Способ подземной газификации

Иллюстрации

Показать все

Способ подземной газификации твердых ископаемых топлив может быть применен для получения газообразного энергоносителя (горючего газа) из угля или сланца на месте залегания. Способ включает бурение скважин с поверхности земли в обрабатываемый интервал в подземном пласте, размещение в скважинах электродов, приложение напряжения к электродам, пропускание электрического тока и нагрев пласта. Для обеспечения максимальной мощности тепловыделений в пласте частоту тока выбирают исходя из максимума тангенса угла диэлектрических потерь породы и осуществляют пропускание электрического тока выбранной частоты через пласт. Нагрев ведут за счет диэлектрических и резистивных потерь в пласте. В процессе нагрева пласта производят плавное изменение частоты электрического тока в соответствии с изменением максимума тангенса угла диэлектрических потерь породы. При этом скважины для размещения электродов бурят по сеточным координатам в узлах квадратной сетки, а газоотводящие скважины - в центре квадратов сетки. Технический результат заключается в упрощении способа газификации, снижении экономических издержек при подготовке газификации, увеличении скорости нагрева пласта. 1 з.п. ф-лы, 3 ил.

Реферат

Изобретение относится к горному делу, в частности, к способам подземной газификации твердых ископаемых топлив и может быть использовано для получения газообразного энергоносителя (горючего газа) из угля или сланца на месте залегания.

Известен способ подземной газификации, включающий бурение скважин, их сбойку, розжиг, подачу дутья и отвод продуктивного газа [Патент РФ №2385412, МПК Е21В 43/295, опубл. 27.03.2010].

Недостатком известного способа является низкая энергоемкость (калорийность) получаемого товарного газа вследствие наличия в нем большого количества балластного газа, возникающего в результате сжигания части органической массы в камере подземного газогенератора.

Известен способ обработки подземного пласта, содержащего твердое органическое вещество, выбранный в качестве прототипа, включающий обеспечение, по меньшей мере, одной скважины, проходящей в обрабатываемый интервал в подземном пласте, создание по меньшей мере, одного разрыва от, по меньшей мере, одной скважины, который пересекает, по меньшей мере, одну скважину, помещение электропроводного материала в разрыве, осуществление контакта двух электродов с электропроводным материалом, приложение напряжения к двум электродам для пропускания электрического тока по разрыву таким образом, что электрический ток проходит по, по меньшей мере, части электропроводного материала и достаточное тепло вырабатывают электрическим удельным сопротивлением в части электропроводного материала для осуществления пиролиза, по меньшей мере, части твердого органического вещества в извлекаемые углеводороды [Патент РФ №2349745, МПК Е21В 43/24, опубл. 20.03.2009].

Недостатком прототипа является выработка достаточного для пиролиза тепла удельным электрическим сопротивлением электропроводного материала, с чем связано большое количество подготовительных работ, заключающихся в создании разрыва пласта и помещении электропроводного материала в разрыве.

Задача изобретения - создание способа подземной газификации, позволяющего снизить количество подготовительных работ вследствие выработки тепла диэлектрическими и резистивными потерями в пласте.

Технический результат, достигаемый при использовании изобретения, заключается в упрощении способа газификации, снижении экономических издержек при подготовке газификации, увеличении скорости нагрева пласта.

Поставленная задача решена за счет того, что способ подземной газификации, так же как в прототип, включает бурение скважин с поверхности земли, проходящих в обрабатываемый интервал в подземном пласте, размещение в скважинах электродов, приложение напряжения к электродам, пропускание тока, нагрев пласта, отвод газа через газоотводящие скважины. Согласно изобретению способ подземной газификации включает выбор частоты тока исходя из максимума тангенса угла потерь породы, пропускание тока выбранной частоты через пласт, осуществление нагрева пласта за счет резистивных и диэлектрических потерь в пласте, плавное изменение частоты электрического тока в соответствии с изменением максимума тангенса угла диэлектрических потерь породы.

Для уменьшения потерь тепловой энергии на рассеивание в окружающее пространство, целесообразно скважины для размещения электродов бурить по сеточным координатам в узлах квадратной сетки, а скважины для сбора газа в центре квадратов сетки.

Изобретение поясняется иллюстрациями, на которых на фиг.1 показана функциональная схема реализации способа подземной газификации, на фиг.2 показана типичная зависимость тангенса угла потерь от частоты воздействующего напряжения, на фиг.3 показана схема размещения скважин.

Способ подземной газификации включает бурение скважин 1 с поверхности грунта, проходящих в обрабатываемый интервал в подземном пласте 2 твердого горючего ископаемого и размещение внутри них электродов 3, соединенных высокодобротными кабелями с наземным источником переменного тока 4 (фиг.1). Для уменьшения потерь энергии на рассеяние в окружающее пространство электроды 3 размещают по сеточным координатам таким образом, чтобы обеспечить максимальную плотность электромагнитного поля (фиг.3). При этом электроды 3 размещаются в скважинах 1 для электродов. Отвод товарного газа производится через газоотводящие скважины 5.

Способ подземной газификации осуществляют следующим образом.

Газификация осуществляется за счет нагрева пласта до температуры газовыделения твердого топлива (300-500°С). Нагрев осуществляется путем пропускания через пласт высокочастотного тока от наземного источника за счет диэлектрических и резистивных потерь. Выделяемая при этом в пласте мощность должна быть достаточной для создания и поддержания необходимой температуры. При нагреве пласта выше температуры газовыделения осуществляют отвод горючих газов через газоотводящие скважины 5.

Мощность тепловыделений в пласте определяется по формуле:

;

σ - удельная проводимость сланца, Ом·м;

Еср - напряженность поля, В/м;

k - численный коэффициент;

ε - относительная диэлектрическая проницаемость среды;

ε0 - диэлектрическая проницаемость вакуума;

f - частота, Гц;

tgδ - тангенс угла диэлектрических потерь;

S - расстояние между электродами, м.

T - температура;

t - время.

Для увеличения тепловыделений в пласте необходимо подобрать частоту тока, при которой мощность диэлектрических потерь будет максимальной. Типичная зависимость тангенса угла потерь от частоты имеет релаксационный максимум ωm, частота которого зависит от вида породы (фиг.2). Для того чтобы увеличить мощность диэлектрических потерь в пласте, частота работы генератора выбирается равной частоте максимума тангенса угла диэлектрических потерь для газифицируемой породы.

При повышении температуры характеристики породы меняются, вследствие чего изменяется частота максимума тангенса угла диэлектрических потерь. Частота пропускаемого тока при этом должна изменяться таким образом, чтобы соответствовать частоте максимума диэлектрических потерь при данной температуре.

Выделяемая в пласте мощность будет расходоваться на нагрев пласта и отвод тепла теплопроводностью, в результате чего часть энергии будет рассеиваться в окружающее пространство. Для уменьшения потерь энергии на рассеивание в окружающее пространство выгоднее использовать электродную систему, располагая электроды 3 по сеточным координатам. При этом скважины 1 для размещения электродов 3 бурят в узлах квадратной сетки, расположенных друг от друга на расстоянии S, а газоотводящие скважины 5 - в центре квадратов сетки (фиг.3).

Расстояние между электродами S влияет на мощность тепловыделений в пласте и, как следствие, на время нагрева пласта до температуры газовыделения. Расстояние S должно быть как можно большим, однако его увеличение также увеличивает время нагрева. Таким образом, расстояние S выбирается экспериментальным путем исходя из оптимального времени нагрева пласта.

Пример.

Было проведено испытание способа на экспериментальной установке с фрагментом пласта горючих сланцев, что обеспечивает адекватность эксперимента реальным условиям. Использовалось четыре электрода, расположенных в узлах квадрата со стороной S=0.4 м. К электродам был подключен генератор с выходным напряжением 10 кВ. Частота работы генератора на начальном этапе составляла 70 кГц как частота, соответствующая максимуму диэлектрических потерь для данной породы при данной температуре. За 2 часа температура в межэлектродном пространстве образца достигла 300°С. В процессе нагрева частота генератора поддерживалась соответствующей максимуму диэлектрических потерь и к концу эксперимента изменилась до 60 кГц. Полученные результаты позволяют сделать вывод о промышленной применимости метода в условиях реальных месторождений.

Способ обеспечивает максимальную мощность тепловыделений в обрабатываемом пласте вследствие выработки тепла диэлектрическими и резистивными потерями в пласте и позволяет снизить количество подготовительных работ при газификации и увеличить скорость нагрева пласта.

1. Способ подземной газификации, включающий бурение скважин с поверхности земли в обрабатываемый интервал в подземном пласте, размещение в скважинах электродов, приложение напряжения к электродам, пропускание электрического тока, нагрев пласта и отвод газов через газоотводящие скважины, отличающийся тем, что для обеспечения максимальной мощности тепловыделений в пласте частоту тока выбирают, исходя из максимума тангенса угла диэлектрических потерь породы, осуществляют пропускание электрического тока выбранной частоты через пласт и ведут нагрев за счет диэлектрических и резистивных потерь в пласте, затем в процессе нагрева пласта производят плавное изменение частоты электрического тока в соответствии с изменением максимума тангенса угла диэлектрических потерь породы.

2. Способ по п.1, отличающийся тем, что скважины для размещения электродов бурят по сеточным координатам в узлах квадратной сетки, а газоотводящие скважины - в центре квадратов сетки.