рабочего элемента между торцом волоконного световода и торцом сменной части рабочего элемента, принимающим лазерное излучение.

Целесообразно, чтобы сменная часть рабочего элемента содержала полость, стенки которой были выполнены из материала, прозрачного для длины волны используемого лазерного излучения, причем одна из стенок была выполнена с возможностью совершения возвратно-поступательных движений и соединена с ножом витреотома, при этом полость была заполнена жидкостью, а в рукоятке для рабочего элемента выполнен аспирационный канал, соединенный с устройством ирригации-аспирации. Полезно, чтобы указанная жидкость являлась водой, а стенки емкости были выполнены из кварца или сапфира.

Предпочтительно, чтобы сменная часть рабочего элемента в виде отрезка волоконного световода, предназначенного для выполнения капсулорексиса, была размещена в трубке, один конец которой закреплен в рукоятке для рабочего элемента, а другой конец трубки имеет кромку, отогнутую к оси трубки, при этом торцевая рабочая поверхность сменного рабочего элемента обращена к отогнутой кромке трубки.

Полезно, чтобы трубка была выполнена из материала, выбранного из группы, состоящей из нержавеющей стали и композитного материала.

Предпочтительно, чтобы сменная часть рабочего элемента в виде отрезка волоконного световода имела диаметр в пределах от 1 мкм до 2000 мкм.

Полезно, чтобы торцевая рабочая поверхность сменной части рабочего элемента имела шероховатость Rz более чем 2 для обеспечения коагуляции сосудов и гипертермии.

Полезно, чтобы для проведения капсулорексиса сменная часть рабочего элемента была отогнута по меньшей мере один раз под углом от 30 до 90° к оси рукоятки, а выходной торец сменной части рабочего элемента имел диаметр меньше 20 мкм.

Предпочтительно, чтобы лазерная система содержала один или более лазерных излучателей, причем в качестве лазерного излучателя был использован лазер, выбранный из группы, состоящей из твердотельного лазера с диодной накачкой, волоконного лазера, диодного лазера.

Полезно, чтобы лазерная система в качестве источника подсветки содержала гелий-неоновый или диодный лазер, одновременно обеспечивающий низкоэнергетическое излучение для лазерной стимуляции тканей глаза.

Предпочтительно, чтобы в качестве диодного лазера был использован диодный лазер с длиной волны в диапазоне от 600 до 1000 нм.

Полезно, чтобы частота следования лазерных импульсов была больше 0,1 Гц.

Полезно, чтобы величина лазерной энергии в импульсе составляла от 0,00001 мДж до 1000 мДж.

Предпочтительно, чтобы устройство ирригации-аспирации содержало средство для принудительной подачи офтальмологического сбалансированного солевого раствора в полость глаза, причем в качестве средств для принудительной подачи офтальмологического сбалансированного солевого раствора в полость глаза был использован резервуар, находящийся под давлением.

Полезно, чтобы лазерная система содержала средство для защиты задней капсулы хрусталика и задней поверхности роговой оболочки, выполненное в виде пластинки, прозрачной для видимой длины волны и непрозрачной для лазерного излучения, и закрепленное на рукоятке, выбранной из группы, состоящей из рукоятки для ирригации, рукоятки для ирригации-аспирации, рукоятки для рабочего инструмента.

Целесообразно, чтобы устройство ирригации-аспирации содержало насос для подачи и откачивания ирригационной жидкости, выбранный из группы, состоящей из форвакуумного насоса, перистальтического насоса или насоса Вентури.

Предпочтительно, чтобы рукоятка для рабочего элемента была выполнена из пластмассы, обеспечивающей одноразовое использование.

Полезно, чтобы рукоятка для рабочего элемента была выполнена из материала, обеспечивающего возможность многократной стерилизации.

Предпочтительно, чтобы лазерная офтальмологическая многофункциональная система использовалась для разрушения хрусталика в процессе проведения офтальмологической операции экстракции катаракты.

Полезно, чтобы лазерная офтальмологическая многофункциональная система использовалась для вскрытия передней капсулы хрусталика (капсулорексиса) в процессе проведения офтальмологической операции экстракции катаракты.

Предпочтительно, чтобы лазерная офтальмологическая многофункциональная система использовалась для проведения офтальмологической операции витрэктомии.

Полезно, чтобы лазерная офтальмологическая многофункциональная система использовалась для проведения офтальмологической операции риностомии.

Предпочтительно, чтобы лазерная офтальмологическая многофункциональная система использовалась для проведения коагуляции сосудов при офтальмологических операциях.

Полезно, чтобы лазерная офтальмологическая многофункциональная система использовалась для проведения офтальмологической операции лазерной коагуляции роговицы с рефракционной целью.

Предпочтительно, чтобы лазерная офтальмологическая многофункциональная система использовалась для проведения офтальмологических диагностических процедур, в частности диафанаскопии.

Полезно, чтобы лазерная офтальмологическая многофункциональная система использовалась для проведения лечебно-профилактической эндо- и экзо-лазерной стимуляции тканей глаза и окружающих тканей.

Полезно использовать лазерный эффект гипертермии тканей глаза для удаления мелких новообразований на поверхности глаза и краев век.

Краткое описание чертежей

В дальнейшем изобретение поясняется описанием предпочтительных вариантов воплощения со ссылками на сопровождающие чертежи, на которых:

Фиг.1 изображает схему лазерной офтальмологической многофункциональной системы, согласно изобретению;

Фиг.2 изображает схематично вариант размещения и центрирования волоконного световода и рабочего элемента в виде отрезка волоконного световода в рукоятке для рабочего элемента, согласно изобретению;

Фиг.3 изображает схематично вариант выполнения рукоятки для ирригации-аспирации, согласно изобретению;

Фиг.4 изображает схематично вариант выполнения, в котором в рукоятке для рабочего элемента размещен рабочий элемент и выполнен канал для ирригации, согласно изобретению;

Фиг.5 изображает схематично вариант выполнения, в котором в рукоятке для рабочего элемента размещен рабочий элемент и выполнен канал для ирригации и канал для аспирации, согласно изобретению;

Фиг.6 изображает схематично вариант выполнения, в котором в рукоятке для рабочего элемента размещен рабочий элемент и выполнен канал для аспирации, согласно изобретению;

Фиг.7а-7ж изображают варианты выполнения рабочих торцов рабочего элемента, согласно изобретению

Фиг.8 изображает вариант выполнения рабочего элемента для операции капсулорексиса, согласно изобретению;

Фиг.9 изображает схематично вариант выполнения, в котором в рукоятке для рабочего элемента размещен рабочий элемент и выполнена полость, в которой размещен поршень, соединенный с ножом витреотома, согласно изобретению

Фиг.10 изображает вариант выполнения рабочего элемента для операции капсулорексиса, согласно изобретению;

Фиг.11 изображает другой вариант выполнения рабочего элемента для операции капсулорексиса, согласно изобретению

Фиг.12 (рис.) и 12а (фото) изображают средство для защиты хрусталика, согласно изобретению.

Описание предпочтительных вариантов воплощения изобретения

Лазерная офтальмологическая многофункциональная система 1, схематично представленная на Фиг.1, содержит устройство 2 лазерного излучения, работающее на длине волны лазерного излучения в пределах от 1,3 мкм до 2,9 мкм и содержащее излучатель 3 и волоконный световод 4.

Система 1 содержит блок 5 управления, связанный с устройством 2 лазерного излучения.

Система 1 содержит рабочий элемент 6 для выполнения офтальмологических операций, содержащий сменную часть 7, установленную в держателе 8 сменной части, который установлен в рукоятке 9 для рабочего элемента. Сменная часть 7 в одном варианте выполнения представляет собой отрезок волоконного световода, на части которого размещена металлическая оболочка 10 и которая связана с волоконным световодом 4 устройства 2 лазерного излучения. Указанный отрезок волоконного световода при изготовлении стерилизуется и заключается в стерильную оболочку (не показана), эту оболочку хирург вскрывает перед проведением операции и вставляет стерильный отрезок волоконного световода в стерильный держатель 8.

В рукоятке 9 (Фиг.2) из металла или пластмассы для рабочего элемента размещены средство 11 для центрирования, стыковки и фиксации волоконного световода 4 устройства 2 лазерного излучения и средство 12 для центрирования, стыковки и фиксации рабочего элемента 6, установленные соосно в рукоятке 9 с противоположных сторон рукоятки. Средство 11 представляет собой втулку, средство 12 также представляет собой втулку, в канале которой размещен конец средства 11 для центрирования, стыковки и фиксации волоконного световода 4, а также концевая часть волоконного световода 4.

Система 1 (Фиг.1) содержит устройство 13 ирригации-аспирации для подачи офтальмологического сбалансированного солевого раствора из емкости 14 для сбалансированного солевого раствора в полость глаза и удаления указанного раствора вместе с фрагментами разрушенных тканей, связанное с блоком 5 управления, со средством 15 для ирригации и со средством 16 для аспирации.

Средство 15 (Фиг.1) для ирригации содержит съемную трубку 17 для ирригации, один конец 18 которой подключен посредством трубопровода 19 к устройству 13 ирригации-аспирации и к емкости 14 для сбалансированного солевого раствора, а другой конец 20 предназначен для размещения в полости глаза при проведении офтальмологической операции.

Средство 16 (Фиг.1) для аспирации содержит металлическую трубку 21 для удаления офтальмологического сбалансированного солевого раствора вместе с продуктами разрушения катаракты, один конец которой посредством трубопровода 22 связан с устройством 13 ирригации-аспирации, а другой конец 23 металлической трубки предназначен для установки на нем сменных наконечников 24 (не показаны) различных диаметров.

Система 1 (Фиг.1) содержит также узел 25 подсветки, связанный с источником 26 подсветки, который подключен к блоку 5 управления.

Имеется блок 27 (Фиг.1) питания, подключенный к устройству 2 лазерного излучения, к блоку 5 управления, к узлу 25 подсветки посредством линии 28 связи, к устройству 13 ирригации-аспирации.

Блок 5 управления содержит блок 29 задания диапазона параметров, выбранных из группы, состоящей из подаваемой энергии лазерного излучения, частоты следования лазерных импульсов, длительности лазерного импульса, формы лазерного импульса, величины аспирации и величины ирригации. Кроме того, блок 5 управления содержит ножную педаль (не показана) для удобства работы хирурга. Ножная педаль предназначена для включения/выключения и переключения режимов работы системы.

Возможен второй вариант выполнения сменной части 7 рабочего элемента 6, в частности, в качестве сменной части 7 может быть использован отрезок трубки из материала, прозрачного для длины волны 1,3-2,9 мкм.

Как указано выше, средство 16 (Фиг.3) для аспирации дополнительно содержит по меньшей мере два сменных наконечника 30, 31 в виде трубки. Один сменный наконечник 30, имеющий больший чем 31 внутренний диаметр аспирационного канала, предназначен для использования на первой стадии проведения офтальмологической операции, т.е. для удаления из полости глаза офтальмологического сбалансированного солевого раствора вместе с крупными продуктами разрушения катаракты, и выполнен из материала, прозрачного для длины волны 1,3 мкм до 2,9 мкм, причем диаметр входного отверстия сменного наконечника 30 меньше внутреннего диаметра металлической трубки 32, на которой он установлен. Второй сменный наконечник 31 (не показан), имеющий меньший внутренний диаметр аспирационного канала, чем первый наконечник 30, предназначен для использования на второй стадии проведения офтальмологической операции для удаления из полости глаза офтальмологического сбалансированного солевого раствора вместе с мелкими продуктами разрушение катаракты.

Согласно изобретению предложены четыре варианта выполнения системы.

Согласно первому варианту выполнения системы средство 15 (Фиг.4) для ирригации размещено в рукоятке 9 для установки рабочего элемента.

В этом случае хирург использует две рукоятки, в одной рукоятке 9 установлен рабочий элемент 6 и в этой же рукоятке размещено средство 15 для ирригации, а в другой рукоятке (не показана) установлено только средство 16 для аспирации.

К рукоятке 9 крепится сменный ирригационный колпачок 33, образующий совместно с каналом 34, выполненным в рукоятке 9, ирригационный канал 35 для подачи офтальмологического сбалансированного солевого раствора в полость глаза. Указанный канал 35 сообщается с трубкой 19, связанной с емкостью 14 для офтальмологического сбалансированного солевого раствора (не показано).

Согласно второму варианту выполнения системы в одной рукоятке 36 (Фиг.3) размещены средство 15 для ирригации и средство 16 для аспирации, образуя рукоятку 36 ирригации-аспирации, т.е. канал для ирригации размещен вокруг трубки 30 для аспирации. В этом случае хирург использует две рукоятки 9 и 36, в рукоятке 9 размещен рабочий элемент 6, а в рукоятке 36 размещены средство 15 для ирригации и средство 16 для аспирации.

Согласно третьему варианту выполнения системы в одной рукоятке 37 (Фиг.5) размещены сменная часть 38 рабочего элемента 6 в виде отрезка стеклянной трубки, средство 1