Способ многоканального адаптивного приема радиосигналов и устройство, его реализующее

Иллюстрации

Показать все

Изобретения относятся к радиотехнике, в частности к многоканальному адаптивному приему сигналов неизвестных источников излучений в заданных полосе частот и пространственном секторе. Технический результат - обеспечение одновременного эффективного приема I радиоизлучений, I>N, где N - количество элементов антенной решетки. На первом этапе осуществляют определение направления на все обнаруженные сигналы с одновременным экспресс-анализом их характеристик - измеряют ширину спектров сигналов, не пораженных помехами, и уточняют среднее значение их частот настройки. На втором этапе выполняют частотную и пространственную фильтрацию всех обнаруженных сигналов и многоканальный адаптивный пространственно-согласованный их прием. Устройство содержит комбинированный интерферометр (фазовый + корреляционный), блоки экспресс анализа и дополнительно введенные разветвитель мощности, второй аналого-цифровой преобразователь, второй блок цифровых полосовых фильтров, блок взвешенного сложения, блок элементов "И", блок формирования весовых коэффициентов, третий блок сравнения, блок определения вида модуляции и блок демодуляции. 2 н. и 1 з.п. ф-лы, 15 ил.

Реферат

Заявляемые объекты объединены единым изобретательским замыслом, относятся к радиотехнике, в частности к многоканальному адаптивному радиоприему, и могут быть использованы в системах радиосвязи, радиолокации, радиомониторинге, функционирующих в сложной сигнально-помеховой обстановке.

Известны адаптивные антенные системы с разомкнутым контуром управления (см. Монзинго С.А., Миллер Т.У. Адаптивные антенные решетки. - М.: Радио и связь, 1986. - 440 с.). К их числу относится метод непосредственного обращения матрицы принимаемых сигналов и основывается на получении оценок

и

с последующим вычислением весовых коэффициентов

где - вектор взаимной ковариации принимаемых и опорных сигналов, kw - коэффициент пропорциональности, N - количество антенных элементов в решетке, n∈N.

Данный метод требует больших вычислительных затрат и высокой точности их выполнения. Погрешности, вносимые при взвешенном сложении резко ограничивают уровень формируемого максимума диаграммы направленности (ДН). Отсутствие обратной связи не позволяет оценивать эффективность формирования максимума ДН или ее минимума и корректировать вектор весовых коэффициентов (ВВК) (см. Повышение помехоустойчивости радиосвязи методом диаграммной модуляции. Коновалов Л.М., Никитченко В.В. - Л.: ВАС, 1988. - 128 с.).

В адаптивных антенных системах с замкнутым контуром управления, которые лишены недостатков описанного выше способа, наибольшее распространение получили градиентные методы: минимального среднеквадратического отклонения и его разновидности, последовательного поиска, ускоренный градиентный алгоритм и т.д. Они основаны на итерационной процедуре поиска экстремальных точек поверхности уровня, характеризующих показатель эффективности и параметры, подлежащие настройке.

Наряду с положительными качествами, заключающимися в простоте технической реализации, перечисленные способы управления обладают рядом недостатков. В качестве главных из них следует отметить необходимость иметь n независимых каналов приема и опорное колебание d(t), характеризующее полезный сигнал.

Устранение названных недостатков достигнуто в дифференциальном способе наискорейшего спуска (см. Widrow В., McCool J. A comparison of adaptive algorithms based on the methods of steepest descent and random search // IEEE Trans. 1976. V.AP-24. N5. P.615-63). В его основу положена итерационная процедура принятия решения на изменение ВВК по оценке градиента показателя качества. В качестве показателя качества выступает квадратичная функция параметра, по которому осуществляется управление (см., например, Пат. РФ №2107394, опубл. 20.03.1998 г.). Однако на практике во многих случаях формирование показателей качества затруднено, что ограничивает применение способа-аналога. Другим недостатком названных выше способов адаптивного управления ДН антенной решетки является зависимость степеней свободы реализуемых алгоритмов η (количества максимумов n или минимумов диаграммы направленности) от количества N используемых антенных элементов в решетке η=N-1.

Наиболее близким по технической сущности к заявляемому способу многоканального адаптивного приема радиосигналов является способ по Пат. РФ №2341811, МПК G01S 3/14, опубл. 20.12.2008 г., реализующий комбинированный (корреляционный + фазовый) интерферометр.

Способ-прототип включает прием радиосигналов в соответствующем поддиапазоне частот Δfν, Δfν∈ΔF, ν=1, 2, …, V, V=ΔF/Δf антенной решеткой, состоящей из N идентичных ненаправленных антенных элементов, где N>2, расположенных в плоскости приема сигналов и согласованным с местными условиями вариантом размещения, последовательное синхронное преобразование высокочастотных сигналов каждой пары антенных элементов антенной решетки в электрические сигналы промежуточной частоты, дискретизацию их и квантование, формирование из них четырех последовательностей отсчетов путем разделения на квадратурные составляющие, запоминание в каждой последовательности заданного числа В отсчетов квадратурных составляющих сигналов, коррекцию запомненных отсчетов квадратурных составляющих путем последовательного умножения каждого из них на соответствующий отсчет заданного временного окна, формирование из скорректированных последовательностей квадратурных составляющих отсчетов сигналов двух комплексных последовательностей отсчетов сигналов, элементы которых определяют путем попарного объединения соответствующих отсчетов скорректированных последовательностей квадратурных составляющих отсчетов сигналов антенных элементов, преобразование обеих комплексных последовательностей отсчетов сигналов с помощью дискретного преобразования Фурье, попарное перемножение отсчетов сигнала преобразованной последовательности одного антенного элемента An на соответствующие комплексно сопряженные отсчеты сигнала преобразованной последовательности на той же частоте другого антенного элемента Ak, где n,k=1, 2, …, N, n≠k, расчет для текущей пары антенных элементов разности фаз сигналов для каждого частотного поддиапазона по формуле , запоминание полученных разностей фаз радиосигналов, формирование и запоминание эталонного набора разностей фаз сигналов исходя из пространственного размещения антенных элементов антенной решетки, используемого частотного диапазона и заданной точности измерений, вычитание из эталонных разностей фаз сигналов соответствующих значений измеренных разностей фаз, возведение в квадрат полученных значений невязок и их суммирование по всем парам антенных элементов и всем частотным поддиапазонам, запоминание полученных сумм, находящихся в однозначном соответствии с направлениями прихода радиосигналов, определение наиболее вероятного направления прихода радиосигнала в горизонтальной и угломестной плоскостях по наименьшей сумме квадратов невязок, вычисление для каждой пары антенных элементов и каждого частотного поддиапазона значения взаимной мощности сигналов Pn,k(fν) по формуле , запоминание полученных значений взаимных мощностей Pn,k(fν), определение суммарной мощности сигналов P(fν) путем суммирования взаимных мощностей по всем парам антенных элементов для каждого частотного поддиапазона Δfν, запоминание значения суммарной мощности сигнала, вычисление среднего значения мощности сигнала в каждом частотном поддиапазоне по формуле , где η - количество используемых в обработке антенных пар, определение частотных поддиапазонов , в которых значение средней мощности сигнала превышает заданный порог Рпор, запоминание значения пеленгов, соответствующих поддиапазонам , определение ширины спектров сигналов Δfci по количеству m, m=1, 2,…,М прилегающих пеленгов θj одного наименования по формуле Δfci=Δf·m, определение среднего значения частоты сигнала для всех обнаруженных излучений по формуле , где - верхняя частота спектра i-го сигнала, совместное запоминание средних значений частот сигналов и соответствующих им полос частот Δfci.

Способ-прототип позволяет обнаруживать и принимать сигналы в заданной полосе ΔF, определяет ширину спектра принимаемого сигнала и центральную частоту его настройки, а также определяет направление на источник этого сигнала.

Однако прототипу присущ ряд недостатков. В нем не обеспечивается одновременный прием сигналов нескольких ИРИ, отсутствует формирование оптимальной (максимумом на корреспондента) диаграммы направленности.

Известны серийно выпускаемые изделия PV2413 фирмы PLESSEY MILITARY COMMUNICATIONS (см. PV2413 universal interference cancelling equipment // Jane′s military communications / Edit R.J.Ragget. 1982. P.560), SNAP-1 фирмы Marconi Commun. Systems и Marconi Space and Defense Systems (см. там же). Данные изделия обеспечивают подавление помехового сигнала на 40 дБ, но при этом осуществляют прием только сигналов одного ИРИ.

Известны адаптивные антенные системы по Пат. РФ 2291458, МПК G01S 5/04, H01Q 3/26, H01Q 21/00, опубл. 10.01.2007 г.; Пат. РФ 2366047, МПК H01Q 21/00, опубл. 27.08.2009 г. Данные системы относятся к устройствам с замкнутым контуром управления и реализуют градиентный алгоритм. Для обеспечения повышения качества приема сигналов в них формируется ДН с остронаправленным лепестком в направлении заданного корреспондента. Последнее стало возможным благодаря использованию априорной информации о его местоположении.

В качестве недостатка аналогов следует отметить обеспечение ими лишь одноканального приема.

Наиболее близким по технической сущности к заявляемому многоканальному адаптивному радиоприемному устройству является устройство по Пат. РФ 2341811, МПК G01S 3/14, опубл. 20.12.2008 г. Устройство-прототип содержит антенную решетку, выполненную из N>2 идентичных ненаправленных антенных элементов, расположенных в плоскости пеленгования и согласованным с местными условиями вариантом размещения, антенный коммутатор, сигнальный и опорные выходы которого подключены соответственно к сигнальному и опорному входам двухканального приемника, выполненного по схеме с общими гетеродинами, первый аналого-цифровой преобразователь, выполненный двухканальным соответственно с сигнальным и опорными каналами, причем сигнальный и опорный выходы промежуточной частоты двухканального приемника соединены соответственно с сигнальным и опорным входами первого аналого-цифрового преобразователя, блок преобразования Фурье, выполненный двухканальным соответственно с сигнальным и опорным каналами, первое и второе запоминающие устройства, блок вычитания, блок формирования эталонных значений разностей фаз, блок вычисления первичных пространственно-информационных параметров, первый информационный вход которого соединен с сигнальным выходом блока преобразования Фурье, а второй вход - с опорным выходом блока преобразования Фурье, группа информационных выходов блока вычисления первичных пространственно-информационных параметров соединена с группой информационных входов второго запоминающего устройства, группа информационных выходов которого соединена с группой входов вычитаемого блока вычитания, группа входов уменьшаемого которого соединена с информационными выходами первого запоминающего устройства, информационные входы которого соединены с информационными выходами блока формирования эталонных значений разностей фаз, группа информационных входов которого является первой установочной шиной многоканального адаптивного радиоприемного устройства, последовательно соединенные умножитель, первый сумматор, третье запоминающее устройство, блок определения азимута и угла места, причем первая и вторая группы информационных входов умножителя объединены и соединены с группой информационных выходов блока вычитания, генератор синхроимпульсов, выход которого соединен с управляющим входом антенного коммутатора, входами синхронизации первого аналого-цифрового преобразователя, блока преобразования Фурье, первого, второго и третьего запоминающих устройств, блока вычитания, умножителя, первого сумматора, блока определения азимута и угла места, блока формирования эталонных значений разностей фаз и блока вычисления первичных пространственно-информационных параметров, четвертое, пятое и шестое запоминающие устройства, первый блок элементов "И", первый, второй и третий счетчики импульсов, второй сумматор, делитель, первый и второй блоки сравнения, блок определения средней частоты сигнала и первый блок цифровых полосовых фильтров, выполненный двухканальным, причем первый и второй сигнальные входы первого блока цифровых полосовых фильтров соединены с выходами сигнального и опорного каналов первого аналого-цифрового преобразователя соответственно, а первый и второй сигнальные выходы соединены соответственно с сигнальным и опорным входами блока преобразования Фурье, последовательно соединенные первый счетчик импульсов, пятое запоминающее устройство, второй сумматор, делитель, шестое запоминающее устройство и первый блок сравнения, причем счетный вход первого счетчика импульсов объединен с входами синхронизации пятого запоминающего устройства, второго сумматора, первого блока цифровых полосовых фильтров и выходом генератора синхроимпульсов, а выход обнуления первого счетчика импульсов соединен со входами управления второго сумматора и делителя, входами синхронизации шестого запоминающего устройства и первого блока сравнения, и счетным входом второго счетчика импульсов, группа информационных выходов которого соединена с первой группой информационных входов блока определения средней частоты сигнала и с соответствующими вторыми входами первого блока элементов "И", первые входы которого объединены и соединены с выходом первого блока сравнения, а выходы первого блока элементов "И" соединены с группой адресных входов четвертого запоминающего устройства, первая и вторая группы информационных входов которого соединена с первой и второй группами информационных выходов блока определения азимута и угла места, а первая и вторая группа информационных выходов четвертого запоминающего устройства являются соответственно первой и второй выходными шинами многоканального адаптивного радиоприемного устройства, вторая установочная шина которого соединена со второй группой информационных входов первого блока сравнения, группа информационных входов второго блока сравнения соединена с второй выходной шиной пеленгатора, первый выход второго блока сравнения соединен с счетным входом третьего счетчика импульсов, а второй выход - со входом обнуления третьего счетчика импульсов, группа информационных выходов которого соединена со второй группой информационных входов блока определения средней частоты сигнала, группа информационных выходов которого соединена с группами входов управления первого блока цифровых полосовых фильтров и двухканального приемника.

Целью заявляемых технических решений является разработка способа и устройства многоканального адаптивного приема сигналов априорно неизвестных источников радиоизлучений в заданных полосе частот и пространственном секторе, обеспечивающих одновременный эффективный прием I радиоизлучений, I>N, за счет двухэтапной обработки сигналов. На первом этапе осуществляют определение направления на все обнаруженные сигналы с одновременным экспресс-анализом их характеристик - определяют ширину не пораженной помехами части спектров сигналов и уточняют средние значения их частот настройки, а на втором этапе выполняют частотную и пространственную фильтрацию всех обнаруженных радиоизлучений и многоканальный адаптивный пространственно согласованный их прием.

Поставленная цель в способе многоканального адаптивного приема радиосигналов достигается тем, что в известном способе, включающем прием радиосигналов в соответствующем поддиапазоне частот, Δfν, Δfν∈ΔF, ν=1, 2, …, V, V=ΔF/Δf антенной решеткой, состоящей из N идентичных ненаправленных антенных элементов, где N>2, расположенных в плоскости приема сигналов и согласованным с местными условиями вариантом размещения, последовательное синхронное преобразование высокочастотных сигналов каждой пары антенных элементов антенной решетки в электрические сигналы промежуточной частоты, дискретизацию их и квантование, формирование из них четырех последовательностей отсчетов путем разделения на квадратурные составляющие, запоминание в каждой последовательности заданного числа В отсчетов квадратурных составляющих сигналов, коррекцию запомненных отсчетов квадратурных составляющих путем последовательного умножения каждого из них на соответствующий отсчет заданного временного окна, формирование из скорректированных последовательностей квадратурных составляющих отсчетов сигналов двух комплексных последовательностей отсчетов сигналов, элементы которых определяют путем попарного объединения соответствующих отсчетов скорректированных последовательностей квадратурных составляющих отсчетов сигналов антенных элементов, преобразование обеих комплексных последовательностей отсчетов сигналов с помощью дискретного преобразования Фурье, попарное перемножение отсчетов сигнала преобразованной последовательности одного антенного элемента An на соответствующие комплексно сопряженные отсчеты сигнала преобразованной последовательности на той же частоте другого антенного элемента Ak, где n,k=1, 2, …, N, n≠k, расчет для текущей пары антенных элементов разности фаз сигналов для каждого частотного поддиапазона по формуле , запоминание полученных разностей фаз радиосигналов, формирование и запоминание эталонного набора разностей фаз сигналов исходя из пространственного размещения антенных элементов антенной решетки, используемого частотного диапазона и заданной точности измерений, вычитание из эталонных разностей фаз сигналов соответствующих значений измеренных разностей фаз, возведение в квадрат полученных значений невязок и их суммирование по всем парам антенных элементов и всем частотным поддиапазонам, запоминание полученных сумм, находящихся в однозначном соответствии с направлениями прихода радиосигналов, определение наиболее вероятного направления прихода радиосигнала в горизонтальной и угломестной плоскостях по наименьшей сумме квадратов невязок, вычисление для каждой пары антенных элементов и каждого частотного поддиапазона значения взаимной мощности сигналов Pn,k(fν) по формуле , запоминание полученных значений взаимных мощностей Pn,k(fν), определение суммарной мощности сигналов P(fν) путем суммирования взаимных мощностей по всем парам антенных элементов для каждого частотного поддиапазона Δfν, запоминание значения суммарной мощности сигнала, вычисление среднего значения мощности сигнала в каждом частотном поддиапазоне по формуле , где η - количество используемых в обработке антенных пар, определение частотных поддиапазонов , в которых значение средней мощности сигнала превышает заданный порог Рпор, запоминание значения пеленгов, соответствующих поддиапазонам , определение ширины спектров сигналов Δfci по количеству m, m=1, 2, …, М прилегающих пеленгов θj одного наименования по формуле Δfci=Δf·m, определение среднего значения частоты сигнала для всех обнаруженных излучений по формуле , где - верхняя частота спектра i-го сигнала, совместное запоминание средних значений частот сигналов и соответствующих им полос частот Δfci, дополнительно сигналы N антенных элементов антенной решетки одновременно дискретизируют и квантуют во всей полосе рабочих частот ΔF, выделяют полосы Δfci, i=1, 2, …, I; соответствующие обнаруженным на частотах сигналам в диапазоне ΔF, для каждой выделенной полосы частот Δfci принимаемых сигналов каждого антенного элемента n, n=1, 2, …, N; формируют вектор весовых коэффициентов размерности N, сравнивают направления прихода сигналов θi с заданным рабочим сектором Δθp, при положительном решении θi∈Δθp для каждого антенного элемента n выполняют операцию комплексного умножения выделенного в полосе Δfci сигнала на соответствующий ему элемент вектора весовых коэффициентов , суммируют полученные значения в рамках каждой выделенной полосы Δfci, определяют вид модуляции каждого i-го принимаемого сигнала и демодулируют его.

При этом каждый из I векторов весовых коэффициентов , i=1, 2,…,I, формируют путем создания корреляционной матрицы i-го принимаемого сигнала, элементы которой определены как поиска максимального элемента на диагонали корреляционной матрицы принимаемого сигнала , опорным антенным элементом назначают элемент с номером k, k∈N, k≤N, в качестве предварительных элементов вектора весовых коэффициентов используют элементы столбца корреляционной матрицы , соответствующие значению , уточняют значения предварительных элементов вектора весовых коэффициентов приведением их модулей к единичному уровню нормированием относительно максимального значения , а значения фаз меняют на противоположные.

Благодаря новой совокупности существенных признаков в заявляемом способе обеспечивается качественный многоканальный адаптивный прием радиоизлучений (ИРИ), количество которых I значительно превосходит апертуру антенной решетки I>N.

В заявляемом многоканальном адаптивном устройстве приема радиосигналов поставленная цель достигается тем, что в известном устройстве, состоящем из антенной решетки, выполненной из N>2 идентичных ненаправленных антенных элементов, расположенных в плоскости пеленгования и согласованным с местными условиями вариантом размещения, антенный коммутатор, сигнальный и опорные выходы которого подключены соответственно к сигнальному и опорному входам двухканального приемника, выполненного по схеме с общими гетеродинами, первого аналого-цифрового преобразователя, выполненного двухканальным соответственно с сигнальным и опорными каналами, причем сигнальный и опорный выходы промежуточной частоты двухканального приемника соединены соответственно с сигнальным и опорным входами первого аналого-цифрового преобразователя, блока преобразования Фурье, выполненного двухканальным соответственно с сигнальным и опорным каналами, первого и второго запоминающих устройств, блока вычитания, блока формирования эталонных значений разностей фаз, блока вычисления первичных пространственно-информационных параметров, первый информационный вход которого соединен с сигнальным выходом блока преобразования Фурье, а второй вход - с опорным выходом блока преобразования Фурье, группа информационных выходов блока вычисления первичных пространственно-информационных параметров соединена с группой информационных входов второго запоминающего устройства, группа информационных выходов которого соединена с группой входов вычитаемого блока вычитания, группа входов уменьшаемого которого соединена с информационными выходами первого запоминающего устройства, информационные входы которого соединены с информационными выходами блока формирования эталонных значений разностей фаз, группа информационных входов которого является первой установочной шиной многоканального адаптивного радиоприемного устройства, последовательно соединенных умножителя, первого сумматора, третьего запоминающего устройства, блока определения азимута и угла места, причем первая и вторая группы информационных входов умножителя объединены и соединены с группой информационных выходов блока вычитания, генератора синхроимпульсов, выход которого соединен с управляющим входом антенного коммутатора, входами синхронизации первого аналого-цифрового преобразователя, блока преобразования Фурье, первого, второго и третьего запоминающих устройств, блока вычитания, умножителя, первого сумматора, блока определения азимута и угла места, блока формирования эталонных значений разностей фаз и блока вычисления первичных пространственно-информационных параметров, четвертого, пятого и шестого запоминающих устройств, первого блока элементов "И", первого, второго и третьего счетчиков импульсов, второго сумматора, делителя, первого и второго блоков сравнения, блока определения средней частоты сигнала и первого блока цифровых полосовых фильтров, выполненного двухканальным, причем первый и второй сигнальные входы первого блока цифровых полосовых фильтров соединены с выходами сигнального и опорного каналов первого аналого-цифрового преобразователя соответственно, а первый и второй сигнальные выходы соединены соответственно с сигнальным и опорным входами блока преобразования Фурье, последовательно соединенных первого счетчика импульсов, пятого запоминающего устройства, второго сумматора, делителя, шестого запоминающего устройства и первого блока сравнения, причем счетный вход первого счетчика импульсов объединен с входами синхронизации пятого запоминающего устройства, второго сумматора, первого блока цифровых полосовых фильтров и выходом генератора синхроимпульсов, а выход обнуления первого счетчика импульсов соединен со входами управления второго сумматора и делителя, входами синхронизации шестого запоминающего устройства и первого блока сравнения, и счетным входом второго счетчика импульсов, группа информационных выходов которого соединена с первой группой информационных входов блока определения средней частоты сигнала и с соответствующими вторыми входами первого блока элементов "И", первые входы которого объединены и соединены с выходом первого блока сравнения, а выходы первого блока элементов "И" соединены с группой адресных входов четвертого запоминающего устройства, первая и вторая группы информационных входов которого соединены с первой и второй группами информационных выходов блока определения азимута и угла места, а первая и вторая группы информационных выходов четвертого запоминающего устройства являются соответственно первой и второй выходными шинами многоканального адаптивного радиоприемного устройства, вторая установочная шина которого соединена со второй группой информационных входов первого блока сравнения, группа информационных входов второго блока сравнения соединена с второй выходной шиной многоканального адаптивного радиоприемного устройства, первый выход второго блока сравнения соединен с счетным входом третьего счетчика импульсов, а второй выход - со входом обнуления третьего счетчика импульсов, группа информационных выходов которого соединена со второй группой информационных входов блока определения средней частоты сигнала, группа информационных выходов которого соединена с группами входов управления первого блока цифровых полосовых фильтров и двухканального приемника, дополнительно введены последовательно соединенные разветвитель мощности, выполненный N-канальным, второй аналого-цифровой преобразователь, выполненный N-канальным, второй блок цифровых полосовых фильтров, выполненный I×N-канальным, блок взвешенного сложения, содержащий I трактов взвешенного сложения, блок определения вида модуляции и блок демодуляторов, группа информационных выходов которого является третьей выходной шиной многоканального адаптивного радиоприемного устройства, третья установочная шина которого соединена со второй группой информационных входов блока определения вида модуляции, причем группа информационных входов разветвителя мощности соединена с выходами соответствующих антенных элементов антенной решетки, а вторая группа информационных выходов соединена с группой информационных входов антенного коммутатора, группа входов управления второго блока цифровых полосовых фильтров соединена с группой адресных входов блока взвешенного сложения и группой информационных выходов блока определения средней частоты сигнала, второй блок элементов "И", третий блок сравнения и блок формирования весовых коэффициентов, адресная группа входов которого соединена с группой информационных выходов блока определения средней частоты сигнала, группа информационных входов соединена с третьей группой информационных выходов блока вычисления первичных пространственно-информационных параметров, вход синхронизации объединен со входом синхронизации второго аналого-цифрового преобразователя и выходом генератора синхроимпульсов, а группа информационных выходов блока формирования весовых коэффициентов соединена с первой группой входов второго блока элементов "И", вторая группа входов которого объединена и соединена с выходом третьего блока сравнения, первая группа информационных входов которого объединена с группой информационных входов второго блока сравнения, а вторая группа информационных входов является третьей установочной шиной многоканального адаптивного радиоприемного устройства, а группа выходов второго блока элементов "И" соединена со второй группой информационных входов блока взвешенного сложения, а вторая группа информационных входов блока демодуляторов соединена с группой информационных выходов блока взвешенного сложения.

Перечисленная новая совокупность существенных признаков за счет того, что вводятся новые элементы и связи, позволяет достичь цели изобретения: обеспечить многоканальный адаптивный прием радиосигналов в сложной сигнально-помеховой обстановке.

Заявляемые способ и устройство поясняются чертежами на которых:

на фиг.1 - представлена структурная схема устройства;

на фиг.2 - приведен порядок разбиения заданной полосы частот ΔF на поддиапазоны Δf;

на фиг.3 - приведен амплитудный спектр сигналов и соответствующая ему частотно-пеленговая панорама;

на фиг.4 - иллюстрируется порядок формирования массива эталонных значений разностей фаз Δφn,k эт(fν);

на фиг.5 - представлен порядок формирования массива измеренных значений разностей фаз Δφn,k изм(fν);

на фиг.6 - приведен порядок формирования массива измеренных значений P n,k изм(fν);

на фиг.7 - представлен порядок вычисления суммы Нθ,β(fν) поддиапазона V для Δθ1 и различных углов места Δβh;

на фиг.8 - иллюстрируется порядок формирования массива измеренных значений ;

на фиг.9 - приведена структурная схема блока формирования весовых коэффициентов;

на фиг.10 - иллюстрируется алгоритм вычисления ширины спектра принимаемых сигналов и их центральной частоты;

на фиг.11 - приведен алгоритм вычисления ВВК ;

на фиг.12 - представлена структурная схема блока взвешенного

сложения;

на фиг.13 - иллюстрируется алгоритм первого этапа работы второго блока цифровых полосовых фильтров;

на фиг.14 - иллюстрируется алгоритм второго этапа работы второго блока цифровых полосовых фильтров;

на фиг.15 - иллюстрируется алгоритм третьего этапа работы второго блока цифровых полосовых фильтров.

Реализация заявляемого способа поясняется следующим образом. На первом этапе выполняют следующие операции, обеспечивающие обнаружение сигналов в заданных диапазоне частот ΔF и азимутальном секторе Δθ, оценку их частотных и пространственных параметров.

Весь заданный диапазон частот ΔF делят на поддиапазоны, размеры которых Δf определяются минимальной шириной пропускания приемных трактов пеленгатора. Поддиапазоны, количество которых V=ΔF/Δf нумеруют ν=1, 2, …, V (см. фиг.2). Рассчитывают частоты всех поддиапазонов по формуле fν=Δf(2ν-1)/2. Далее определяют эталонные значения первичных пространственно-информационных параметров (ППИП) для средних частот всех поддиапазонов fν. В качестве первичных пространственно-информационных параметров используют значения разностей фаз сигналов Δφn,k(fν) и значения взаимной мощности сигналов Pn,k(fν) для всех возможных парных комбинаций элементов в рамках антенной решетки.

В предлагаемых способе и устройстве для получения максимальной информации о поле сигнала использованы оба ППИП: Δφn,k(fν) и Pn,k(fν). Порядок расчета эталонных значений Δφn,k(fν) следующий.

Вводят топологию антенной системы (АС) пеленгатора. Данные по топологии АС включают значения взаимных расстояний между антенными элементами решетки и ее ориентацию относительно направления на север. В качестве последнего возможно использование вектора, проходящего от второго АЭ в направлении первого АЭ (при кольцевой структуре антенной решетки).

В процессе расчета эталонных первичных пространственно-информационных параметров моделируют размещение эталонного источника поочередно вокруг антенной решетки пеленгатора с дискретностью Δθl и Δβh в горизонтальной и угломестной плоскостях соответственно на удалении нескольких длин волн. При этом полагается, что фронт приходящей волны плоский. Для каждого из угловых параметров Δθl, l=1, 2, …, L и Δβh, h=1, 2, …, H вычисляют значения разностей фаз Δφn,k эт(fν) для всех возможных комбинаций пар антенных элементов решетки и всех частотных поддиапазонов V:

где

расстояние между плоскими фронтами волн в k-том и n-ном антенных элементах, пришедшие к решетке под углами Δθl в азимутальной и Δβh вертикальной плоскостях, n≠k, xn, yn, zn и xk, yk, zk - координаты n-го и k-го антенных элементов решетки. С′ - скорость света. В случае использования антенной решетки с плоским (горизонтальным) размещением АЭ (zn=zk) последнее выражение примет вид:

Полученные в результате вычислений эталонные значения ППИП Δφn,k эт(fν) оформляются в виде эталонного массива данных, вариант представления информации в котором показан на фиг.4.

При обнаружении сигнала в заданной полосе частот формируют два массива измеренных ППИП Δφn,k изм(fν) и ΔPn,k изм(fν) (см. фиг.5 и фиг.6), структура представления информации в которых аналогична выше рассмотренной на фиг.4. Для этого в многоканальном адаптивном радиоприемном устройстве все измеренные значения Δφn,k изм(fν) и ΔPn,k изм(fν) для всех сочетаний пар антенных элементов An,k всех V частотных поддиапазонов оформляют в соответствующие два массива ППИП.

Выполнение последующих операций в предлагаемом способе осуществляют параллельно по двум направлениям. В первом из них последовательно для всех направлений Δθl, l=1, 2, …, L; LΔθl=2π и всех углов места Δβh, h=1, 2, …, H, HΔβh=π/2 вычисляют разность между эталонными Δφl,h эт(fν) и измеренными Δφn,k изм(fν) ППИП, которые возводят в квадрат и суммируют в соответствии с выражением

На фиг.7 иллюстрируется по