Адаптивное сжатие обратной связи канала, основанное на статистике канала второго порядка
Иллюстрации
Показать всеИзобретение относится к передаче обратной связи состояния канала в сети мобильной связи и, более конкретно, к способу и устройству для сжатия обратной связи состояния канала адаптивным способом. Технический результат заключается в осуществлении способов сжатия обратной связи состояния канала, которые адаптированы для различных распределений отчетов канала. Для этого определяют индивидуальную статистику для множества коэффициентов отсчета канала для канала связи между передающей станцией и принимающим терминалом; квантуют на индивидуальной основе упомянутое множество коэффициентов отсчета канала на соответствующих битовых скоростях квантования, которые определяются на основе упомянутой статистики, чтобы сгенерировать квантованные коэффициенты отсчета канала, при этом общее количество битов, выделяемое для упомянутого множества коэффициентов отсчета канала, является фиксированным; и передают эти квантованные коэффициенты отсчета канала из принимающего терминала в передающую станцию. 4 н. и 48 з.п. ф-лы, 11 ил.
Реферат
Предшествующий уровень техники
Настоящее изобретение относится в целом к передаче обратной связи состояния канала в сети мобильной связи и, конкретнее, к способу и устройству для сжатия обратной связи состояния канала адаптивным способом.
Использование множества антенн в передатчике и/или приемнике в системах беспроводной связи привлекало существенное внимание за прошедшее десятилетие из-за возможных усовершенствований как по радиопокрытию, так и по скорости передачи данных. В отличие от систем с одной антенной, где информация состояния канала не улучшает значительно пропускной способности, существенное увеличение в пропускной способности может быть достигнуто в системах с множеством антенн, когда точная информация состояния канала доступна передатчику. В системе, основывающейся на мультиплексировании с частотным разделением каналов (FDD), приемник обычно выдает в канале обратной связи информацию состояния канала на передатчик. Несмотря на то что предположение о совершенстве информации состояния канала на передатчике нереалистично из-за ограничения пропускной способности, налагаемого на канал обратной связи, и связанной с ним задержки, обусловленной нахождением сигнала в прямом и обратном направлениях, было показано, что даже частичное знание о каналах на передатчике может обеспечить существенное увеличение пропускной способности по сравнению с системами, которые не берут в расчет информацию состояния канала. Однако обратная связь по подробной информации состояния канала расходует полезную ширину полосы пропускания обратной линии связи. Следовательно, существует значительный интерес в проектировании эффективных способов уменьшения объема обратной связи по информации состояния канала без значительного расходования пропускной способности обратной линии связи.
Один подход к обратной связи состояния канала использует неструктурированные блочные или векторные квантователи (VQ) для того, чтобы сократить обратную связь по информации состояния канала. Хотя, в теории, неструктурированные VQ могут достичь оптимально-достижимого сжатия, сложность неструктурированных VQ растет экспоненциально с произведением размера на скорость. Для примера, в системе MIMO с 4 передающими и 2 приемными антеннами размер неструктурированных VQ, предлагаемых в литературе, может достигать величины 4*2*2 (действительные и мнимые части каждого коэффициента отчета канала)=16. Требования по ресурсам хранения и вычислительным ресурсам, предъявляемые к большим по размерам неструктурированным VQ, могут быть чрезмерно высокими в практическом применении для разрешений квантования (или исходных скоростей кодирования), которыми достигается приемлемая точность.
Отдельно от вычислительной сложности, другой проблемой неструктурированных VQ является их неспособность приспосабливаться к различной канальной статистике. Большинство предложенных технологий квантования для сжатия обратной связи состояния канала предполагают, что отчеты канала MIMO независимы и одинаково распределены (IID) по пространственным измерениям. На практике, однако, статистическое распределение каналов MIMO зачастую высоко коррелировано пространственно и по частоте. Квантователи VQ, спроектированные на основе IID-предположения, могут не обеспечить желаемых рабочих характеристик по широкому диапазону канальной статистики, обычно получаемой в беспроводных окружениях.
С другой стороны, проектирование неструктурированного VQ, чтобы принимать во внимание все возможные распределения отчетов канала, в то же время, поддерживая разумную точность квантования, не является практичным.
Соответственно, существует потребность в способах сжатия обратной связи состояния канала, которые могут быть адаптированы для различных распределений отчетов канала, в то же время, поддерживая приемлемую точность и сложность.
Сущность изобретения
Настоящее изобретение относится к способу и устройству для предоставления в виде обратной связи подробной информации о канале, используя адаптивные векторные квантователи. Способ и устройство используют канальную статистику второго порядка (например, дисперсию) для сжатия обратной связи по мгновенной характеристике пространственно-коррелированного канала MIMO. Множество низкоразмерных векторных квантователей (VQ) с различным разрешением (или скоростями) квантует различные комплекснозначные коэффициенты отчетов канала. Разрешение каждого VQ выбирается адаптивно, основываясь на дисперсии соответствующего отчета канала. При использовании различных разрешений квантования для отчетов канала с различной значимостью, распределение точек квантования может быть сделано аналогичным распределению, соответствующему оптимальному неструктурированному VQ, спроектированному для конкретной канальной статистики, что приводит к почти оптимальным рабочим характеристикам со значительно более низкой сложностью, в плане вычислений и хранения.
В одном типовом варианте воплощения как сжатая обратная связь по мгновенной канальной характеристике, так и канальная статистика подаются в качестве обратной связи на передатчик. Сжатая обратная связь по мгновенной канальной характеристике предоставляется в качестве обратной по быстрому каналу обратной связи. Канальная статистика подается в качестве обратной связи на передатчик по медленному каналу обратной связи, по которому информация от приемника отсылается обратно существенно менее часто, чем по быстрому каналу обратной связи. В альтернативном варианте воплощения полезно, что когда шумовой спектр является относительно плоским по частотному спектру, вся или часть требующейся канальной статистики может быть вычислена непосредственно на передатчике, основываясь на предположении, что статистики прямого и обратного каналов являются взаимообратными.
В некоторых вариантах воплощения, отклики канала могут быть преобразованы в другую область перед квантованием канальных оценок. Например, в варианте воплощения, подходящем для систем MIMO-OFDM, канальная характеристика, оцененная в частотной области, может быть преобразована в отчеты канала временной области. Оценки канала временной области, которые подпадают под предопределенный разброс задержек, отбираются и затем дополнительно преобразуются по пространственному измерению в «собственную» область. Результирующие преобразованные коэффициенты квантуются индивидуально, используя квантователи с различными скоростями (или разрешениями), адаптивно вычисляемыми в соответствии с дисперсиями преобразованных коэффициентов.
Обратная связь состояния канала декодируется передатчиком, используя кодовые книги квантования для соответствующих скоростей (или разрешений) с целью получения оценок преобразованных коэффициентов, т.е. квантованных преобразованных коэффициентов. Скорость или разрешение каждого квантователя вычисляется тем же способом, как и в приемнике, основываясь на относительной дисперсии соответствующего преобразованного коэффициента. Впоследствии обратные преобразования применятся к квантованным преобразованным коэффициентам, чтобы получить квантованную версию канальной характеристики частотной области. На основе этой информации о канале могут быть вычислены в передатчике оптимальный корректор предварительного кодирования, приходящиеся на каждый поток скорости кодирования и/или индикатор качества канала (CQI) на каждой частоте.
Краткое описание чертежей
Фиг.1 - иллюстрация типичной системы связи.
Фиг.2 - иллюстрация типичной системы связи, использующей схему адаптивной обратной связи.
Фиг.3 - иллюстрация типичной системы связи, использующей схему адаптивной обратной связи.
Фиг.4 - иллюстрация типичного способа кодирования обратной связи по качеству канала в соответствии с одним вариантом воплощения.
Фиг.5 - иллюстрация типичного способа декодирования обратной связи по качеству канала в соответствии с одним типичным вариантом воплощения.
Фиг.6 - иллюстрация типичного кодера обратной связи для системы OFDM.
Фиг.7 - иллюстрация типичного декодера обратной связи для системы OFDM.
Фиг.8 - иллюстрация типичного процессора преобразования для кодера обратной связи OFDM, показанного на Фиг.6
Фиг.9 - иллюстрация типичного процессора преобразования для декодера обратной связи OFDM, показанного на Фиг.7.
Фиг.10 - иллюстрация рабочих характеристик для системы MIMO согласно настоящему изобретению.
Фиг.11 - иллюстрация рабочих характеристик для схемы адаптивной обратной связи, проиллюстрированной на Фиг.6. и 7.
Подробное описание
Ссылаясь теперь на чертежи, типичные варианты воплощения настоящего изобретения описываются в контексте системы связи 10 с множеством антенн показанной на Фиг.1. Система связи 10 с множеством антенн может, например, содержать систему с множеством входов и одним выходом (MISO) или систему с множеством входов и множеством выходов (MIMO). Специалистами в данной области техники следует, однако, понимать что принципы, иллюстрируемые раскрываемыми вариантами воплощения, могут быть применены и в других типах систем связи.
Система связи 10 с множеством антенн содержит первую станцию 12, передающую сигнал по каналу связи 14 на вторую станцию 16. Первая станция 12 упоминается здесь как передающая станция, в то время как вторая станция 16 упоминается здесь как приемная станция. Специалисты в данной области техники примут во внимание, что каждая из первой станции 12 и второй станции 16 может включать в себя и передатчик, и приемник для двунаправленной связи. Линия связи от передающей станции 12 к приемной станции 16 называется нисходящей линией связи. Линия связи от приемной станции 16 к передающей станции 12 называется восходящей линией связи. В одном типичном варианте воплощения, передающая станция 12 является базовой станцией в сети беспроводной связи, а приемная стация 16 является мобильной станцией. Настоящее изобретение может быть использовано, например, для передачи данных от базовой станции 12 на мобильную станцию 16 через канал Высокоскоростной Пакетной Передачи Данных Нисходящей Линии Связи (HSPDA) в системах WCDMA.
Передающая станция 12 передает сигналы от множества антенн на приемную станцию 16, которая может включать в себя одну или более приемных антенн. В отличие от систем связи с одной антенной, которые задействуют одну антенну, как на передающей, так и приемной станциях 12 и 16, увеличения пропускной способности системы могут быть реализованы, если передающая станция 12 имеет подробные сведения о канальной характеристике для канала 14 от передающей станции 12 к приемной станции 16. Приемная станция 16 вычисляет оценки канала 14 от передающей станции 12 к приемной станции 16 и передает обратную связь состояния канала на передающую станцию 12 через канал обратной связи 18. Однако предоставление в качестве обратной связи подробной информации о канале от приемной станции 16 к передающей станции 12 потребляет полезную ширину полосы пропускания обратной линии связи, которая могла бы противном случае использоваться для переноса пользовательских данных. В системах с множеством антенн объем обратной связи состояния канала резко увеличивается с количеством пар передающих и приемных антенн.
Фиг.2 поясняет типичный передатчик 100 передающей станции 12 и приемник 200 приемной станции 16. Приемник 200 использует технологии векторного квантования, чтобы сократить обратную связь состояния канала. Для ясности предполагается, что система связи 10 задействует множество антенн на передающей станции 12 и одиночную антенну на приемной станции 16. Описываемые здесь принципы в полной мере распространяются и на множество антенн приемной станции 16.
Передающая станция 12 (например, базовая станция) передает сигналы сгенерированные процессором 102 передаваемых сигналов, на приемную станцию 16 (например, мобильную станцию). Существуют М каналов нисходящей линии связи (по одному от каждой передающей антенны). Каналы нисходящей линии связи от передающей станции 12 к приемной станции 16 предполагаются линейно инвариантными по времени каналами с канальной характеристикой gm(t) во временной области и Gm(f) в частотной области. Основополосный сигнал r(t), принятый на приемной станции, имеет вид:
Уравнение 1 |
где * обозначает свертку и v(t) - шум основной полосы частот. m-й канал нисходящей линии связи может быть смоделирован как:
Уравнение 2 |
где am,k - канальные коэффициенты канала от m-й антенны и τк задержки. Средство 204 оценки канала в приемной станции 16 формирует оценку канала нисходящей линии связи в соответствии с:
Уравнение 3 |
где m=1,…,М и Т - интервал дискретизации, используемый для квантования задержек τк. Заметим, что для Q в уравнении 3 нет необходимости быть равным К в уравнении 2. Канальные оценки предоставляются процессору 202 принимаемых сигналов для демодуляции принятого основополосного сигнала r(t). Дополнительно, канальные оценки вводятся в кодер 206 обратной связи. Кодер обратной связи 206 принимает канальные оценки от средства 204 оценки канала, квантует канальные коэффициенты в и подает квантованные канальные коэффициенты в качестве обратной связи на передающую станцию 12.
Оцениваемая канальная характеристика для канала нисходящей линии связи от одной передающей антенны может быть концептуально связана с дискретным по времени фильтром с конечной импульсной характеристикой Q с ненулевыми коэффициентами отчета, например:
Уравнение 4 |
где m=1,…,M. Следовательно, проблема передачи на передающую станцию 12 эквивалентна проблеме передачи .
Вариант осуществления, показанный на Фиг.2, использует технологию адаптивного квантования, которая назначает большее количество бит более значимым отчетам канала и меньшее количество менее значимым отчетам канала. Распределения битов адаптивно вычисляются на основе долгосрочной статистики отчетов канала, таких как относительные мощности или дисперсии отчетов канала с тем, чтобы предопределенная мера искажения реакции результирующей квантованной канальной характеристики была минимизирована для общего количества доступных битов. Используются два логических канала обратной связи: канал 18а обратной связи с низкой скоростью (медленный канал обратной связи), для передачи в качестве обратной связи распределения битов и более высокоскоростной канал 18b обратной связи (быстрый канал обратной связи) передачи в качестве обратной связи квантованных коэффициентов отчета канала. В этом варианте осуществления канальную статистику (например, дисперсии отчетов канала) собирают перед квантованием. Информацию относительно количества битов, выделенных для квантования каждого отчета сигнала, периодически отсылают назад на передающую станцию 12 через медленный канал 18а обратной связи. Информацию относительно квантованной версии (согласно текущему распределению битов) оценки каждой конкретной реализации канала периодически отсылают обратно через быстрый канал 18b обратной связи.
Кодер 206 обратной связи включает в себя множество многоскоростных или переменно-скоростных векторных квантователей 212, средство 214 вычисления метрики и средство управления (контроллер) 216 скоростью. Переменно-скоростные векторные квантователи 212 на индивидуальной основе квантуют канальные коэффициенты для каждого канала 14. Скорость или разрешение каждого квантователя 212 выбирается индивидуально на основе статистики соответствующего отчета канала. Средство 214 вычисления метрики вычисляет статистику, такую как дисперсия, каждого отчета канала каждого канала 14 и подает статистику по отчетам каналов на контроллер 216 скорости. В этом варианте воплощения канальную статистику вычисляют до квантования. Контроллер 216 скорости определяет количество битов, выделяемых каждому квантователю 212. Количество битов, выделяемых квантователю 212, соответствует скорости или разрешению этого квантователя 212. Квантованные канальные коэффициенты передаются на передающую станцию 12 по быстрому каналу 18b обратной связи. Распределение битов, определенное контроллером 216 скорости, подается в качестве обратной связи на передающую станцию 12 по медленному каналу 18а обратной связи. В альтернативном варианте, контроллер 216 скорости может предоставить в качестве обратной связи канальную статистику от средства 214 вычисления метрики, и распределение битов может быть вычислено из этой статистики на передающей станции 12.
Декодер 104 обратной связи в передающей станции 12 содержит множество декодеров 110 квантования и контроллер 112 скорости. Декодеры 110 квантования формируют оценки квантованных канальных коэффициентов на основе принятых битов, принятых по быстрому каналу 18b обратной связи. Скорость декодирования или разрешение определяется котроллером 112 скорости на основе обратной связи по распределению битов от контроллера 216 скорости в приемной станции 16. В альтернативном варианте, контроллер 216 скорости в приемной станции 16 мог бы предоставить в качестве обратной связи статистическую метрику из средства 214 вычисления метрики, а контроллер 112 скорости в передающей станции 12 мог бы вычислить соответствующее распределение битов.
Фиг.3 поясняет вариант осуществления, который исключает медленный канал 18а обратной связи. Те же самые ссылочные номера используются на Фиг.2 для обозначения тех же самых компонентов. В варианте осуществления, показанном на Фиг.3, передающая станция вычисляет канальную статистику канала восходящей линии связи, которая предполагается такой же, как и статистика для канала нисходящей линии связи, и определяет распределения битов из канальной статистики. В этом случае канальную статистику собирают после квантования с тем, чтобы одна и та же статистика могла быть сформирована как в передающей станции 12, так и в приемной станции 16. Специалистам в данной области техники должно быть понятно, что метрики, используемые для вычисления распределений битов в текущем периоде управления скоростью, будут использоваться для определения распределения битов в следующем периоде управления скоростью. Средство 214 вычисления метрики вычисляет статистику (например, дисперсию) для каждого отчета канала на основе квантованных канальных коэффициентов. Дисперсия или другие статистические показатели подаются на контроллер 216 скорости, который определяет распределения битов для переменно-скоростного векторного квантователя 212. Декодер 104 обратной связи в передающей станции 12 принимает квантованные канальные коэффициенты. Средство 214 вычисления метрики использует квантованные канальные коэффициенты, принятые, в текущем периоде управления скоростью, для вычисления распределений битов для следующего периода управления скоростью. Распределения битов, вычисленные в предыдущем периоде управления скоростью, используются декодерами квантования, чтобы определить оценки квантованных канальных коэффициентов.
В вариантах осуществления, показанных на Фиг.2 и 3, распределение битов для Q отчетов канала может быть вычислено так, чтобы среднеквадратичная разность между оцененной канальной характеристикой и ее квантованной версией была минимизирована, как описано ниже. Пусть и обозначают действительную и мнимую части оцениваемого отчета канала соответственно и пусть обозначают k-й векторный отчет канала. Пусть Qk(·) обозначают векторный квантователь 212 размерностью 2М с Nk точками квантования, используемыми для квантования . Исходная скорость кодирования Qk(.) определяется как , что означает количество битов, выделенных для квантования каждого (действительнозначногого) элемента. Целью является нахождение оптимального вектора распределения битов R=(R1,R2,…,RQ) с тем, чтобы минимизировать сумму среднеквадратичных искажений для всех отчетов канала, задаваемую как:
Уравнение 5 |
Искажение D(Rk)для отчета канала имеет вид:
Уравнение 6 |
Вышеупомянутая задача оптимизации затруднительна для точного решения, поскольку искажение D(Rk) является сильно нелинейной функцией Rk. Однако хорошее приближенное решение может быть выведено, используя асимптотическую формулу Беннета-Задор-Гершо (Bennet-Zador-Gersho) для D(Rk), задаваемую как:
Уравнение 7 |
где k=1,2,…,Q, - дисперсия векторного отчета канала, и γk - величина зависящая от общей плотности Pk(·) вероятности для и некоторых конструкторских характеристик квантователя Qk(·). Подстановка уравнения 7 в уравнение 5 раскрывает, что компоненты оптимального вектора R, который минимизирует D(R), задаются как:
Уравнение 8 |
для k=1,2,…,Q. Член обозначает среднее количество битов, выделяемых на каждый векторный отчет канала.
Предполагая, что элементы одинаково распределены для всех k кроме их дисперсий (например, для всех k для некоторой нормированной функции плотности р(х)) и что квантователи {Qk(.)} для всех k имеют одинаковые конструкционные характеристики, тогда {γk} идентичны для всех k. В этом случае уравнение 8 упрощается до:
Уравнение 9 |
для k=1,2,…,Q.
Для того чтобы квантовать коэффициенты отчета канала при различных скоростях согласно их дисперсиям, приемная станция 16 и передающая станция 12 должны сохранять соответственно кодеры 206 и декодеры 104 множества квантователей с различными исходными скоростями кодирования. Поскольку скорости, вычисленные используя уравнение 9, могут не соответствовать точно доступным скоростям, могут выполняться определенные операции округления при вычислении скоростей {Rk}. Чтобы гарантировать, что итоговые скорости после округления не будут превышать пропускную способность канала 18 обратной связи, можно вычислять скорости для отчетов канала последовательно, как
Уравнение 10 |
где k=1,2,…,Q и обозначает аппроксимацию Rj из-за округления. Можно отметить, что там, где =Rj для всех j=1,2,…,k-1, Rk вычисленные по уравнениям 9 и 10, будут одинаковым. Для гарантии хороших рабочих характеристик, предпочтительно вычислять скорости в порядке убывания соответствующих дисперсий отчетов канала и использовать операции округления в большую сторону с тем, чтобы для доминирующих отчетов канала обеспечивалось достаточное количество битов.
Вычисление распределений битов в соответствии с уравнениями 8 и 9 представляет один типичный вариант воплощения изобретения, который основан на отношении стандартного отклонения каждого отчета канала к среднему геометрическому стандартного отклонения всех отчетов канала. Другие варианты изобретения включают в себя вычисление распределений битов на основе среднего арифметического некоторой функции дисперсий отчетов канала в соответствии с:
Уравнение 11 |
где k=1,2,…,Q и обозначает набор монотонно возрастающих функций. Например, когда fk(x)=log(γk,x)/2, уравнение 11 идентично уравнению 8. В альтернативном варианте, когда fk(x)= для всех k, распределение битов вычисляется на основе относительной величины стандартного отклонения каждого отчета канала относительно среднего стандартного отклонения.
Более широко, если s обозначает некоторую долгосрочную статистику касаемо канальной характеристики (например, в предпочтительном варианте осуществления вычисление распределений битов для различных отчетов канала может быть выражено как:
Уравнение 12 |
где k=1,2,…,Q и k(·)обозначают некоторую функцию распределения битов, предназначенную для k-го отчета канала. Уравнение 12 может вычисляться последовательно в соответствии с:
Уравнение 13 |
где k=1,2,…,Q и обозначает аппроксимацию Rj из-за округления.
Как упоминалось выше, для реализации изобретения, в передающей станции 12 и приемной станции 16 должны быть реализованы множественные кодеры и декодеры с различными скоростями и уровнями искажения так, чтобы различные уровни квантования могли быть обеспечены согласно измеренной статистике. В альтернативном варианте, можно использовать одиночный векторный квантователь с древовидной структурой (TSVQ), чтобы обеспечивать различные уровни квантования. Кодер для TSVQ хранит сбалансированное дерево кодирования гиперплоскостей глубины d-1, т.е. каждый узел деревьев, проиндексированный последовательностью битов , соответствует нормальному (столбцовому) вектору pb многомерной гиперплоскости и пороговой величине . Например, глубина дерева может быть выбрана как d=2MQR. Имея (оцененный) векторный отчет канала, процесс кодирования начинается с корневого узла дерева с соответствующей гиперплоскостью и вычисляет:
Уравнение 14 |
где q1(x) означает однобитовый скалярный квантователь, выход которого равняется единице, если х0, или нулю, если х0. На следующем уровне кодер 206 вычисляет:
Уравнение 15 |
используя гиперплоскость , которая соответствует значению Кодер 206 повторяет этот процесс на последующих уровнях и вычисляет:
Уравнение 16 |
где b=(b[1],b[2],…,b[n-1]), до тех пор, пока не будет достигнуто количество битов Rk, выделяемых для квантования . В это время кодер 206 выдает последовательность битов Rk (b[1],b[2],…,b[Rk]) для векторного отчета канала.
По приему кодированной битовой последовательности (b[1],b[2],…, b[Rk]), декодер 104 TSVQ формирует квантованный отчет канала на основе дерева декодирования глубиной b, узлы которого на каждом уровне содержат квантованные отчеты канала с соответствующим уровнем квантования. Гиперплоскость, используемая на каждом уровне, зависит от выходных битов, вычисленных на предыдущих уровнях. Кроме того, гиперплоскости, используемые в TSVQ (наряду с соответствующим деревом декодирования квантованных векторов), создаются так, чтобы соответствовать статистическому распределению.
В практической системе связи отчеты канала могут медленно изменяться от одного момента времени обратной связи к другому. Таким образом, может использоваться дифференциальное квантование отчетов канала. В этом случае, описанные здесь принципы могут работать в сочетании с любой схемой дифференциального квантования для квантования изменений в отчетах канала от одного момента времени до другого.
Принципы настоящего изобретения могут быть применены к системам, основывающимся на мультиплексировании с ортогональным частотным разделением каналов (OFDM). В системе OFDM принятый основополосный сигнал частотной области может быть смоделирован как:
Уравнение 17 |
где k=1,2,…, N, Hf[k] - матрица nR×nT, обозначающая канальную характеристику MIMO, r[k] - принятый сигнал, s[k] - переданный сигнал и w[k] - компонент шумов и помех на частоте k-й поднесущей в системе беспроводной связи OFDM с nТ передающими антеннами и nR приемными антеннами соответственно. Шумовой компонент W[k] предполагается статистически независимым по частоте, но его ковариационная матрица, обозначенная R w E{w[k]w[k]H}, может изменяться с частотой, где Е {•} обозначает ожидаемое значение величины внутри скобок.
Приемная станция 16 оценивает канал и дисперсию шума. Канальная характеристика, соответствующая преобразованию к белому шуму, определяется как:
Уравнение 18 |
где k=1,2,…, N. Мы предполагаем, что определенная статистика второго порядка по доступна на передающей станции 12. Например, канальная статистика второго порядка может быть собрана на приемной станции 16 путем осреднения по многим реализациям, наблюдаемым в течение определенного периода времени, и затем отправлена на передающую станцию 12 по медленному каналу обратной связи 18а, как ранее описано. В качестве альтернативного варианта, когда шумовой спектр относительно плоский, по меньшей мере часть канальной статистики может также быть вычислена непосредственно на передающей станции 12, используя свойство взаимообратности канальной статистики на прямом и обратном каналах 14.
Фиг.4 иллюстрирует типовой способ 50, выполняемый кодером 206 обратной связи для кодирования канальных оценок в соответствии с одним вариантом воплощения. Кодер 206 обратной связи принимает канальные оценки от средства 204 оценки канала и вычисляет статистику (например, дисперсию) для каждого из канальных коэффициентов (этап 52). Контроллер 216 скорости определяет скорости для соответствующего набора многоскоростных квантователей 212 на основе канальной статистики (этап 54). Многоскоростные квантователи 212 далее на индивидуальной основе квантуют соответственные канальные коэффициенты на скоростях, определенных контроллером скорости на основе статистики канальных коэффициентов (этап 56). В некоторых вариантах осуществления, статистика, вычисленная перед квантованием за текущий период управления скоростью, используется для определения исходных скоростей кодирования. В других вариантах осуществления, статистика, вычисленная после квантования за текущий период управления скоростью, используется для определения исходных скоростей кодирования для следующего периода управления скоростью.
Фиг.5 иллюстрирует типовой способ 60, выполняемый декодером 104 обратной связи для декодирования канальных оценок, согласно одному типовому варианту осуществления. Контроллер 112 скорости для декодера 104 обратной связи определяет исходные скорости кодирования для множества декодеров 110 квантования. Декодеры 110 квантования далее декодируют канальные оценки, используя скорости, определенные на основе обратной связи по распределению битов от контроллера скорости (этап 64). В некоторых вариантах осуществления скорости могут определяться на основе обратной связи по распределениям битов или канальной статистике от кодера 206 обратной связи (этап 62). В других вариантах осуществления, статистика, вычисленная за текущий период управления скоростью на основе обратной связи по квантованным оценкам канала, может быть использована в последующем периоде управления скоростью, чтобы определить скорости для декодеров 110 квантования.
Фиг.6 иллюстрирует типовой кодер 300 обратной связи для приемной станции 16 в системе OFDM. Кодер 300 обратной связи включает в себя фильтр-преобразователь 302 к белому шуму, процессор 304 преобразования, модуль 306 масштабирования, средство 308 вычисления метрики, контроллер 310 скорости и переменно-скоростные векторные квантователи 312. Канальная характеристика частотной области из средства 204 оценки канала и матрицы ковариации шума вводятся в фильтр-преобразователь 302 к белому шуму. Фильтр-преобразователь 302 к белому шуму сначала выполняет операцию преобразования к белому шуму путем декорреляции канальной характеристики на каждой частоте на соответствующий квадратный корень от ковариации шума согласно уравнению 18, чтобы сформировать приведенную к белому шуму канальную характеристику . Приведенная к белому шуму канальная характеристика затем преобразовывается процессором 304 преобразования, как описано более детально ниже, в вектор комплекснозначных коэффициентов X =(X 1 , X 2 ,…, Xn c ), где n c обозначает количество преобразованных канальных коэффициентов. Модуль 306 масштабирования масштабирует преобразованные канальные коэффициенты в Х их соответствующими стандартными отклонениями. Масштабированные и преобразованные канальные коэффициенты далее квантуются на индивидуальной основе соответствующими переменно-скоростными векторными квантователями 312 (или с переменным разрешением). Векторные квантователи 312 выполняются автономно для различных скоростей (или разрешений) на основе, например, выборок Гауссова IID с нулевым средним с единичной дисперсией. Векторные квантователи, например, могут содержать двумерные векторные квантователи. Кроме того, векторные квантователи 312 большей размерности могут также использоваться для квантования двух или более преобразованных коэффициентов совместно.
Скорости (или разрешение), используемые для квантования каждого преобразованного коэффициента, адаптивно отбираются на основе набора дисперсий канальных коэффициентов частотной области. Средство 308 вычисления метрики вычисляет дисперсии преобразованных канальных коэффициентов. Контроллер 310 скорости определяет распределение битов для каждого векторного квантователя 312 на основе дисперсий канальных коэффициентов. Например, имея совокупный запас битов B total, количество битов B k, используемое для квантования коэффициента X k, может быть выбрано в соответствии с: